
Yiping Lu

Two Tales, One Resolution
for Physics-Informed Inference-time Scaling

 Debiasing and Precondition

Inference Time Scaling Law

How can we perform Inference-Time Scaling for
Scientific Machine Learning?

Tale 1: Debiasing
Hybrid Scientific Computing and Machine Learning

Consider How you use ChatGPT…

What is the most efficient route from Times Square
to Chelsea Market that minimizes walking?

Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the
Times Sq–42nd Street station.

2. Board the E Train: Catch an E train heading
downtown (toward World Trade Center).

3. Ride to 8th Avenue–14th Street Station: Get off at
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk
east on 14th Street for a few blocks until you reach
Chelsea Market at 75 9th Avenue.

double-check
with a map

15-th street

2 stops for A

3 stops for C/E

Port Authortiy

1/2/3+L line is
best choice

1. At Times Square: Enter the Times Square–42nd Street
station.

2. Board the 1 Train: Hop on a downtown 1 train (the
red line).

3. Ride to 14th Street: Stay on until you reach the 14th
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th
Avenue—this drop-off point is just a short walk from
Chelsea Market (located at 75 9th Ave).

Physics-Informed Inference Time Scaling
f

̂f

Evaluate the error

f

̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper:
 Aggregate step 1 and step 2

via First-Principle

Physics-Informed Inference Time Scaling
f

̂f

Evaluate the error

f

̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper:
 Aggregate step 1 and step 2

via First-Principle

Step 1. Train a Surrogate (ML) Model
Step 2. Correct with a Trustworthy Solver

Finite Element

Optimizer

Correction enables
Inference Time Scaling

Simulation

Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

AIM: Compute during Inference
time

Φ(̂θ) − Φ(θ)

Using (stochastic) simulation to calibrate the (scientific) machine learning output !

Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

How to estimate ?Φ(̂θ) − Φ(θ)

Why it is easier than directly estimate ?Φ(θ) Variance Reduction

Physics-Informed! (Structure of)Φ

Debiasing a Machine Learning Solution
f

̂f

Evaluate the error

f

̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper:
 Aggregate step 1 and step 2

via First-Principle

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

̂f
“piece-wise polynomial”->Simpson Rule

Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

̂f
Estimate 𝔼P f ≈ 𝔼P

̂f
+𝔼 ̂P f − ̂f

An estimate to Φ(̂θ) − Φ(θ)

Our Approah

Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

̂f Estimate 𝔼P f ≈ 𝔼 ̂P f

Monte Carlo?

Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

Regression-adjusted Control Variates Doubly Robust Estimator …

- Investigated the optimality of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare

Events, Sobolev Embedding and Minimax Optimality Neurips 2023

- Extend to nonlinear functional estimation using iterative methods Later

Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity…

Regression-adjusted Control Variates Doubly Robust Estimator …

- Investigated the optimality of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare

Events, Sobolev Embedding and Minimax Optimality Neurips 2023

Class we consider {f : ∫ ∥∇sf∥p ≤ 1}

Lower Bound
Smoothness s

Minimax rate

max {(1
p

−
s
d) q − 1, −

1
2

−
s
d }A single spike

Random flip

Magnitude of the spike

Lower Bound
Smoothness s

Minimax rate

max {(1
p

−
s
d) q − 1, −

1
2

−
s
d }A single spike

Random flip

Magnitude of the bump

Upper Bound

−1/2

Smoothness s

Truncate Monte Carlo

1
p

−
s
d

=
1
2q

Minimax rate

max {(1
p

−
s
d) q − 1, −

1
2

−
s
d }

Regression-adjusted Control Variate

finite/infinite
variance

A different Transition Point

Why?

estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate ̂f
Step 2 𝔼P fq = 𝔼P(̂fq) + 𝔼P(fq − ̂fq)

fq−1(f − ̂f) + (f − ̂f)q

Low order term

“influnce function” (gradient) Error propagation

How does step2 variance
depend on estimation error?

Why?

estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate ̂f
Step 2 𝔼P fq = 𝔼P(̂fq) + 𝔼P(fq − ̂fq)

fq−1(f − ̂f) + (f − ̂f)q

Low order term

“influnce function” (gradient) Error propagation

Embed and into “dual” spacef q−1 f − ̂f

How to select the
Sobolev emebedding?

Take Home Message

x

Y

(a)

Y

(b)

Rare and extreme event

a) Statistical optimal regression is the optimal control variate
b) It helps only if there isn’t a hard to simulate (infinite variance)
Rare and extreme event

q control the extremeness

SCaSML

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ(̂θ)
Downstream applicationScientific Machine Learning

Example 1 θ = f, Xi = (xi, f(xi)) Φ(θ) = ∫ f q(x)dx

Example 2 θ = A, Xi = (xi, Axi) Φ(θ) = tr(A)
Estimation via Randomized SVD̂A Estimate via Hutchinson's estimatortr(A − ̂A)Huch++

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20

What if is nonlinear?Φ Iterative Solver!

This Talk: Debiasing
A new way for hybrid scientific computing and machine learning

• Eigenvalue decomposition

• Preconditioned (randomized) computation of Eigenvalue Problem via
Debiasing

• PDE-Solver

• Inference time scaling for ML-based PDE solver

High Dimensional PDE-Solving

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Xi = (xi, Δu(xi))

PDE R.h.s PDE solution
u Mean/Variance/u(x)

PINN/DRM/Neural Galerkin

Let’s consider Δu = f

Δu = f

Δ ̂u = ̂f
Δ(u − ̂u) = f − ̂f

(u − ̂u)(x) = 𝔼∫ (f − ̂f)(Xt)dt

Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps the structure to enable brownian motion simulation

Can you do simulation
for nonlinear equation?

 is linear!Δ

Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t) is the error made by NNg(x, t)

NN

Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t) is the error made by NNg(x, t)

NN

Subtract two equations

∂(U − Û)
∂t

(x, t) + Δ(U − Û)(x, t)) + f(t, Û(x, t) + U(x, t) − Û(x, t)) − f(t, Û(x, t))

G(t, (U − Û)(x, t))

= g(x, t) .

Keeps the linear structure

Inference-Time Scaling
∂
∂t

u + [σ2u −
1
d

−
σ̄2

2](∇ ⋅ u) +
σ̄2

2
Δu = 0 have closed-form solution g(x) =

exp(T + ∑i xi

1 + exp(T + ∑i xi)

Method Convergence Rate

PINN

MLP

ScaSML

O(n−s/d)

O(n−1/4)

O(n−1/4−s/d)

Our Aim Today : A Marriage

M
ac

hi
ne

Le

ar
ni

ng
Si

m
ul

at
io

n

When Neural Network is good

No Simulation cost is needed

Our Aim Today : A Marriage

M
ac

hi
ne

Le

ar
ni

ng
Si

m
ul

at
io

n

When Neural Network is bad

Provide pure Simulation solution

Our AIM Today: A Marriage

M
ac

hi
ne

Le

ar
ni

ng
Si

m
ul

at
io

n

Today
Using Simulation to

Calibrate ML

Tale 2: Pre-condition
with a surprising connection with debiasing

Tale 2: Preconditioning

Nothing will be more central to computational
science in the next century than the art of
transforming a problem that appears intractable into
another whose solution can be approximated
rapidly.

What is precondition

• Solving is equivalent to solving Ax = b BAx = Bb
hardness depend on κ(A) hardness depend on κ(BA)

Become easier when B ≈ A−1

A New Way to Implement Precondition

• Debiasing is a way of solving

• Using an approximate solver

Ax = b

Bx1 = b
Error depends on ∥A−1(A − B)∥

A New Way to Implement Precondition

• Debiasing is a way of solving

• Using an approximate solver

• satisfies the equation

• Using the approximate solver to approximate via

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1

x − x1 Bx2 = b − Ax1

Error depends on ∥A−1(A − B)∥

A New Way to Implement Precondition

• Debiasing is a way of solving

• Using an approximate solver

• satisfies the equation

• Using the approximate solver to approximate via

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1

x − x1 Bx2 = b − Ax1

Error depends on ∥A−1(A − B)∥

What is the error of ?x1 + x2 A(x1 + x2) = b − (A − B)x2 Same level as ∥A−1(A − B)∥

Brings another ∥A−1(A − B)∥

∥A−1(A − B)∥2 Hardness depends on how near identity!A−1b

• Debiasing is a way of solving

• Using an approximate solver

• satisfies the equation

• Using the approximate solver to approximate via

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement Precondition

Iterative Refinement Algorithm

• Debiasing is a way of solving

• Using an approximate solver

• satisfies the equation

• Using the approximate solver to approximate via

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement Precondition

Iterative Refinement Algorithm

xi+1 = (I − B−1A)xi + B−1b

Preconditioned Jacobi Iteration

This Talk: A New Way to Implement Precondition
Via Debiasing

• Step 1: Aim to solve (potentially nonlinear) equation

• Step 2: Build an approximate solver

• Via machine learning/sketching/finite element….

• Step 3: Solve

A(u) = b

A(̂u) ≈ b

u − ̂u

Unrealiable approximate
solver as preconditioner

Connection with control variate, doubly robust estimator,
Multifidelity Monte Carlo

use Machine Learning

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!

Dynamic Mode Decomposition
Experimental Dynamic System Data

X =
| | ⋯ |

x1 x2 ⋯ xm−1

| | ⋯ |

A ≈ YX†

Y =
| | ⋯ |

x2 x3 ⋯ xm

| | ⋯ |

Eign

Dynamic Mode Decomposition
Experimental Dynamic System Data

X =
| | ⋯ |

x1 x2 ⋯ xm−1

| | ⋯ |

A ≈ YX†

Y =
| | ⋯ |

x2 x3 ⋯ xm

| | ⋯ |

Eign

Project to low-dimensional space

̂A ≈ ̂YX̂†

Dynamic Mode Decomposition
Experimental Dynamic System Data

X =
| | ⋯ |

x1 x2 ⋯ xm−1

| | ⋯ |

A ≈ YX†

Y =
| | ⋯ |

x2 x3 ⋯ xm

| | ⋯ |

Eign

Project to low-dimensional space

̂A ≈ ̂YX̂†

Can we update the mode estimation
when a new data comes?

Includes Error

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝMachine Learning

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD

Eigendecomposition of A

How can we the error ?Φ(θ) − Φ(̂θ)

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD

Eigendecomposition of A

θ − ̂θ = ϵ ⇒ Φ(θ) − Φ(̂θ) − ∇Φ(̂θ)(θ − ̂θ) = O(ϵ2)
Debiasing using Taylor Expansion

Our Observation:
Taylor Expansion can be

computed by snapshot data.

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝ
Eigendecomposition of A

dx(t)
dt

= Ax(t)

What is ?∇Φ(̂A) ∇Φ(̂A) = (λI − ̂A)†

A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ(̂θ) ∈ ℝ
Eigendecomposition of A

What is ?∇Φ(̂A)

dx(t)
dt

= Ax(t)

∇Φ(̂A) = (λI − ̂A)†

Our AIM

Embed dynamic to space Φ Embed dynamic to space Φ + ∇ΦdΦ

update using online
snapshot data

u = a1x1 + ⋯ + at−1xt−1

Au = a2x2 + ⋯ + atxt

Computation of Taylor Expansion

∇Φ(̂A)(A − ̂A)u = (λI − ̂A)†(A − ̂A)u

Prediction by DMD

“How much Error DMD have made”

“Inverse Power Method”

Proposition The estimated mode at time lies in t span{x1, ⋯, xt}

Computation of Taylor Expansion

∇Φ(̂A)(A − ̂A)u = (λI − ̂A)†(A − ̂A)u
“Inverse Power Method”

Proposition The estimated mode at time lies in t span{x1, ⋯, xt}

=
1
λ

(I − UU†) + U(λI − Λ)†U† when we know the Eigen decomposition ̂A = UΛU†

Mode EigenSpan of modes

“Inverse Power method”

Orthogonal to modes

Decrease timesλ

Enables computation using snapshot data!

Relationship with Inverse Power Methods

(Approximate)
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate

solver changes the fixed point̂A

Ture eigenvector is the fix point

for every approximate solver ̂A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Relationship with Inverse Power Methods

How you construct such iteration?
What is the rule of ?̂A

(Approximate)
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate

solver changes the fixed point̂A

Ture eigenvector is the fix point

for every approximate solver ̂A

Take Hoem Message 1:

Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project,
Iterataive Sketching, ….

Low rank
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix as

an approximation to

̂A
A

Use sketched matrix as

an precondition to the probelm

̂A

Sorry… but I can’t see the
relationship….

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project,
Iterataive Sketching, ….

Low rank
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix as

an approximation to

̂A
A

Use sketched matrix as

an precondition to the probelm

̂A

Idea: using (approximate) Newton method to solve the Lagrange from

Thus Our convergence is linear-quadratic

min
u

u⊤Au − λ(x⊤x − 1)

We only sketch

 the Hessian

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Contraction coefficient improves when sketching quality increases

u = a1x1 + ⋯ + at−1xt−1

Au = a2x2 + ⋯ + atxt

Online Dynamic Mode Decomposition

Computational cost:

O nTk log (λk

ϵλk+1) + nk2 + k3

SVD of Dynamic
(By Krylov Iteration)

Reconstruct

Mode

Eigen Decomposition

Computational cost:

O(nTk + nk2 + k3)

Embed dynamic to space Φ Embed dynamic to space Φ + ∇ΦdΦ

update using online
snapshot data

Experimental Results
Error dominated by truncation of Krylov subspace

The help of more data is limited

Consistently improve

 has four eigenvalue 1 and then decreasing to 0.1 A

Eigenvalue Computation

Random ill-conditioned matrix Amazon (SNAP)

PDE (Laplacian) Web Stanford (SNAP)

Yiping Lu yiping.lu@northwestern.edu

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Step 1: Using Machine Learning to fit the rough function/environment

Step 2: Using validation dataset to know how much mistake machine
learning algorithm has made f

̂f

Step 3: Using Simulation algorithm to estimate Φ(θ) − Φ(̂θ) Examples Later!

What is SCaSML about?

