Linear Algebra - Problem Set 3 - Solutions

Exercise I $(3 \times 5 = 15 \text{ points})$

The following statements **are false**. Clearly explain why.

- 1. Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define the usual addition of elements of V coordinatewise, but define scalar multiplication differently: for $c \in \mathbb{R}$ and $(a_1, a_2) \in \mathbb{R}^2$, define $c(a_1, a_2) = (0, a_2)$. V is a vector space over \mathbb{R}^2 with these operations. Let $\vec{v} = (v_1, v_2) \in V$, then the property (VS5) is violated since for each $\vec{v} \in V$, $1\vec{v} = \vec{v}$. Here, $1\vec{v} = (0, v_2) \neq \vec{v}$, and hence (VS5) is violated.
- 2. The system below is solvable as long as $b_2 = 2b_1$ only, and the column space is a plane in \mathbb{R}^3 .

1	4	2	x_1		b_1	
2	8	4	x_2	=	b_2	
-1	-4	-2	x_3		b_3	

We start by writing the system in augmented form, and then we proceed by performing elimination, i.e.,

$\begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$	4 8 4	$\frac{2}{4}$	b_1 b_2	\rightarrow	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	4 0	$ \begin{array}{c} 2 \\ 0 \\ 0 \end{array} $	b_1 $b_2 - 2b_1$ $b_2 + b_1$]
	-4	-2	b_3		0	0	0	$b_3 + b_1$]

Therefore, for the system to be solvable, we must have:

$$b_2 - 2b_1 = 0 \implies b_2 = 2b_1$$

 $b_3 + b_1 = 0 \implies b_3 = -b_1$

The column space is a line in \mathbb{R}^3 .

3. Let $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$. Then the variables x_2 and x_4 in a vector $\vec{x} = (x_1, x_2, x_3, x_4) \in \text{Nul}A$ are free variables

1	2	0	1		1	2	0	1
0	1	1	0	\rightarrow	0	1	1	0
1	2	0	1		0	0	0	0

The first and second columns are pivot columns, whereas the third and fourth columns are free. Thus, the variables x_3 and x_4 in a vector $\vec{x} = (x_1, x_2, x_3, x_4) \in \text{Nul}A$ are free variables.

Exercise II $(3 \times 5 = 15 \text{ points})$

Are the following sets subspaces of \mathbb{R}^3 under usual addition and scalar multiplication defined on \mathbb{R}^3 ? Explain clearly. Note: 2 to 5 points taken off (total) if the vectors are not clearly defined and the setup/presentation of the proof is not legible.

1. $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 2a_3 \text{ and } a_2 = -7a_3\}.$ Let $\vec{u} = (u_1, u_2, u_3) \in W_1 \implies \vec{u} = (2u_3, -7u_3, u_3) = u_3(2, -7, 1) \text{ and } \vec{v} = (v_1, v_2, v_3) \in W_1 \implies \vec{v} = v_3(2, -7, 1)$

- $(1) \quad \vec{u} + \vec{v} = (2u_3 + 2v_3, -7u_3 7v_3, u_3 + v_3) \implies \vec{u} + \vec{v} = (2(u_3 + v_3), -7(u_3 + v_3), u_3 + v_3) = (u_3 + v_3)(2, -7, 1) \in W1$
- (2) $c\vec{v} = cv_3(2, -7, 1) \in W_1$
- (3) $\vec{0} = (0, 0, 0) = (2 \cdot 0, -7 \cdot 0, 1 \cdot 0) \in W_1$

Therefore, W_1 is a subspace of \mathbb{R}^3 . Note that to receive full credit, you have to verify all three properties.

2. $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 4a_2 + 5a_3 = 3\}.$ Let $\vec{u} = (u_1, u_2, u_3) \in W_2 \implies \vec{u} = \left(\frac{3}{2} + 2u_2 - \frac{5}{2}u_3, u_2, u_3\right)$ and $\vec{v} = (v_1, v_2, v_3) \in W_2 \implies \vec{v} = \left(\frac{3}{2} + 2v_2 - \frac{5}{2}v_3, v_2, v_3\right)$ (1) $\vec{u} + \vec{v} = \left(3 + 2(u_2 + v_2) - \frac{5}{2}(u_3 + v_3), u_2 + v_2, u_3 + v_3\right) \notin W_2$

(2)
$$c\vec{v} = c\left(\frac{3}{2} + 2v_2 - \frac{5}{2}v_3, v_2, v_3\right) = \left(\frac{3c}{2} + 2cv_2 - \frac{5c}{2}v_3, cv_2, cv_3\right) \notin W_2$$

(3) $\vec{0} = (0, 0, 0) \neq \left(\frac{3}{2}, 0, 0\right) \implies (0, 0, 0) \notin W_2$

Therefore, W_2 is not a subspace of \mathbb{R}^3 .

Here, you will receive full credit if you show that either (1), (2), or (3) are not satisfied. You don't have to show that all three properties do not work.

3. $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 4a_2 + 5a_3 = 0\}.$ Let $\vec{u} = (u_1, u_2, u_3) \in W_3 \implies \vec{u} = \left(2u_2 - \frac{5}{2}u_3, u_2, u_3\right) \text{ and } \vec{v} = (v_1, v_2, v_3) \in W_3 \implies \vec{v} = \left(2v_2 - \frac{5}{2}v_3, v_2, v_3\right)$ (1) $\vec{u} + \vec{v} = \left(2(u_2 + v_2) - \frac{5}{2}(u_3 + v_3), (u_2 + v_2), (u_3 + v_3)\right) \in W_3$ (2) $c\vec{v} = c\left(2v_2 - \frac{5}{2}v_3, v_2, v_3\right) = \left(2cv_2 - \frac{5}{2}cv_3, cv_2, cv_3\right) \in W_3$ (3) $\vec{0} = (0, 0, 0) = \left(2 \cdot 0 - \frac{5}{2} \cdot 0, 0, 0\right) \in W_3$

Therefore, W_3 is a subspace of \mathbb{R}^3 . Note that to receive full credit, you have to verify all three properties.

Exercise III (10 points)

Find the complete solution $\vec{x} = \vec{x}_p + \vec{x}_n$ of the linear system below. Clearly label the vectors \vec{x}_p and \vec{x}_n .

$$x_1 + 3x_2 + x_3 + 2x_4 = 1$$

$$2x_1 + 6x_2 + 4x_3 + 8x_4 = 3$$

$$2x_3 + 4x_4 = 1$$

Let $\vec{x} = (x_1, x_2, x_3, x_4)$ and solve $A\vec{x} = \vec{b}$, where $\vec{b} = (1, 3, 1)$. We write the system in augmented form and then we proceed with elimination, i.e.,

Γ	1	3	1	2	1]	1	3	_1	2	1		1	3	1	2	1	
	2	6	4	8	3	\rightarrow	0	0	2	4	1	\rightarrow	0	0	2	4	1	
L	0	0	2	4	1]	0	0	$\overline{2}$	4	1		0	0	0	0	0	

Based on the elimination results, we can see that x_2 and x_4 are free variables.

Row 2: $2x_3 = 1 - 4x_4 \implies x_3 = \frac{1}{2} - 2x_4$ Row 1: $x_1 = 1 - 3x_2 - x_3 - 2x_4 \implies x_1 = \frac{1}{2} - 3x_2$

Thus, we can write the vector \vec{x} as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - 3x_2 \\ x_2 \\ \frac{1}{2} - 2x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} = \vec{x}_p + \vec{x}_n,$$

where

ere

$$\vec{x}_p = \begin{bmatrix} 1/2\\ 0\\ 1/2\\ 0 \end{bmatrix} \text{ and } \vec{x}_n = x_2 \begin{bmatrix} -3\\ 1\\ 0\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\ 0\\ -2\\ 1 \end{bmatrix}$$

$$\vec{x} \notin \text{Nul}A, \text{ since } \vec{x} \neq c_1 \begin{bmatrix} -3\\ 1\\ 0\\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\ 0\\ -2\\ 1 \end{bmatrix}.$$

Exercise IV (5 + 5 + 10 + 10 = 30 points)

Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 2 & 2 & 4 \\ 4 & 6 & 8 & c \end{bmatrix}$$

1. Find the matrix R, the row echelon form of the matrix A:

1	2	3	1]	[1	2	3	1		1	2	3	1]
2	2	2	4	\rightarrow	0	-2	-4	2	\rightarrow	0	-2	-4	2
4	6	8	c		0	-2	-4	c-4		0	0	0	c-6

- 2. What value of c gives A a different rank compared to all other values of c? What are the ranks in both cases? When $c \neq 6$ there are three pivots and the rank is 3, while when c = 6 there are only two pivots and the rank is 2.
- 3. For each case, find the column space of A. The row echelon form is different in these two cases:

(i) c = 6: $R = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -4 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Then, there are two pivot columns: the first and second. Hence, $\operatorname{Col} A = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 2\\2\\6 \end{bmatrix} \right\}$

(ii) $c \neq 6$: $R = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -4 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Here, we have divided the last row by c - 6 to get a pivot of 1. Then, there

are three pivot columns: the first, second, and fourth. Hence,

$$\operatorname{Col} A = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 2\\2\\6 \end{bmatrix}, \begin{bmatrix} 1\\4\\c \end{bmatrix} \right\}$$

4. For each case, find the nullspace of A.

Therefore,

(i) c = 6: We solve $A\vec{x} = \vec{0}$, which in augmented form (and after elimination) gives

Row 2: $x_2 = -2x_3 + x_4$ Row 1: $x_1 = -2x_2 - 3x_3 - x_4 = x_3 - 3x_4$

Thus, we can write the vector \vec{x} as:

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} x_3 - 3x_4\\-2x_3 + x_4\\x_3\\x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} -3\\1\\0\\1 \end{bmatrix}.$$

Nul $A = \text{span} \left\{ \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix} \begin{bmatrix} -3\\1\\0\\1 \end{bmatrix} \right\}$

(ii) $c \neq 6$: We solve $A\vec{x} = \vec{0}$, which in augmented form (and after elimination) gives

Row 3: $x_4 = 0$ Row 2: $x_2 = -2x_3$ Row 1: $x_1 = -2x_2 - 3x_3 = x_3$

Thus, we can write the vector \vec{x} as:

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} x_3\\ -2x_3\\ x_3\\ 0 \end{bmatrix} = x_3 \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}.$$

Nul $A = \text{span} \left\{ \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix} \right\}$

Therefore,

Exercise V $(10 + 4 \times 5 = 30 \text{ points})$

Let

1. Determine a basis for the nullspace Nul(A). Work carefully, since you should use this part to answer 2., 3. and 4.

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 1 \\ 2 & -4 & 1 & 0 & 4 & 2 \\ -3 & 6 & 0 & 3 & -9 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 1 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The first and third columns are pivot columns, whereas the second, fourth, fifth, and sixth columns are free. Thus, the variables x_2 , x_4 , x_5 , and x_6 in a vector $\vec{x} = (x_1, x_2, x_3, x_4, x_5, x_6) \in \text{Nul}A$ are free variables.

To find the nullspace, we compute $A\vec{x} = \vec{0}$. In augmented form, this gives

1	-2	0	$^{-1}$	3	1	0		1	-2	0	$^{-1}$	3	1	0
2	$^{-4}$	1	0	4	2	0	\rightarrow	0	0	1	2	-2	0	0
	6	0	3	-9	-3	0		0	0	0	0	0	0	0

Row 2: $x_3 = -2x_4 + 2x_5$

Row 1: $x_1 = 2x_2 + x_4 - 3x_5 - x_6$

Thus, we can write the vector \vec{x} as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 - x_6 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Hence, a basis for NulA is given by

$$\beta_{\mathrm{Nul}A} = \left\{ \begin{bmatrix} 2\\1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\1\\0\\0\end{bmatrix}, \begin{bmatrix} -3\\0\\2\\0\\1\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\0\\0\\1\\0\end{bmatrix} \right\}$$

2. From the information in Part (a), determine the dimensions of the four subspaces Nul(A), Col(A), $Col(A^T)$ and $Nul(A^T)$. dim(Nul(A)) = 4

 $\dim(\operatorname{Col}(A)) = 4$ $\dim(\operatorname{Col}(A)) = 2$ $\dim(\operatorname{Col}(A^T)) = 2$ $\dim(\operatorname{Nul}(A^T)) = 1$

3. Find a basis for the column space, Col(A).The first and third columns are pivot columns, so a basis for the column space of A is given by

	(1		0)	
$\beta_{\text{Col}A} = \langle$		2	,	1		ł
		-3		0	J	

4. Find a basis for the row space, $\operatorname{Col}(A^T)$.

We can see in REF(A) that both the first and second rows have pivots, hence a basis for the row space is

$$\beta_{\mathrm{Col}A^T} = \left\{ \begin{bmatrix} 1\\ -2\\ 0\\ -1\\ 3\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ -4\\ 1\\ 0\\ 4\\ 2 \end{bmatrix} \right\}$$

5. Find a basis for the left nullspace, Nul (A^T) . To find the left nullspace, we compute $A^T \vec{x} = \vec{0}$, where $\vec{x} = (x_1, x_2, x_3)$. In augmented form, this gives

	2 0 1 3 1	$\begin{array}{c} 2\\ -4\\ 1\\ 0\\ 4\\ 2\end{array}$	$ \begin{array}{r} -3 \\ 6 \\ 0 \\ 3 \\ -9 \\ -2 \end{array} $	0 0 0 0 0 0	\rightarrow	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$2 \\ 0 \\ 1 \\ 2 \\ -2 \\ 0 \\ 0$	$ \begin{array}{r} -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0	\rightarrow	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0	
L	1	2	-2	0_		0	0	0	0		L 0	0	0	0 _	

Notice that the first and second columns are pivot columns, whereas the third column is free. Hence, x_3 is a free variable.

Row 3: $x_2 = 0$ Row 1: $x_1 = -2x_2 + 3x_3 = 3x_3$

Thus, we can write the vector \vec{x} as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_3 \\ 0 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Hence, a basis for $\operatorname{Nul}A^T$ is given by

$$\beta_{\mathrm{Nul}A^T} = \left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix} \right\}.$$