Linear Algebra - Problem Set 1 - Solutions

Exercise I ($5 \times 5=25$ points)

1. The system of equations below does not have any solutions because the two lines are parallel.

$$
\begin{gathered}
3 x_{1}+9 x_{2}=15 \\
x_{2}=-3 x_{1}+5
\end{gathered}
$$

False. The two lines actually intersect, so the system has a unique solution.
2. Let a be any real number. If $\vec{u}=(a, a, a)$ is perpendicular to \vec{v} and \vec{w}, then \vec{v} is parallel to \vec{w}.

False. Counter-example $\vec{v}=(-2,2,0)$ and $\vec{w}=(3,0,-3)$.
3. \vec{s} is a linear combination of \vec{v} and \vec{w}. of If \vec{u} is perpendicular to \vec{v} and \vec{w}, then \vec{u} is perpendicular to \vec{s}. True. If \vec{u} is perpendicular to \vec{v} and \vec{w}, then $\vec{u} \cdot \vec{v}=0$ and $\vec{u} \cdot \vec{w}=0$. Since \vec{s} is a linear combination of \vec{v} and \vec{w}, we have $\vec{s}=\alpha \vec{v}+\beta \vec{w}$ for some $\alpha, \beta \in \mathbb{R}$. Then $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=\alpha \vec{u} \cdot \vec{v}+\beta \vec{u} \cdot \vec{w}=0$
4. If \vec{u} and \vec{v} are perpendicular unit vectors, then $\|\vec{u}+3 \vec{v}\|=\sqrt{10}$.

True. $\|\vec{u}+3 \vec{v}\|^{2}=(\vec{u}+3 \vec{v}) \cdot(\vec{u}+3 \vec{v})=\|\vec{u}\|^{2}+2(\vec{u} \cdot \vec{v})+9\|\vec{v}\|^{2}=1+0+9=10$.
5 . The length of a unit vector in n dimensions is n.
False. Regardless of the dimension, the length of a unit vector is always 1 , by definition.

Exercise II (3 $\times 10=30$ points)

1. Which pairs are orthogonal among the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$? Show all your work.

$$
\begin{array}{ll}
\vec{v}_{1} \cdot \vec{v}_{2}=-4 \\
\vec{v}_{1} \cdot \vec{v}_{3}=0 \\
\vec{v}_{1} \cdot \vec{v}_{4}=2
\end{array} \Longrightarrow \vec{v}_{1} \perp \vec{v}_{3} \quad \begin{aligned}
& \vec{v}_{2} \cdot \vec{v}_{3}=0 \Longrightarrow \vec{v}_{2} \perp \vec{v}_{3} \\
& \vec{v}_{2} \cdot \vec{v}_{4}=8 \\
& \vec{v}_{3} \cdot \vec{v}_{4}=-2
\end{aligned}
$$

2. Find the angle between the pairs of vectors that are not orthogonal.
$\cos \theta_{12}=\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}\right\|}=\frac{-4}{\sqrt{10} \sqrt{32}} \Longrightarrow \theta_{12}=103^{\circ}$
$\cos \theta_{14}=\frac{\vec{v}_{1} \cdot \vec{v}_{4}}{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{4}\right\|}=\frac{2}{\sqrt{10} \sqrt{4}} \Longrightarrow \theta_{14}=72^{\circ}$
$\cos \theta_{24}=\frac{\vec{v}_{2} \cdot \vec{v}_{4}}{\left\|\vec{v}_{2}\right\|\left\|\vec{v}_{4}\right\|}=\frac{8}{\sqrt{32} \sqrt{4}} \Longrightarrow \theta_{24}=45^{\circ}$
$\cos \theta_{34}=\frac{\vec{v}_{3} \cdot \vec{v}_{4}}{\left\|\vec{v}_{3}\right\|\left\|\vec{v}_{4}\right\|}=\frac{-2}{\sqrt{4} \sqrt{4}} \Longrightarrow \theta_{34}=120^{\circ}$
3. Construct a set of 3 unit vectors out of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.

$$
\vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right] \quad \vec{u}_{2}=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}=\frac{1}{\sqrt{32}}\left[\begin{array}{l}
4 \\
0 \\
4 \\
0
\end{array}\right] \quad \vec{u}_{3}=\frac{\vec{v}_{3}}{\left\|\vec{v}_{3}\right\|}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

Exercise III ($3 \times 5=15$ points)

Write each of the following vector equations as a matrix equation. That is, write it in the form $A \vec{x}=\vec{b}$. Specify what the matrix A, the vector \vec{x}, and the vector \vec{b} are.

1. $x_{1}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]+x_{4}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 5\end{array}\right] \quad\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 5\end{array}\right]$
2. $x_{1}\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}5 \\ 11 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$

$$
\left[\begin{array}{ccc}
2 & 5 & 1 \\
4 & 11 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

3. $x_{1}\left[\begin{array}{c}3 \\ -2 \\ 8\end{array}\right]+x_{2}\left[\begin{array}{l}5 \\ 0 \\ 9\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$
$\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 8 & 9\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 8\end{array}\right]$

Exercise IV (20 points)

Consider the matrix below. Are the column vectors of this matrix linearly independent or linearly dependent? Show all explanations or computations.

$$
\left[\begin{array}{ccc}
1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right]
$$

To prove that a set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent, we must show that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=0$ has $c_{1}=c_{2}=c_{3}=0$ as its only solution. Thus, we must solve:

$$
\begin{aligned}
& c_{1}\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{c}
5 \\
-6 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
\hline 1 & 0 & 5 \\
-2 & 1 & -6 \\
0 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\rightarrow & {\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 4 \\
0 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

The last row indicates that $0=0$, which means that we can choose c_{3} to be any nonzero constant. The second row gives $c_{2}=-4 c_{3}$, and the first row gives $c_{1}=-5 c_{3}$. Thus, we can find nonzero c_{1}, c_{2}, c_{3} that solve the above system. Hence, the column vectors of the matrix are linearly dependent.

Exercise V (10 points)

Suppose that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly dependent set of vectors in \mathbb{R}^{n} and \vec{v}_{4} is vector in \mathbb{R}^{n}. Show that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is also a linearly dependent set.

Applying the definition of linearly dependent to $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ implies that there exist scalars c_{1}, c_{2}, and c_{3}, not all zero, such that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$. Adding $0 \vec{v}_{4}=\overrightarrow{0}$ to both sides of this equation results in

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+0 \vec{v}_{4}=\overrightarrow{0}
$$

c_{1}, c_{2}, c_{3} and 0 are not all zero, the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ satisfies the definition of a linearly dependent set.

