Linear Algebra - Problem Set 2 - Solutions

Exercise I (5 $\times 5=25$ points)

True or False? In both cases, explain clearly. A counterexample is good justification in case a statement is False.

1. It is possible for a system $A \vec{x}=\vec{b}$ of equations to have exactly two solutions, e.g., $\vec{x}=\vec{u}$ and $\vec{x}=\vec{v}$.

FALSE: Let \vec{x} and \vec{y} be solutions to a system of equations, such that $A \vec{x}=\vec{b}$ and $A \vec{y}=\vec{b}$. Taking the sum, we get:

$$
A \vec{x}+A \vec{y}=2 \vec{b} \Longrightarrow A(\vec{x}+\vec{y})=2 \vec{b} \Longrightarrow A\left(\frac{\vec{x}+\vec{y}}{2}\right)=\vec{b}
$$

Therefore, $\frac{\vec{x}+\vec{y}}{2}$ must also be a solution. We showed that there is now a third solution that is distinct from the original ones. Thus the claim is false.
2. A matrix with a column of zeros cannot be invertible.

TRUE : If one column is a vector of zeros, the linear combination of the columns of A including this column has a nontrivial linear combination that equals zero (try 0 coefficients for all columns except this one, where the coefficient can be any real number). Thus the columns are dependent and A is singular.
3. If every row of a matrix adds up to zero, then the matrix cannot be invertible.

TRUE: The linear combination of the column vectors where each coefficient is 1 gives a non-trivial solution to the equation $c_{1} \overrightarrow{v_{1}}+\cdots c_{n} \overrightarrow{v_{n}}=0$, thus the columns are linearly dependent and so A is singular.
4. Every matrix with 1 's down the main diagonal is invertible.

FALSE : Consider the matrix below, which has 1's along its main diagonal but is not invertible since the operation $R_{2}-R_{1} \rightarrow R_{2}$ yields a row of zeros.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

5. If A is invertible, then A^{-1} and A^{2} are invertible.

TRUE : If A is invertible, then A^{-1} is the inverse of A and $A A^{-1}=I$. From this, we can also conclude that A^{-1} is invertible with the inverse of A. Next, we consider $(A A)^{-1}=A^{-1} A^{-1}$, which we know exists since A^{-1} exists, to be the inverse of $A^{2}=A A$. Then we calculate $A A(A A)^{-1}=A\left(A A^{-1}\right) A^{-1}=A(I) A^{-1}=I$. Then we have found an inverse and A^{2} is invertible.

Exercise II ($3 \times 10=30$ points $)$

Consider the matrices

$$
A=\left[\begin{array}{rrr}
1 & 3 & 4 \\
2 & 5 & 6 \\
-2 & -7 & -9
\end{array}\right], B=\left[\begin{array}{rrr}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right], C=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

1. Solve the system $A \vec{x}=\vec{b}$, where $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{b}=(1,-2,4)$.

Solving in augmented form:

$$
\left[\begin{array}{rrr|r}
1 & 3 & 4 & 1 \\
2 & 5 & 6 & -2 \\
-2 & -7 & -9 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 3 & 4 & 1 \\
0 & -1 & -2 & -4 \\
0 & -1 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 3 & 4 & 1 \\
0 & -1 & -2 & -4 \\
0 & 0 & 1 & 10
\end{array}\right]
$$

row 3: $x_{3}=10$
row 2: $x_{2}+2 x_{3}=4 \Longrightarrow x_{2}=-16$
row 3: $x_{1}+3 x_{2}+4 x_{3}=1 \Longrightarrow x_{1}=9$
2. Use elimination to find the inverse of A.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
\boxed{1} & 3 & 4 & 1 & 0 & 0 \\
2 & 5 & 6 & 0 & 1 & 0 \\
-2 & -7 & -9 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|rrr}
1 & 3 & 4 & 1 & 0 & 0 \\
0 & \boxed{-1} & -2 & -2 & 1 & 0 \\
0 & -1 & -1 & 2 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 3 & 4 & 1 & 0 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 4 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 3 & 0 & -15 & 4 & -4 \\
0 & -1 & 0 & 6 & -1 & 2 \\
0 & 0 & 1 & 4 & -1 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 3 & 0 & -15 & 4 & -4 \\
0 & 1 & 0 & -6 & 1 & -2 \\
0 & 0 & 1 & 4 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 3 & 1 & 2 \\
0 & 1 & 0 & -6 & 1 & -2 \\
0 & 0 & 1 & 4 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Hence $A^{-1}=\left[\begin{array}{ccc}3 & 1 & 2 \\ -6 & 1 & -2 \\ 4 & -1 & 1\end{array}\right]$.
3. Compute $B C, C B$ and $A^{-1} C B$. If the product does not exist, explain why.

It is not possible to compute $B C$ because B is a 2×3 matrix but C is a 2×2 matrix.
We have $C B=\left[\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{rrr}2 & 0 & -1 \\ 4 & -5 & 2\end{array}\right]=\left[\begin{array}{ccc}10 & -10 & 3 \\ 0 & -5 & 4\end{array}\right]$
It is not possible to compute $A^{-1} C B=A^{-1}(C B)$ (by the associative property) because A^{-1} is a 3×3 matrix but $B C$ is a 2×3 matrix.

Exercise III ($10+5=15$ points)

1. Use elimination (or permutation if needed) matrices to put the following matrix in upper triangular form. At each step, determine which elimination (or permutation) matrix you used.

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right] \\
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
a & b & c & c \\
a & b & c & d
\end{array}\right] \\
& E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
a & b & c & d
\end{array}\right] \\
& E_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \rightarrow \quad E_{43} E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
\end{aligned}
$$

2. Find A 's $L U$ factorization. You should be able to conclude this quickly. What are the conditions on a, b, c, d to get $A=L U$ with four pivots?

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
$$

In order for this to work, we require that $a \neq 0, a \neq b, b \neq c, c \neq d$.

Exercise IV (15 points)

Find the $L D U$ decomposition of

$$
A=\left[\begin{array}{rrrr}
1 & -2 & -4 & -3 \\
2 & -7 & -7 & -6 \\
-1 & 2 & 6 & 4 \\
-4 & -1 & 9 & 8
\end{array}\right]
$$

Show all the elimination and permutation (if any) matrices used to achieve $A=L D U$.

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \Longrightarrow E_{21} A=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
-1 & 2 & 6 & 4 \\
-4 & -1 & 9 & 8
\end{array}\right], \quad E_{21}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{31}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \Longrightarrow E_{31} E_{21} A=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
-4 & -1 & 9 & 8
\end{array}\right], \quad E_{31}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{41}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right] \Longrightarrow E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & -9 & -7 & -4
\end{array}\right], \quad E_{41}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-4 & 0 & 0 & 1
\end{array}\right] \\
& E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right] \Longrightarrow E_{42} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & -10 & 1
\end{array}\right], \quad E_{42}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 5 & 1
\end{array}\right] \Longrightarrow E_{43} E_{42} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{43}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -5 & 1
\end{array}\right]
\end{aligned}
$$

Therefore, the upper triangular matrix we just obtained can be written as:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 1 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]=D U} \\
L=\left(E_{43} E_{42} E_{41} E_{31} E_{21}\right)^{-1}=E_{21}^{-1} E_{31}^{-1} E_{41}^{-1} E_{42}^{-1} E_{43}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-4 & 3 & -5 & 1
\end{array}\right]
\end{gathered}
$$

Hence, $A=L D U$ gives:

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
2 & -7 & -7 & -6 \\
-1 & 2 & 6 & 4 \\
-4 & -1 & 9 & 8
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-4 & 3 & -5 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -2 & -4 & -3 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 1 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise V (15 points)

Factor the following system into $A=L U$ or $P A=L U$, and use the factorization to obtain a solution for $\left(x_{1}, x_{2}, x_{3}\right)$. Show all steps to receive full credit.

$$
\begin{aligned}
2 x_{1}-x_{2}+2 x_{3} & =1 \\
-6 x_{1} & \\
8 x_{1}-x_{2}+5 x_{3} & =0
\end{aligned}
$$

Let A be the coefficient matrix, i.e., $A=\left[\begin{array}{ccc}2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5\end{array}\right]$. We factor this matrix into $A=L U$ by using elimination to find the matrix U. That is

$$
E_{21}=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Longrightarrow E_{21} A=\left[\begin{array}{lll}
2 & -1 & 2 \\
0 & -3 & 4 \\
8 & -1 & 5
\end{array}\right]
$$

$$
E_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right] \Longrightarrow E_{31} E_{21} A=\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 3 & -3
\end{array}\right]
$$

$$
E_{32}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \Longrightarrow E_{32} E_{31} E_{21} A=\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

$$
L=\left(E_{32} E_{31} E_{21}\right)^{-1}=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -1 & 1
\end{array}\right]
$$

$A \vec{x}=\vec{b} \Longrightarrow L U \vec{x}=\vec{b}$. Let $U \vec{x}=\vec{y}$, where $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$. Then,

$$
L \vec{y}=\vec{b} \Longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right] \Longrightarrow y_{1}=1, y_{2}=3, y_{3}=3
$$

Since $U \vec{x}=\vec{y}$

$$
\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right] \Longrightarrow x_{1}=-1, x_{2}=3, x_{3}=3
$$

