Exam 1 practice problems

Question 1: What is the difference between $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, \operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, and $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\} ?$

Question 2: Construct a matrix $\underset{A}{ }$ such that for all $\vec{v} \in \mathbb{R}^{3}, ~ \underline{\mathrm{~A}} \vec{v} \in \operatorname{span}\{\overrightarrow{0}\}$.

Question 3: Prove that any elimination E_{21} matrix size $n \times n$ is invertible.

Question 4: Prove a matrix with a single 1 in each column and row (and zeros everywhere else) has an inverse.

Question 5: If $\vec{v}_{2} \notin \operatorname{span}\left\{\vec{v}_{1}\right\}$ is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ a linearly independent set? Why or why not? $\left(\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}\right)$

Related question: If $v_{1} \in \operatorname{span}\left\{v_{2}\right\}$ is $v_{2} \in \operatorname{span}\left\{v_{1}\right\}$? Why or why not?

Question 6: If $\vec{v}_{2} \notin \operatorname{span}\left\{\vec{v}_{1}\right\}$ and $\vec{v}_{1} \notin \operatorname{span}\left\{\vec{v}_{2}\right\}$ is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ a linearly independent set? Why or why not? $\left(\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}\right)$

Question 7: State whether the dot product is positive, negative, or zero. What are the possible outcomes? $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{n}\right)$

7a Suppose $v_{1} \perp v_{2},\left\|v_{1}\right\|>0$ and $\left\|v_{2}\right\|>0$.
What is the sign of $\left(v_{1}+v_{2}\right) \cdot v_{1}$?
7b Suppose $v_{1} \perp v_{2},\left\|v_{1}\right\|>0$ and $\left\|v_{2}\right\|>0$.
What is the sign of $\left(v_{1}-v_{2}\right) \cdot v_{2}$?
7c Suppose $\left(v_{1}+v_{2}\right) \cdot v_{3}=0$ and $\left\|v_{1}\right\|>0,\left\|v_{2}\right\|>0$, and $\left\|v_{3}\right\|>0$. If $v_{1} \perp v_{3}$ is $v_{3} \perp v_{2} ?$

Question 8: When is the following matrix singular? $\left[\begin{array}{ll}1 & a \\ b & 1\end{array}\right]$

Question 9: Is the matrix product $\left(A A^{T}\right)\left(A^{T} A\right)$ symmetric? Why or why $\operatorname{not} ?\left(A \in \mathbb{M}_{n \times m}\right)$

Question 10: For what matrices it is possible to perform $L U$ factorization? Which matrices require a permutation in order to complete the factorization?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad D=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

Question $\mathbf{1 0}(\mathbf{b})$: Which of the following products have an LU factorization?

$$
A B, B A, A C, C A, D B, C D
$$

Solutions:

Question 1: What is the difference between $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, \operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, and $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\} ?$

Line in \mathbb{R}^{2}, line in \mathbb{R}^{3}, line in \mathbb{R}^{4}

Question 2: Construct a matrix $\underline{A}_{\text {A }}$ such that for all $\vec{v} \in \mathbb{R}^{3}, ~ \underline{\mathrm{~A}} \vec{v} \in \operatorname{span}\{\overrightarrow{0}\}$. $A=\underline{0}_{3 \times 3}$

Question 3: Prove that any elimination E_{21} matrix size $n \times n$ is invertible.
Use row reduction to reduce E_{21} to $I\left([A \mid I] \rightarrow\left[I \mid A^{-1}\right]\right)$. Or set B to be the inverse, show $B E_{21}=I$.

Question 4: Prove a matrix with a single 1 in each column and row (and zeros everywhere else) has an inverse.

Use row reduction to reduce P to $I\left([P \mid I] \rightarrow\left[I \mid P^{-1}\right]\right)$. Or set B to be the inverse, show $B P=I$.

Question 5: If $\vec{v}_{2} \notin \operatorname{span}\left\{\vec{v}_{1}\right\}$ is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ a linearly independent set? Why or why not? $\left(\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}\right)$

Related question: If $v_{1} \in \operatorname{span}\left\{v_{2}\right\}$ is $v_{2} \in \operatorname{span}\left\{v_{1}\right\}$? Why or why not?
No, let $\vec{v}_{1}=(0,0)$ and $\vec{v}_{2}=(1,1) . \vec{v}_{2} \notin \operatorname{span}\left\{\vec{v}_{1}\right\}$ but these vectors are a linearly dependent set (show they are linearly dependent set).

Question 6: If $\vec{v}_{2} \notin \operatorname{span}\left\{\vec{v}_{1}\right\}$ and $\vec{v}_{1} \notin \operatorname{span}\left\{\vec{v}_{2}\right\}$ is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ a linearly independent set? Why or why not? $\left(\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}\right)$

Yes, suppose for the sake of contradiction, that $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a linearly dependent set, then there exists a $c_{1} \neq 0$ or $c_{2} \neq 0$ such that

$$
c_{1} v_{1}+c_{2} v_{2}=0
$$

Suppose $c_{1} \neq 0$, then $v_{1}=\frac{-c_{2}}{c_{1}} v_{2}$, therefore $\vec{v}_{1} \in \operatorname{span}\left\{\vec{v}_{2}\right\} \Rightarrow \Leftarrow$.
Suppose $c_{2} \neq 0$, then $v_{2}=\frac{-c_{1}}{c_{2}} v_{1}$, therefore $\vec{v}_{2} \in \operatorname{span}\left\{\vec{v}_{1}\right\} \Rightarrow \Leftarrow$.
Therefore, $c_{1}=0$ and $c_{2}=0$, therefore $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a linearly independent set.

Question 7: State whether the dot product is positive, negative, or zero. What are the possible outcomes? $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{n}\right)$

7a Suppose $v_{1} \perp v_{2},\left\|v_{1}\right\|>0$ and $\left\|v_{2}\right\|>0$.
What is the sign of $\left(v_{1}+v_{2}\right) \cdot v_{1}$?
$\left(v_{1}+v_{2}\right) \cdot v_{1}=v_{1} \cdot v_{1}+v_{2} \cdot v_{1}=v_{1} \cdot v_{1}>0$

7b Suppose $v_{1} \perp v_{2},\left\|v_{1}\right\|>0$ and $\left\|v_{2}\right\|>0$.
What is the sign of $\left(v_{1}-v_{2}\right) \cdot v_{2}$?
$\left(v_{1}-v_{2}\right) \cdot v_{2}=v_{1} \cdot v_{2}-v_{2} \cdot v_{2}=-v_{2} \cdot v_{2}<0$

7c Suppose $\left(v_{1}+v_{2}\right) \cdot v_{3}=0$ and $\left\|v_{1}\right\|>0,\left\|v_{2}\right\|>0$, and $\left\|v_{3}\right\|>0$. If $v_{1} \perp v_{3}$ is $v_{3} \perp v_{2}$?

$$
\left(v_{1}+v_{2}\right) \cdot v_{3}=v_{1} \cdot v_{3}+v_{2} \cdot v_{3}=v_{2} \cdot v_{2}=0 \text { therefore } v_{3} \perp v_{2}
$$

Question 8: When is the following matrix singular? $\left[\begin{array}{ll}1 & a \\ b & 1\end{array}\right]$
When $a b=1$

Question 9: Is the matrix product $\left(A A^{T}\right)\left(A^{T} A\right)$ symmetric? Why or why $\operatorname{not} ?\left(A \in \mathbb{M}_{n \times m}\right)$

$$
\left[\left(A A^{T}\right)\left(A^{T} A\right)\right]^{T}=\left(A^{T} A\right)^{T}\left(A A^{T}\right)^{T}=A^{T} A A A^{T}
$$

Cannot compute unless $n=m$. If $n=m$ then you still can't show its symmetric, the product of two symmetric matrices is not necessarily symmetric.
example let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$

Question 10: For what matrices it is possible to perform $L U$ factorization? Which matrices require a permutation in order to complete the factorization?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

A has no $L U$ factorization. $P A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has an $L U$ factorization.
$L=I, \quad U=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
B has a $L U$ factorization. $L=I, U=B$.
C has a $L U$ factorization. $L=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \quad U=I$.
D has a $L U$ factorization. $L=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \quad U=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
LU decomposition technicalities

Question $\mathbf{1 0}(\mathrm{b})$: Which of the following products have an LU factorization?

$$
A B, B A, A C, C A, D B, C D
$$

$A B$ yes, $B A$ yes, $A C$ yes, $C A$ no, $D B$ yes, $C D$ yes.
Test is entry a_{11} zero? If a_{11} is zero, is a_{21} zero?

