Linear Algebra - Problem Set 3 - Solutions

Exercise I ($3 \times 5=15$ points $)$

The following statements are false. Clearly explain why.

1. Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. Define the usual addition of elements of V coordinatewise, but define scalar multiplication differently: for $c \in \mathbb{R}$ and $\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$, define $c\left(a_{1}, a_{2}\right)=\left(0, a_{2}\right) . V$ is a vector space over \mathbb{R}^{2} with these operations. Let $\vec{v}=\left(v_{1}, v_{2}\right) \in V$, then the property (VS5) is violated since for each $\vec{v} \in V, 1 \vec{v}=\vec{v}$. Here, $1 \vec{v}=\left(0, v_{2}\right) \neq \vec{v}$, and hence (VS5) is violated.
2. The system below is solvable as long as $b_{2}=2 b_{1}$ only, and the column space is a plane in \mathbb{R}^{3}.

$$
\left[\begin{array}{rrr}
1 & 4 & 2 \\
2 & 8 & 4 \\
-1 & -4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

We start by writing the system in augmented form, and then we proceed by performing elimination, i.e.,

$$
\left[\begin{array}{rrr|r}
\boxed{1} & 4 & 2 & b_{1} \\
2 & 8 & 4 & b_{2} \\
-1 & -4 & -2 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{rrr|c}
1 & 4 & 2 & b_{1} \\
0 & 0 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}+b_{1}
\end{array}\right]
$$

Therefore, for the system to be solvable, we must have:

$$
\begin{gathered}
b_{2}-2 b_{1}=0 \Longrightarrow b_{2}=2 b_{1} \\
b_{3}+b_{1}=0 \Longrightarrow b_{3}=-b_{1}
\end{gathered}
$$

The column space is a line in \mathbb{R}^{3}.
3. Let $A=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right]$. Then the variables x_{2} and x_{4} in a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in$ Nul A are free variables

$$
\left[\begin{array}{cccc}
\boxed{1} & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{|cccc}
\boxed{1} & 2 & 0 & 1 \\
0 & \boxed{1} & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right]
$$

The first and second columns are pivot columns, whereas the third and fourth columns are free. Thus, the variables x_{3} and x_{4} in a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \operatorname{Nul} A$ are free variables.

Exercise II ($3 \times 5=15$ points)

Are the following sets subspaces of \mathbb{R}^{3} under usual addition and scalar multiplication defined on \mathbb{R}^{3}.? Explain clearly.
Note: 2 to 5 points taken off (total) if the vectors are not clearly defined and the setup/presentation of the proof is not legible.

1. $W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=2 a_{3}\right.$ and $\left.a_{2}=-7 a_{3}\right\}$.

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in W_{1} \Longrightarrow \vec{u}=\left(2 u_{3},-7 u_{3}, u_{3}\right)=u_{3}(2,-7,1)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in W_{1} \Longrightarrow \vec{v}=v_{3}(2,-7,1)$
(1) $\vec{u}+\vec{v}=\left(2 u_{3}+2 v_{3},-7 u_{3}-7 v_{3}, u_{3}+v_{3}\right) \Longrightarrow \vec{u}+\vec{v}=\left(2\left(u_{3}+v_{3}\right),-7\left(u_{3}+v_{3}\right), u_{3}+v_{3}\right)=\left(u_{3}+v_{3}\right)(2,-7,1) \in W 1$
(2) $c \vec{v}=c v_{3}(2,-7,1) \in W_{1}$
(3) $\overrightarrow{0}=(0,0,0)=(2 \cdot 0,-7 \cdot 0,1 \cdot 0) \in W_{1}$

Therefore, W_{1} is a subspace of \mathbb{R}^{3}. Note that to receive full credit, you have to verify all three properties.
2. $W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-4 a_{2}+5 a_{3}=3\right\}$.

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in W_{2} \Longrightarrow \vec{u}=\left(\frac{3}{2}+2 u_{2}-\frac{5}{2} u_{3}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in W_{2} \Longrightarrow \vec{v}=\left(\frac{3}{2}+2 v_{2}-\frac{5}{2} v_{3}, v_{2}, v_{3}\right)$
(1) $\vec{u}+\vec{v}=\left(3+2\left(u_{2}+v_{2}\right)-\frac{5}{2}\left(u_{3}+v_{3}\right), u_{2}+v_{2}, u_{3}+v_{3}\right) \notin W_{2}$
(2) $c \vec{v}=c\left(\frac{3}{2}+2 v_{2}-\frac{5}{2} v_{3}, v_{2}, v_{3}\right)=\left(\frac{3 c}{2}+2 c v_{2}-\frac{5 c}{2} v_{3}, c v_{2}, c v_{3}\right) \notin W_{2}$
(3) $\overrightarrow{0}=(0,0,0) \neq\left(\frac{3}{2}, 0,0\right) \Longrightarrow(0,0,0) \notin W_{2}$

Therefore, W_{2} is not a subspace of \mathbb{R}^{3}.
Here, you will receive full credit if you show that either (1), (2), or (3) are not satisfied. You don't have to show that all three properties do not work.
3. $W_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-4 a_{2}+5 a_{3}=0\right\}$.

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in W_{3} \Longrightarrow \vec{u}=\left(2 u_{2}-\frac{5}{2} u_{3}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in W_{3} \Longrightarrow \vec{v}=\left(2 v_{2}-\frac{5}{2} v_{3}, v_{2}, v_{3}\right)$
(1) $\vec{u}+\vec{v}=\left(2\left(u_{2}+v_{2}\right)-\frac{5}{2}\left(u_{3}+v_{3}\right),\left(u_{2}+v_{2}\right),\left(u_{3}+v_{3}\right)\right) \in W_{3}$
(2) $c \vec{v}=c\left(2 v_{2}-\frac{5}{2} v_{3}, v_{2}, v_{3}\right)=\left(2 c v_{2}-\frac{5}{2} c v_{3}, c v_{2}, c v_{3}\right) \in W_{3}$
(3) $\overrightarrow{0}=(0,0,0)=\left(2 \cdot 0-\frac{5}{2} \cdot 0,0,0\right) \in W_{3}$

Therefore, W_{3} is a subspace of \mathbb{R}^{3}. Note that to receive full credit, you have to verify all three properties.

Exercise III (10 points)

Find the complete solution $\vec{x}=\vec{x}_{p}+\vec{x}_{n}$ of the linear system below. Clearly label the vectors \vec{x}_{p} and \vec{x}_{n}.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3}+2 x_{4} & =1 \\
2 x_{1}+6 x_{2}+4 x_{3}+8 x_{4} & =3 \\
2 x_{3}+4 x_{4} & =1
\end{aligned}
$$

Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and solve $A \vec{x}=\vec{b}$, where $\vec{b}=(1,3,1)$. We write the system in augmented form and then we proceed with elimination, i.e.,

$$
\left[\begin{array}{rrrr|r}
\boxed{1} & 3 & 1 & 2 & 1 \\
2 & 6 & 4 & 8 & 3 \\
0 & 0 & 2 & 4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & 1 & 2 & 1 \\
0 & 0 & 2 & 4 & 1 \\
0 & 0 & 2 & 4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
\boxed{1} & 3 & 1 & 2 & 1 \\
0 & 0 & 2 & 4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Based on the elimination results, we can see that x_{2} and x_{4} are free variables.
Row 2: $2 x_{3}=1-4 x_{4} \Longrightarrow x_{3}=\frac{1}{2}-2 x_{4}$
Row 1: $x_{1}=1-3 x_{2}-x_{3}-2 x_{4} \Longrightarrow x_{1}=\frac{1}{2}-3 x_{2}$
Thus, we can write the vector \vec{x} as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-3 x_{2} \\
x_{2} \\
\frac{1}{2}-2 x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right]=\vec{x}_{p}+\vec{x}_{n}
$$

where

$$
\vec{x}_{p}=\left[\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
0
\end{array}\right] \text { and } \vec{x}_{n}=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

$\vec{x} \notin \mathrm{Nul} A$, since $\vec{x} \neq c_{1}\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}0 \\ 0 \\ -2 \\ 1\end{array}\right]$.

Exercise IV $(5+5+10+10=30$ points $)$

Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
2 & 2 & 2 & 4 \\
4 & 6 & 8 & c
\end{array}\right]
$$

1. Find the matrix R, the row echelon form of the matrix A :

$$
\left[\begin{array}{cccc}
\boxed{1} & 2 & 3 & 1 \\
2 & 2 & 2 & 4 \\
4 & 6 & 8 & c
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & \boxed{-2} & -4 & 2 \\
0 & -2 & -4 & c-4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & -2 & -4 & 2 \\
0 & 0 & 0 & c-6
\end{array}\right]
$$

2. What value of c gives A different rank compared to all other values of c ? What are the ranks in both cases? When $c \neq 6$ there are three pivots and the rank is 3 , while when $c=6$ there are only two pivots and the rank is 2 .
3. For each case, find the column space of A.

The row echelon form is different in these two cases:
(i) $c=6: R=\left[\begin{array}{cccc}\boxed{1} & 2 & 3 & 1 \\ 0 & \boxed{-2} & -4 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$. Then, there are two pivot columns: the first and second. Hence,

$$
\operatorname{Col} A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right]\right\}
$$

(ii) $c \neq 6: \quad R=\left[\begin{array}{cccc}\boxed{1} & 2 & 3 & 1 \\ 0 & \boxed{-2} & -4 & 2 \\ 0 & 0 & 0 & \boxed{1}\end{array}\right]$. Here, we have divided the last row by $c-6$ to get a pivot of 1 . Then, there are three pivot columns: the first, second, and fourth. Hence,

$$
\operatorname{Col} A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
c
\end{array}\right]\right\}
$$

4. For each case, find the nullspace of A.
(i) $c=6$: We solve $A \vec{x}=\overrightarrow{0}$, which in augmented form (and after elimination) gives

$$
\left[\begin{array}{rrrr|r}
1 & 2 & 3 & 1 & 0 \\
0 & -2 & -4 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Row 2: $x_{2}=-2 x_{3}+x_{4}$
Row 1: $x_{1}=-2 x_{2}-3 x_{3}-x_{4}=x_{3}-3 x_{4}$
Thus, we can write the vector \vec{x} as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{3}-3 x_{4} \\
-2 x_{3}+x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]
$$

Therefore,

$$
\operatorname{Nul} A=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]\right\}
$$

(ii) $c \neq 6$: We solve $A \vec{x}=\overrightarrow{0}$, which in augmented form (and after elimination) gives

$$
\left[\begin{array}{rrrr|r}
1 & 2 & 3 & 1 & 0 \\
0 & -2 & -4 & 2 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Row 3: $x_{4}=0$
Row 2: $x_{2}=-2 x_{3}$
Row 1: $x_{1}=-2 x_{2}-3 x_{3}=x_{3}$
Thus, we can write the vector \vec{x} as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right] .
$$

Therefore,

$$
\operatorname{Nul} A=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

Exercise V (10 $+4 \times 5=30$ points $)$

Let

$$
A=\left[\begin{array}{rrrrrr}
1 & -2 & 0 & -1 & 3 & 1 \\
2 & -4 & 1 & 0 & 4 & 2 \\
-3 & 6 & 0 & 3 & -9 & -3
\end{array}\right]
$$

1. Determine a basis for the nullspace $\operatorname{Nul}(A)$. Work carefully, since you should use this part to answer 2., 3. and 4 .

$$
\left[\begin{array}{cccccc}
\begin{array}{|cc|}
1 & -2
\end{array} 0 & -1 & 3 & 1 \\
2 & -4 & 1 & 0 & 4 & 2 \\
-3 & 6 & 0 & 3 & -9 & -3
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
\boxed{1} & -2 & 0 & -1 & 3 & 1 \\
0 & 0 & \boxed{1} & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The first and third columns are pivot columns, whereas the second, fourth, fifth, and sixth columns are free. Thus, the variables x_{2}, x_{4}, x_{5}, and x_{6} in a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathrm{Nul} A$ are free variables.

To find the nullspace, we compute $A \vec{x}=\overrightarrow{0}$. In augmented form, this gives

$$
\left[\begin{array}{rrrrrr|r}
1 & -2 & 0 & -1 & 3 & 1 & 0 \\
2 & -4 & 1 & 0 & 4 & 2 & 0 \\
-3 & 6 & 0 & 3 & -9 & -3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr|r}
1 & -2 & 0 & -1 & 3 & 1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Row 2: $x_{3}=-2 x_{4}+2 x_{5}$

Row 1: $x_{1}=2 x_{2}+x_{4}-3 x_{5}-x_{6}$
Thus, we can write the vector \vec{x} as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}+x_{4}-3 x_{5}-x_{6} \\
x_{2} \\
-2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence, a basis for $\operatorname{Nul} A$ is given by

$$
\beta_{\mathrm{Nul} A}=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

2. From the information in Part (a), determine the dimensions of the four subspaces $\operatorname{Nul}(A), \operatorname{Col}(A), \operatorname{Col}\left(A^{T}\right)$ and $\operatorname{Nul}\left(A^{T}\right)$.
$\operatorname{dim}(\operatorname{Nul}(A))=4$
$\operatorname{dim}(\operatorname{Col}(A))=2$
$\operatorname{dim}\left(\operatorname{Col}\left(A^{T}\right)\right)=2$
$\operatorname{dim}\left(\operatorname{Nul}\left(A^{T}\right)\right)=1$
3. Find a basis for the column space, $\operatorname{Col}(A)$.

The first and third columns are pivot columns, so a basis for the column space of A is given by

$$
\beta_{\mathrm{Col} A}=\left\{\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

4. Find a basis for the row space, $\operatorname{Col}\left(A^{T}\right)$.

We can see in $\operatorname{REF}(A)$ that both the first and second rows have pivots, hence a basis for the row space is

$$
\beta_{\mathrm{Col} A^{T}}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
0 \\
-1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-4 \\
1 \\
0 \\
4 \\
2
\end{array}\right]\right\}
$$

5. Find a basis for the left nullspace, $\operatorname{Nul}\left(A^{T}\right)$.

To find the left nullspace, we compute $A^{T} \vec{x}=\overrightarrow{0}$, where $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$. In augmented form, this gives

$$
\left[\begin{array}{rrr|r}
\boxed{1} & 2 & -3 & 0 \\
-2 & -4 & 6 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 3 & 0 \\
3 & 4 & -9 & 0 \\
1 & 2 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
\boxed{1} & 2 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Notice that the first and second columns are pivot columns, whereas the third column is free. Hence, x_{3} is a free variable.

Row 3: $x_{2}=0$
Row 1: $x_{1}=-2 x_{2}+3 x_{3}=3 x_{3}$
Thus, we can write the vector \vec{x} as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

Hence, a basis for $\operatorname{Nul} A^{T}$ is given by

$$
\beta_{\mathrm{Nul} A^{T}}=\left\{\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right\}
$$

