Linear Algebra - Problem Set 5 - Solutions

Exercise I ($6 \times 5=30$ points $)$

1. If $B=M^{-1} A M$, why is $\operatorname{det} B=\operatorname{det} A$?
$\operatorname{det} B=\operatorname{det}\left(M^{-1} A M\right)=\operatorname{det} M^{-1} \operatorname{det} A \operatorname{det} M=\frac{1}{\operatorname{det} M} \operatorname{det} A \operatorname{det} M=\operatorname{det} A$
2. If the entries of A and A^{-1} are all integers, What are all the possible values of $\operatorname{det} A$ and $\operatorname{det} A^{-1}$? If the entries of A and A^{-1} are all integers, then $\operatorname{det} A$ and $\operatorname{det} A^{-1}$ must be integers.
But $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A} \Longrightarrow \operatorname{det} A$ and $\operatorname{det} A^{-1}$ can only be ± 1.
3. Suppose λ is an eigenvalue of A. Prove the following:
(a) If A is invertible, then λ^{-1} is an eigenvalue of A^{-1}.

Suppose A is invertible and λ is an eigenvalue of A, with corresponding eigen vector \vec{v}. Then

$$
A^{-1}(\lambda \vec{v})=\vec{v}=\frac{1}{\lambda}(\lambda \vec{v})
$$

(b) $\lambda+c$ is an eigenvalue of $A+c I$, where c is any constant.

Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} and c is any constant. Then

$$
(A+c I) \vec{v}=A \vec{v}+c I \vec{v}=\lambda \vec{v}+c \vec{v}=(\lambda+c) \vec{v}
$$

So $\lambda+c$ is an eigenvector of $A+c I$.
(c) A and A^{T} have the same eigenvalues.

Suppose λ is an eigenvalue of A. Note that $(A-\lambda I)^{T}=A^{T}-\lambda I$. Then,

$$
\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-\lambda I)
$$

Thus A and A^{T} have the same characteristic polynomials, hence they have the same eigenvalues.
4. Suppose a matrix A satisfies $A^{2}=I$. Prove that the eigenvalues of A must be 1 or -1 .

Consider any eigenvalue λ of A, and let \vec{x} be an arbitrary eigenvector of A corresponding to λ. Hence, we have:

$$
A \vec{x}=\lambda \vec{x} \Rightarrow A^{2} \vec{x}=\lambda A \vec{x} \Rightarrow I \vec{x}=\lambda A \vec{x} \Rightarrow \vec{x}=\lambda A \vec{x}
$$

Note that $\lambda(A \vec{x})=\lambda(\lambda \vec{x})=\lambda^{2} \vec{x}$. Hence, we have $\vec{x}=\lambda^{2} \vec{x}$. As \vec{x} is not $\overrightarrow{0}$ (eigenvectors are nonzero), it follows that $\lambda^{2}=1$ and thus $\lambda= \pm 1$

Exercise II ($2 \times 10=20$ points $)$

1. Compute the eigenvector of $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & 0 & 1\end{array}\right]$ corresponding to eigenvalue -3 .

Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & 0 & 1\end{array}\right]$, and compute $(A+3 I) \vec{x}=\overrightarrow{0}$, i.e.,

$$
\begin{gathered}
{\left[\begin{array}{ccc}
4 & 0 & -1 \\
1 & 0 & 0 \\
4 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 & 0 & -1 \\
4 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\Longrightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

The above system gives that $x_{1}=x_{3}=0$ and x_{2} is a free variable.
Hence, an eigenvector corresponding to the eigenvalue -3 is given by $\vec{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
2. Choose the third row of $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$, such that the characteristic polynomial is $-\lambda^{3}+4 \lambda^{2}+5 \lambda+6$.

$$
\begin{aligned}
& |A-\lambda I|=\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
1 & 1-\lambda & 1 \\
a & b & c-\lambda
\end{array}\right|=-\lambda[(1-\lambda)(c-\lambda)-b]-[c-\lambda-a]=-\lambda^{3}+(1+c) \lambda^{2}+(1+b-c) \lambda+(a-c) \\
& 1+c=4 \Longrightarrow a \quad c=3 \quad 1+b-c=5 \Longrightarrow \quad b=7 \quad a-c=6 \Longrightarrow a=9
\end{aligned}
$$

Exercise III (5 $\times 5=25$ points)

1. Compute the eigenvalues of A.

$$
\operatorname{det}(A-\lambda I)=0 \Longrightarrow\left|\begin{array}{cc}
0.4-\lambda & 0.3 \\
0.2 & 0.5-\lambda
\end{array}\right|=0 \Longrightarrow(0.4-\lambda)(0.5-\lambda)-0.06=0 \Longrightarrow \lambda_{1}=0.2, \lambda_{2}=0.7
$$

2. Compute the eigenvectors associated with each of the eigenvalues in A.

- $\lambda_{1}=0.2$: Solve $[A-0.2 I] \vec{x}_{1}=\overrightarrow{0} \Longrightarrow\left[\begin{array}{ll|l}0.2 & 0.3 & 0 \\ 0.2 & 0.3 & 0\end{array}\right]$

Let $\vec{x}_{1}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and note that $x_{1}=-\frac{3}{2} x_{2}$. Therefore, $\vec{x}_{1}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-\frac{3}{2} x_{2} \\ x_{2}\end{array}\right]=\frac{1}{2} x_{2}\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ Choose $\vec{x}_{1}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$, and note that any multiple of this vector is also an eigenvector.

- $\lambda_{1}=0.7$: Solve $[A-0.7 I] \vec{x}_{1}=\overrightarrow{0} \Longrightarrow\left[\begin{array}{rr|r}-0.3 & 0.3 & 0 \\ 0.2 & -0.2 & 0\end{array}\right]$. Let $\vec{x}_{2}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and note that $x_{1}=x_{2}$. Therefore, $\vec{x}_{1}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ Choose $\vec{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and note that any multiple of this vector is also an eigenvector.

3. Use your results in (a) and (b) to diagonalize A.

$$
A=X \Lambda X^{-1}=\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
0.2 & 0 \\
0 & 0.7
\end{array}\right]\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
0.2 & 0 \\
0 & 0.7
\end{array}\right]\left[\begin{array}{cc}
-1 / 5 & 1 / 5 \\
2 / 5 & 3 / 5
\end{array}\right]
$$

4. Find a formula for A^{k}.

$$
A^{k}=X \Lambda^{k} X^{-1}=\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
0.2^{k} & 0 \\
0 & 0.7^{k}
\end{array}\right]\left[\begin{array}{cc}
-1 / 5 & 1 / 5 \\
2 / 5 & 3 / 5
\end{array}\right]=\left[\begin{array}{cc}
3 / 5\left(0.2^{k}\right)+2 / 5\left(0.7^{k}\right) & -3 / 5\left(0.2^{k}\right)+3 / 5\left(0.7^{k}\right) \\
-2 / 5\left(0.2^{k}\right)+2 / 5\left(0.7^{k}\right) & 2 / 5\left(0.2^{k}\right)+3 / 5\left(0.7^{k}\right)
\end{array}\right]
$$

5. Use your result in (d) to find compute the matrix A^{7}. What is the limit of A as $k \rightarrow \infty$?

$$
A^{7}=\left[\begin{array}{cc}
3 / 5\left(0.2^{7}\right)+2 / 5\left(0.7^{7}\right) & -3 / 5\left(0.2^{7}\right)+3 / 5\left(0.7^{7}\right) \\
-2 / 5\left(0.2^{7}\right)+2 / 5\left(0.7^{7}\right) & 2 / 5\left(0.2^{7}\right)+3 / 5\left(0.7^{7}\right)
\end{array}\right] \quad \lim _{k \rightarrow \infty} A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Exercise IV (10 points)

Show that the matrices A and B below are similar by finding M so that $B=M^{-1} A M$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]
$$

Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. We want an invertible matrix M that satisfies the relation $A=M B M^{-1} \Longrightarrow A M=M B$. We get:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
a+2 c & b+2 d \\
3 a+4 c & 3 b+4 d
\end{array}\right]=\left[\begin{array}{ll}
4 a+2 b & 3 a+b \\
4 c+2 d & 3 c+d
\end{array}\right] .} \\
& a+2 c=4 a+2 b \\
& b+2 d=3 a+b \\
& 3 a+4 c=4 c+2 d \\
& 3 b+4 d=3 c+d
\end{aligned}
$$

$\Longrightarrow 3 a=2 d$ and $b=c-d$. To make M invertible, let $c=1$ and $d=3$, then $M=\left[\begin{array}{cc}2 & -2 \\ 1 & 3\end{array}\right]$. Notice that det $M=8$, which means that M is invertible, and therefore A and B are similar. Note: Other choices of c and d could also work, as long as the resulting matrix M is invertible. Always be sure to check that $A=M B M^{-1}$ is valid for your choice of M.

Exercise V (15 points)

Diagonalize the matrix $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$ into $Q \Lambda Q^{T}$, where Q is an orthogonal matrix.
First, show work and verify that the eigenvalues of A are $7,-2$.
Then, we compute the eigenvectors associated with the given eigenvalues.

- $\underline{\lambda=7}$: Solve $[A-7 I] \vec{x}=\overrightarrow{0}$
\(\left[$$
\begin{array}{rrr|r}-4 & -2 & 4 & 0 \\
-2 & -2 & 2 & 0 \\
4 & 2 & -4 & 0\end{array}
$$\right] \Longrightarrow\left[\begin{array}{rrr|r}-4 \& -2 \& 4 \& 0

0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0\end{array}\right]\). This gives $-4 x_{1}-2 x_{2}+4 x_{3}=0 \Longrightarrow \quad$| $x_{1}=-\frac{1}{2} x_{2}+x_{3}$ |
| :--- |

Then, $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\frac{1}{2} x_{2}\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and we choose the eigenvectors \vec{x}_{1} and \vec{x}_{2} associated with $\lambda=7$ to be

$$
\vec{x}_{1}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

- $\underline{\lambda=-2}$: Solve $[A+2 I] \vec{x}=\overrightarrow{0}$

$$
\left[\begin{array}{rrr|l}
5 & -2 & 4 & 0 \\
-2 & 8 & 2 & 0 \\
4 & 2 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-2 & 8 & 2 & 0 \\
5 & -2 & 4 & 0 \\
4 & 2 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-1 & 4 & 1 & 0 \\
5 & -2 & 4 & 0 \\
4 & 2 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-1 & 4 & 1 & 0 \\
0 & 18 & 9 & 0 \\
0 & 18 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
-1 & 4 & 1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This gives $x_{1}=-x_{3}$ and $x_{2}=-\frac{1}{2} x_{3}$. Then, $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\frac{1}{2} x_{3}\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$, and we choose the eigenvector \vec{x}_{3} associated with $\lambda=-2$ to be $\vec{x}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$. Before diagonalizing A, we first make the eigenvectors orthogonal using Gram-Schmidt. \vec{x}_{1} and \vec{x}_{3} are already orthogonal, and so are \vec{x}_{2} and \vec{x}_{3}. However, \vec{x}_{1} and \vec{x}_{2} are not, so:
Let $\vec{q}_{1}=\vec{x}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, then*

$$
\vec{q}_{2}=\vec{x}_{1}-\frac{\vec{x}_{1}^{T} \vec{q}_{1}}{\vec{q}_{1}^{T} \vec{q}_{1}} \vec{q}_{1}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]-\frac{\left[\begin{array}{lll}
-1 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
2 \\
1 / 2
\end{array}\right]
$$

Normalizing \vec{q}_{1} and \vec{q}_{2}, we get: $\vec{q}_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right], \quad \vec{q}_{2}=\left[\begin{array}{c}-1 / \sqrt{18} \\ 4 / \sqrt{18} \\ 1 / \sqrt{18}\end{array}\right] \quad$ and normalizing \vec{x}_{3}, we get: $\vec{q}_{3}=\left[\begin{array}{c}-2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]$
Thus, the diagonalization (eigen-decomposition) of A gives:

$$
A=Q \Lambda Q^{T}=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{18} & -2 / 3 \\
0 & 4 / \sqrt{18} & -1 / 3 \\
1 / \sqrt{2} & 1 / \sqrt{18} & 2 / 3
\end{array}\right]\left[\begin{array}{lll}
7 & & \\
& 7 & \\
& & -2
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
-1 / \sqrt{18} & 4 / \sqrt{18} & 1 / \sqrt{18} \\
-2 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

*Note to the student and grader: can start with $\vec{q}_{1}=\vec{x}_{1}$, in that case the matrix Q below will have swapped columns 1 and columns 2 , and the matrix Q^{-1} will be different. Check by verifying that indeed $A=Q \Lambda Q^{T}$.

