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Inference Time Scaling Law

Pre-training Post-training Inference

b,
Most LLMs =

Pre-training Post-training Inference

New scaling law: why OpenAl’s o1l model matters

Before OpenAl ol Alter OpenAl ol

COMPUTE




How can we perform Inference-Time Scaling for

Scientific Machine Learning?




Tale 1: Debiasing

Hybrid Scientific Computing and Machine Learning



Consider How you use ChatGPT...

~N
What is the most efficient route from Times Square

to Chelsea Market that minimizes walking?

J

-
Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the
Times Sq—42nd Street station.

2. Board the E Train: Catch an E train heading
downtown (toward World Trade Center).

3. Ride to 8th Avenue—14th Street Station: Get off at
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk
east on 14th Street for a few blocks until you reach
Chelsea Market at 75 9th Avenue.

\_

>©®

double-check

with a map

2 stops for A
3 stops for C/E

1. At Times Square: Enter the Times Square—42nd Stree?
station.

2. Board the 1 Train: Hop on a downtown 1 train (the
red line).

3. Ride to 14th Street: Stay on until you reach the 14th
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th
Avenue —this drop-off point is just a short walk from
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Physics-Informed Inference Time Scaling

—

Step 1: Machine learning model fit rough information

_

Step 2: Evaluating the error of the Machine Learning model
—

[ )

-

-

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

~

_




Physics-Informed Inference Time Scaling

. R . Evaluate the error R

Aeer—

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model
—

Step 2. Correct with a Trustworthy Solver

Step 1. Train a Surrogate (ML) Model

= GP (m=0.00)
MLP (m=-0.21)
- SCaSML (m=-0.17)

Finite Element
. Correction enables
1 . Inference Time Scaling

Optimizer :

1

1 1 1 |
0 200 400 600 800
Evaluation Steps

Simulation



Our Framework

AlIM:




Our Framework

Scientific Machine Learning

Downstream application




Our Framework

Scientific Machine Learning Downstream application

"

)
j Physics-Informed! (Structure of @)

How to estimate CD(@’) — OO)?

Why it is easier than directly estimate ®(0)? Variance Reduction



Debiasing a Machine Learning Solution

-

J\—\/\f

Step 1: Machine learning model fit rough information

<>

~

%

N

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

~

J

Scientific Machine Learning

0=f X =uflx) DPO)= Jf (x)dx

Example 1

Downstream application

Temperature, overall

velocity...



Debiasing a Machine Learning Solution

(X, X} ~P,— 0 é')

Example 1 O=f X =(@x,fx)) PO = J f9(x)dx




Debiasing a Machine Learning Solution

\ Estimate Epf & [EP]?A

+Ep/ =1

An estimate to CD(@) — d(0)

Example 1 0=f X =x,flx)) PO = J f9(x)dx



Debiasing a Machine Learning Solution

Estimate Epf ~ Epf

Example 1 0=f X =x,flx)) PO = J f9(x)dx



Debiasing a Machine Learning Solution

¥ Y«
1 ' Regression-adjusted Control Variates Doubly Robust Estimator

- Investigated the of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, , Lexing Ying. When can Regression-Adjusted Control Variates Help”? Rare
Events, Sobolev Embedding and Minimax Optimality Neurips 2023

- Extend to

Example 1 O=f X =(@x,fx)) PO = J f9(x)dx



Debiasing a Machine Learning Solution

¥ Y«
1 ' Regression-adjusted Control Variates Doubly Robust Estimator

- Investigated the of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, , Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare
Events, Sobolev Embedding and Minimax Optimality Neurips 2023

Example 1 O=f X =(@x,fx)) PO = J f1(x)dx



Lower Bound

Smoothness s

®
®
®
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° Random flip
®
®
®
®
. Magnitude of the spike
. - ® 1 - S> 1 _l s
A single spike max A ST

Minimax rate



Lower Bound

Smoothness s
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Minimax rate



Upper Bound

Smoothness s

& SCaSML

Truncate Monte Carlo Regression-adjusted Control Variate

Minimax rate



Why?

{® SCaSML estimate of Epf9,f € W

Using half of the data to estimate f
[E P.fq — [E P(fq) -+ [E P (m How does step?2 variance

depend on estimation error?
Low order term epend on estimation error

= HIHE =)

“influnce function” (gradient) Error propagation




Why?

{® SCaSML estimate of Epf9,f € W

Using halt of the data to estimate f
Epf? = Ep(f9) + Ep(f’ [

Low order term

= DHE =g
“inﬂy/e function” (gradieNor ®  How to select the

A Sobolev emebedding?
Embed f7~! and f — f into “dual” space

’l? £




Take Home Message

a) Statistical optimal regression is the optimal control variate
D) It helps only If there isn’t a hard to simulate (infinite variance)
Rare and extreme event

/\/\X_'_—>

(a) (b)

g control the extremeness

v Rare and extreme event




Scientific Machine Learning Downstream application
Example 1 0=f X =x,flx)) PO = J f1(x)dx

Example 2 0=A, X =(x,Ax;) D) = tr(A)
Estimation A via Randomized SVD Estimate tr(A — A) via Hutchinson's estimator

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20




This Talk:

A new way for hybrid scientific computing and machine learning

* Eigenvalue decomposition

* Preconditioned (randomized) computation of Eigenvalue Problem via
Debiasing

 PDE-Solver

* |nference time scaling for ML-based PDE solver



High Dimensional PDE-Solving

Let’s consider Au = f {X19 9Xn} ~ |]:D6’ — @

X = (x;, Au(x;)) U
PDE R.h.s PDE solution

PINN/DRM/Neural Galerkin

(u— i)(x) = E J(f—f)(X»dr

) Au-i)=f-f )

D(0)

Mean/Variance/u(x)




Works for Semi-linear PDE

oU Can .
you do simulation
a (.X t) +AU(X ....... t) +f( U(x t)) T ? for nonlinear equaﬂgn’?

Keeps the structure to enable brownian motion simulation

@

&0

----------------------------------------------------------------------------------
. 3
. 3

C *
.....
-------------------------------------------------------------------------------



Works for Semi-linear PDE

------------------------------------------------------
* 03

—(x, 1) + AU(x, 1) + (U(x, 1) =0

Keeps the structure to enable brownian motion simulation

ol @ P — | A
— (. ) HADO D) + A0, 1) = g0x, 1)



Works for Semi-linear PDE

------------------------------------------------------
K .

oU
a—(x 1)+ AU +AU(x, 1) =

Subtract two equations

a(U _ U) ..........................................................................
)+ AL = D)0+ 0, 05,1+ UG, = 00, = 08, 05, 0) = ¢G50

~

(t, (U - U)x. r))



Improvement (%)
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101
Evaluation Numbers

0.00 -

Inference-Time Scaling

have closed-form solution g(x) =

-40.7%

MLP

SCaSML

exp(T+ ), x;

I +exp(T+ ), x)

Method Convergence Rate
PINN O(n=%
MLP O(n=1"
ScaSML O(n~4=s/dy




Our Aim Today : A Marriage

When Neural Network is good

No Simulation cost is needed

Machine
Learning

Simulation



Our Aim Today : A Marriage

When Neural Network is bad

Machine
Learning

Provide pure Simulation solution



Our AIM Today: A Marriage

Machine
Learning

Simulation

Using ©irmuiation to
—_



Tale 2: Pre-condition

with a surprising connection with



@ NUMERIGAL
9 LINEAR
' LGEB D

e

WEdition

L LoypD N. TREFETHEN
Davip Bau, |l

Tale 2: Preconditioning

”In ending this book with the subject of preconditioners, we find ourselves at the

philosophical center of the scientiffc computing of the future.”

— L. N. Trefethen and D. Bau III, flumerical Linear Algebra |TB22

Nothing will be more central to computational
science in the next century than the art of
transforming a problem that appears intractable into
another whose solution can be approximated

rapidly.



What is precondition

IIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIII

hardness depend on k(A) hardness depend on

|

Become easier when B ~ A !



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b ] 1A~1(A — B)|
Error depends on ||A™ - B

» Using an approximate solver Bx; = b J



A New Way to Implement Precondition

« Debiasing is a way of solving Ax = b ] . H
Error depends on ||[A™' (A — B)

» Using an approximate solver Bx; = b J

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

» Using the approximate solver to approximate x — x; via Bx, = b — Ax,



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b ] . H
Error depends on ||A™ (A — B)

» Using an approximate solver Bx; = b J

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» Using the approximate solver to approximate x -< x; via Bx, = b — Ax;,

7 s ----- E
"’ @ [® \What is the error of x| + X572 AQy +x) = b — (A#Bpo; samelevelas |A7'(A - B)|
@ Bringad@nother ||[A~'(A — B)||
)8
N 1 2 1 o
A A7'(A — B)||- * Hardness depends on how A ~"b near identity!



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b terative Refinement Algorithm
....................................................................................................................... O
S 2 x; satisfies the equation A(x — Z x)=b—A Z X;
=1 =1 =1

[ f :
Using the approximate solver to approximate x — Z x;viaBx;,, =b—A Z X;
=l i=1 5

L4
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b lterative Refinement Algorithm

Preconditioned Jacobi lteration



This Talk: A New Way to Implement Precondition
Via

 Step 1: Aim to solve (potentially nonlinear) equation A(u#) = b

use Machine Learning

 Step 2: Build an approximate solver A(if) ~ b Unrealiable approximate

solver as preconditioner

* Via machine learning/sketching/finite element....

» Step 3: Solve u — i

N

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!




Dynamic Mode Decomposition

Experimental Dynamic System Data

+ past future

Dynamic modes

- —
\
-~
- |
-~
-~

= sdrureudp awiiy,

-
= 3
\‘\




Dynamic Mode Decomposition

Experimental Dynamic System Data

21U + ooUQ + * * + + Qo Up,

Project to low-dimensional space

Ax VX

\ A YX m

+ past future

Dynamic modes

“+  SOTWERUAP dWIIL],



Dynamic Mode Decomposition

Experimental Dynamic System Data

21U + ooU + * + + + Q2 Up,

Project to low-dimensional space

Includes Error

Ax VX

+ past future

Dynamic modes

= sdrureudp awiiy,

Y Can we update the mode estimation
Y when a new data comes?




A Data-Driven View

data



A Data-Driven View

Machine Learning - {Xi}?zl,Xi ~ Py — 0e®

A\ - ,

data

eEEEEEN,

»

R.....

(1)



A Data-Driven View

A\

Machine Learning - {Xi}?:pXi ~ Py — 0e®
data

(x5 Ax) by 0=A

e

Project to a subspace
Snapshot Data Dynamic Mode Decomposition/Randomized SVD




A Data-Driven Debias View

Eigendecomposition of A

lllllllllllllll
lllllll

A\

Machine Learning - {Xi}?=1’Xi ~ Py — 0e0 —>CI)(«9) P ; Ax(t)

data

A 0=A

e

Project to a subspace
Snapshot Data Dynamic Mode Decomposition/Randomized SVD

How can we the error ®(f) — CI>(6A’)?




A Data-Driven Debias View

Eigendecomposition of A

data

A 0=A

e

Project to a subspace
Snapshot Data Dynamic Mode Decomposition/Randomized SVD

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Our Observation:
Taylor Expansion can be
computed by snapshot data.




A Data-Driven Debias View

Eigendecomposition of A

e EEEEEEEEENEEN,
eEEEEEN,

(X)), X; ~ Py — 0 € © = (D) — AL()
- data

What is V®(A)? V(D(A) = (Al — A)Wk




A Data-Driven Debias View

Eigendecomposition of A

lllllllllllllll

A\

(X)), X; ~ Py — 0 € © = (D)

----------------

llllllllllllllllllllllllllllllllllllllllllllllllll

Embed dynamic to space ®

data

What is V®(A)? VCD(A) = (Al — A)Wk

update using online
snapshot data

Embed dynamic to space @ + V OID

lllllll



Computation of Taylor Expansion

Al = a0 + o+ ax, ity by DMD

/

“How much Error DMD have made”

Proposition The estimated mode at time 7 lies in span{x;, :*+, X}




Computation of Taylor Expansion

llllllllllllllllllllllll
lllllllllllllllllllllllllll

llllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIII

lllllllllllllllllllllllllllllllllll

1 S X
= I([ — UUT)E + U(/U A)TUT when we know the Eigen decomposition A = U/l\UT
S SO /
Orth'é'g'j'é'ﬁ'é'l"'t"c'i"fﬁ'c'ides Span of modes Mode  Eigen
Decrease A times “Inverse Power method”

Enables computation using snapshot data!
Proposition The estimated mode at time 7 lies in span{xy, **+, X}




Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method

_*_ ............................
Xp1 = U =AY X, =W -A]A=-AXK,

................................
Replage with an approximate Ture eigenvector is the fix poinAt
solver A changes the fixed point for every approximate solver A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method
T .............................
X1 = U= A) X X =@U-A)A-AX,
P =
Replaf:e with an approXimate Ture eigenvector is the fix poinAt
solver A changes thefixed point or every approximate solver A

How you construct such iteration?

What is the rule of A?

Take Hoem Message 1.
Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square £ 2 Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD } Our Work!
Approx ldea 2: plug in a inverse power method g }
Use sketched matrix A as Use sketched matrix A as
an approximation to A an precondition to the probelm

Sorry... but | can’t see the

relationship....

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square TP Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD &) :
Approx ldea 2: plug in a inverse power method %’Q QOur Work!
Use sketched matrix A as Use sketched matrix A as

an approximation to A an precondition to therobelm

We only sketch
the Hessian

/@ Idea: using (approximate) Newton method to solve the Lagrange from

A
. minu ' Au — Ax'x — 1)
]

Thus Our convergence isilinear-quadratic:

* v
llllllllllllllllllllllllllllllllllllll

Contraction coefficient improves when sketching quality increases

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Online Dynamic Mode Decomposition

update using online
snapshot data

lllllllllllllllllllllllllllllllllllllllllllllllllll

U
------------------------------------------------

Embed dynamic to space ® Embed dynamic to space ® + VOID
Computational cost:

A
O | nTklog | —— | + nk? + k3
1 )] —— =

Computational cost:

S~ _—

/ Reconstruct Eigen Decomposition

Mode

SVD of Dynamic
(By Krylov Iteration)




Experimental Results

Error dominated by truncation of Krylov subspace
The help of more data is limited

™~

Error of eigenvector Error of eigenvalue o2, Error of eigghvector ~ Error of eigenvalue
RN — ' 0 [ | _ | ' | 100 F | |
109 | FODMD - . - \
DMD 10°F T -
Direct Regression \ .\
~ | 1072 e - 10
10" N
-2 | FODMD FODMD
10 o DMD Lo DMD .
Consistently improve 4 10 7§ Direct Regression Direct Regression
107 | ‘
FODMD 1078
DMD
Direct Regression 16710 i | , | 10} . . .
1074 | 1076 | 0 50 100 150 200 0 50 100 150 200
0 100 200 0 100 200

A has four eigenvalue 1 and then decreasing to 0.1



Eigenvalue Computation

Lazy-EPSI

10°

10%=

107

1078

1078

10710
0

Subspace Iteration

—+—1-th
—+—2-th
—+—3-th

1 1 1 1
10 20 30 40

Random ill-conditioned matrix

Lazy-EPSI
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Subspace Iteration
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PDE (Laplacian)
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10°
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Amazon (SNAP)

-----------------------------------

——1-th
——2-th
—=—3-th
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10-th

10

Subspace Iteration

1 1 1 1
0 10 20 30 40 50

10°
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Web Stanford (SNAP)
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| What is about?
(X, . X,} ~Py— 00— DO

Step 1: Using Machine Learning to fit the rough function/environment

{» SCaSML

Step 2: Using validation dataset to know how much mistake machine
learning algorithm has made

Step 3: Using Simulation algorithm to estimate%CD(é’) — CD(@) - Examples Later!

-----------------------------------------------------------------

McCORMICK SCHOOL OF

ENGINEERING Yiping Lu yiping.lu@northwestern.edu

Northwestern



