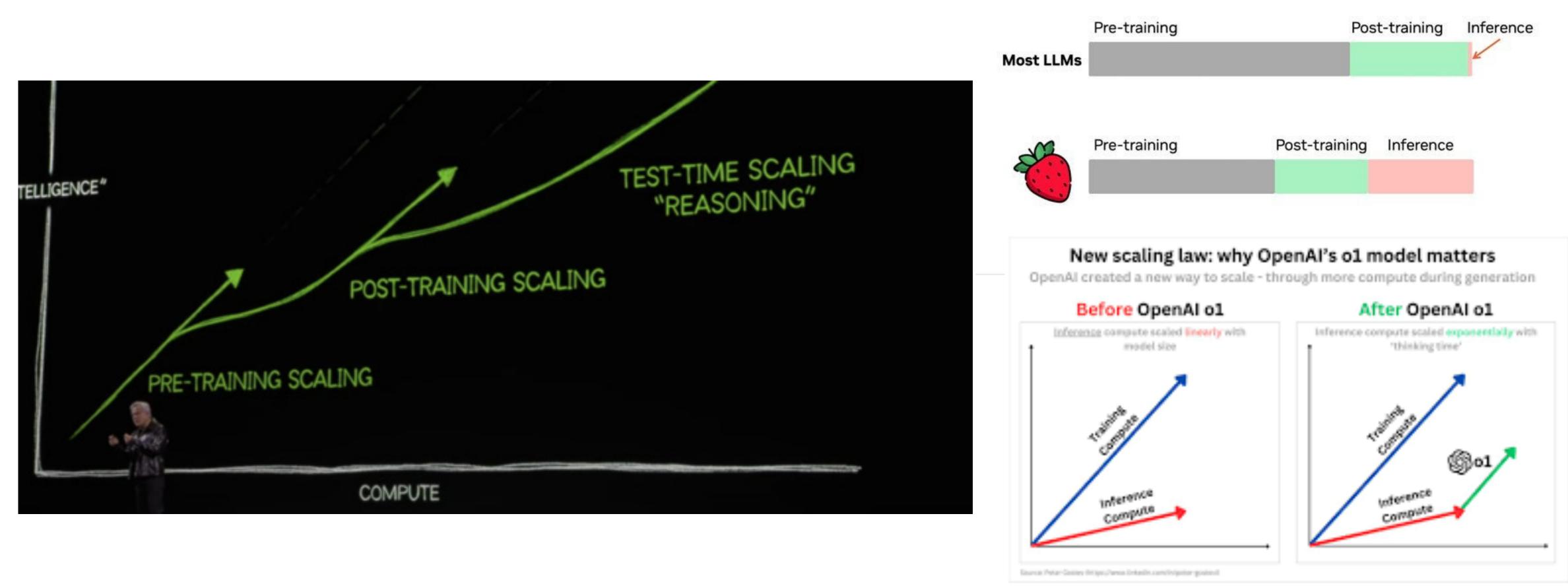
Two Tales, One Resolution for Physics-Informed Inference-time Scaling Debiasing and Precondition

Yiping Lu Northwestern MCCORMICK SCHOOL OF ENGINEERING

Inference Time Scaling Law



How can we perform Inference-Time Scaling for Scientific Machine Learning?

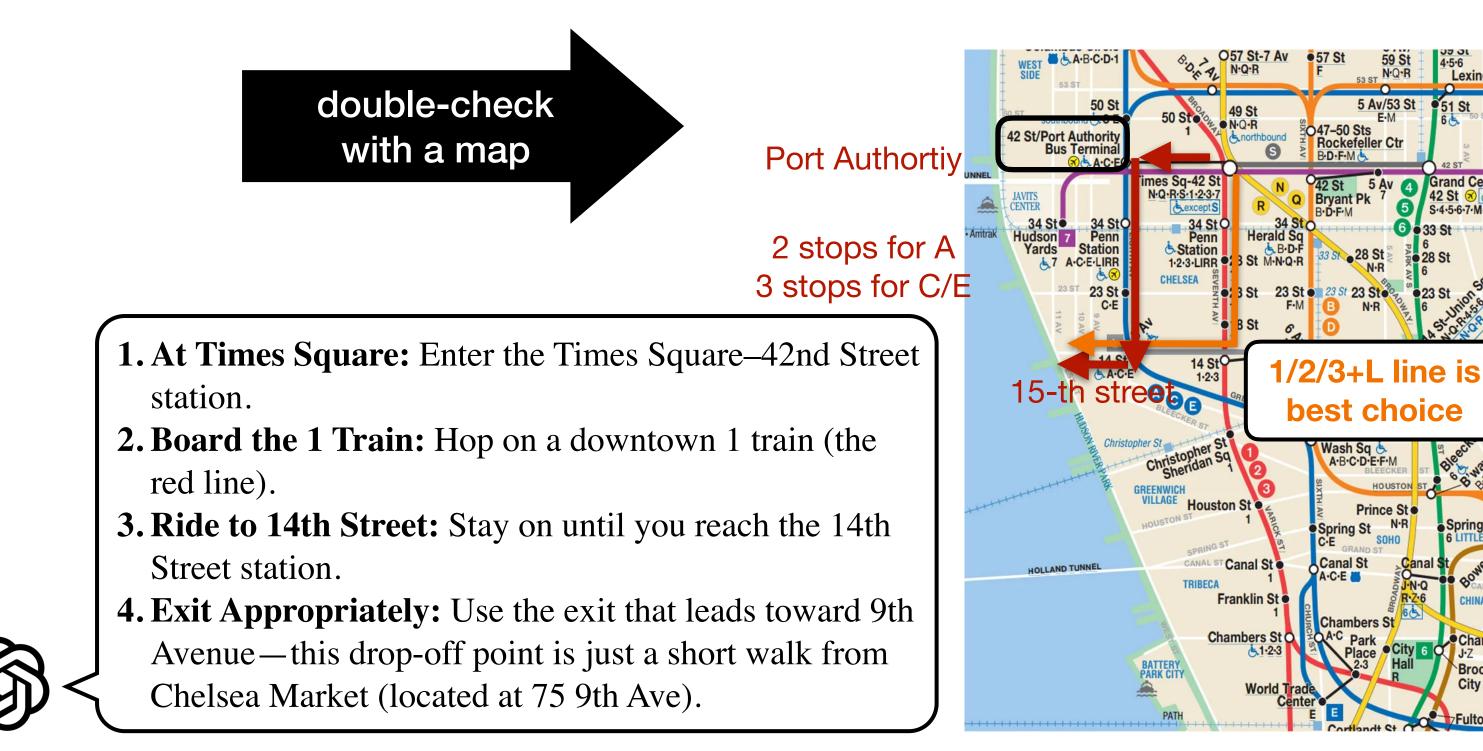
Tale 1: Debiasing Hybrid Scientific Computing and Machine Learning

Consider How you use ChatGPT...

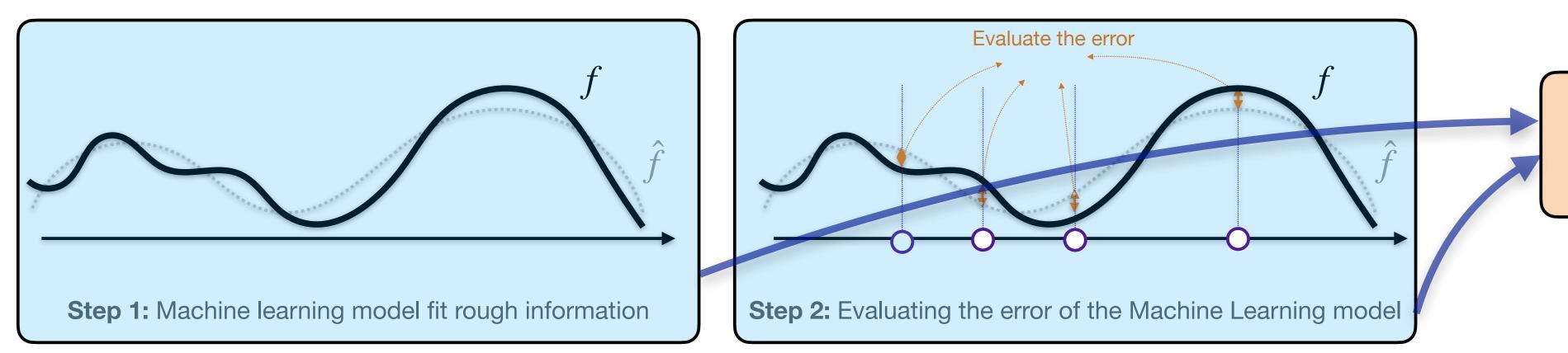
What is the most efficient route from Times Square to Chelsea Market that minimizes walking?

Option 1: Subway

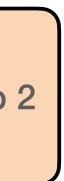
- **1. Walk to a Nearby Subway Entrance:** Head to the Times Sq-42nd Street station.
- **2. Board the E Train:** Catch an E train heading downtown (toward World Trade Center).
- **3. Ride to 8th Avenue–14th Street Station:** Get off at this station (roughly 4 stops).
- **4. Walk to Chelsea Market:** Exit the station and walk east on 14th Street for a few blocks until you reach Chelsea Market at 75 9th Avenue.



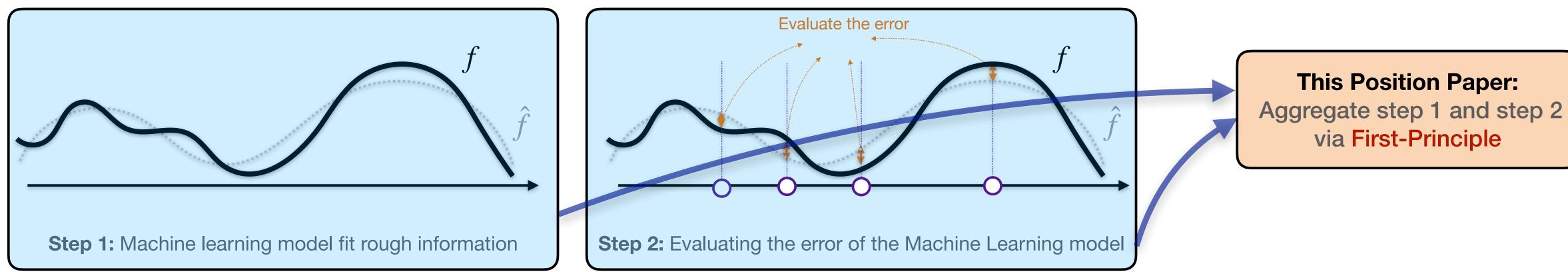
Physics-Informed Inference Time Scaling



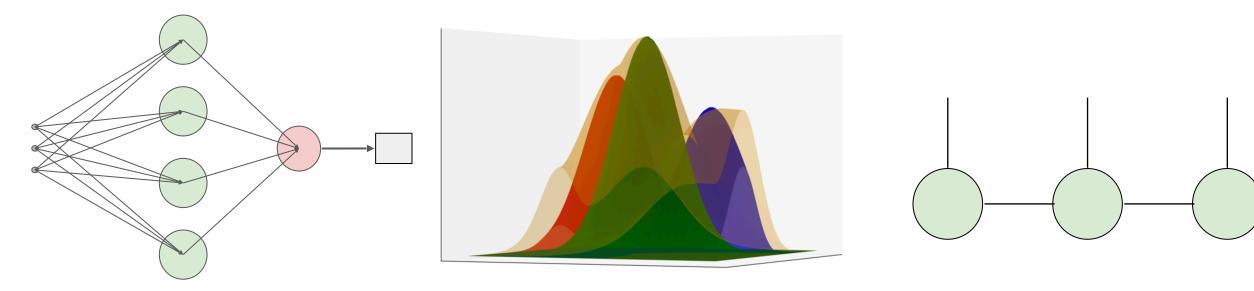
This Position Paper: Aggregate step 1 and step 2 via First-Principle



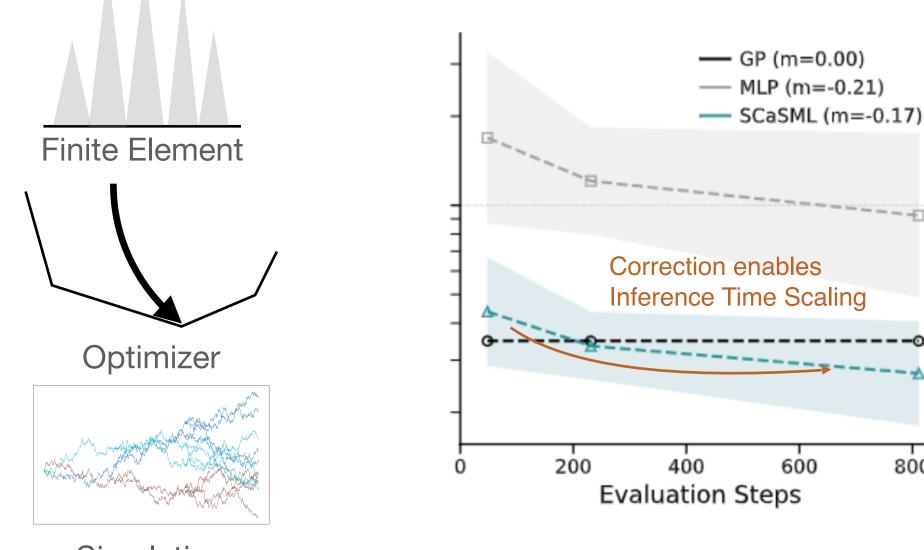
Physics-Informed Inference Time Scaling



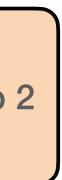
Step 1. Train a Surrogate (ML) Model



Step 2. Correct with a Trustworthy Solver



Simulation



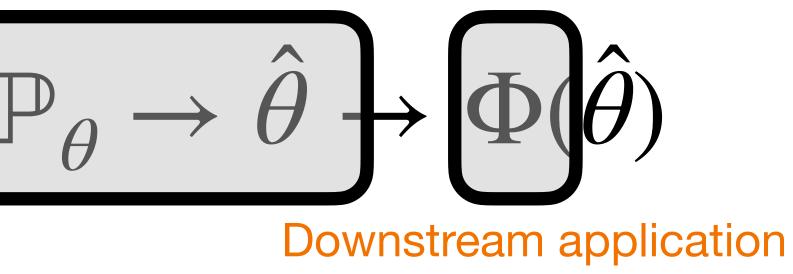
800

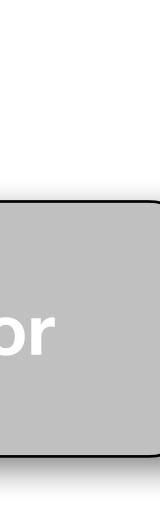
Our Framework

$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

Scientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator





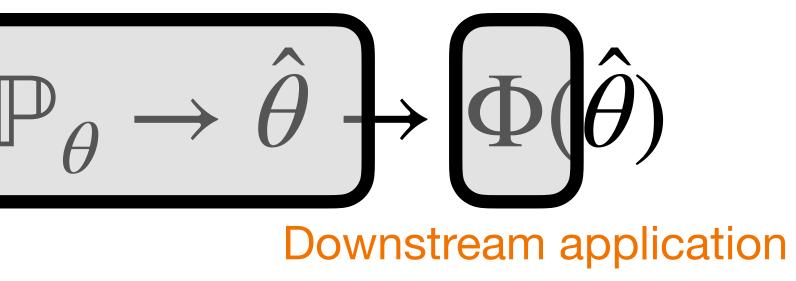
Our Framework

$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

Scientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

AIM: Compute $\Phi(\hat{\theta}) - \Phi(\theta)$ during Inference time



Using (stochastic) simulation to calibrate the (scientific) machine learning output !

Our Framework

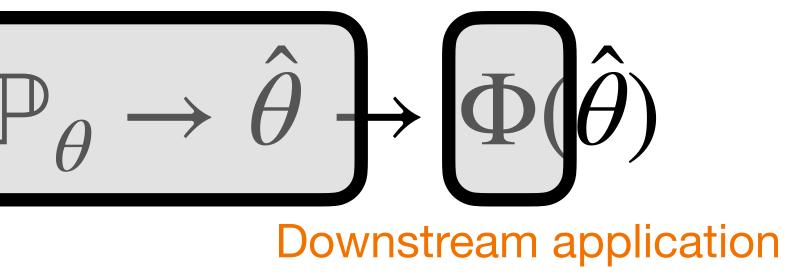
$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

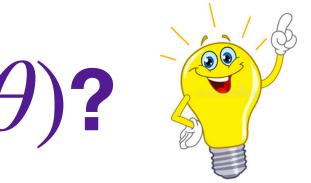
Scientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

How to estimate $\Phi(\hat{\theta}) - \Phi(\theta)$?

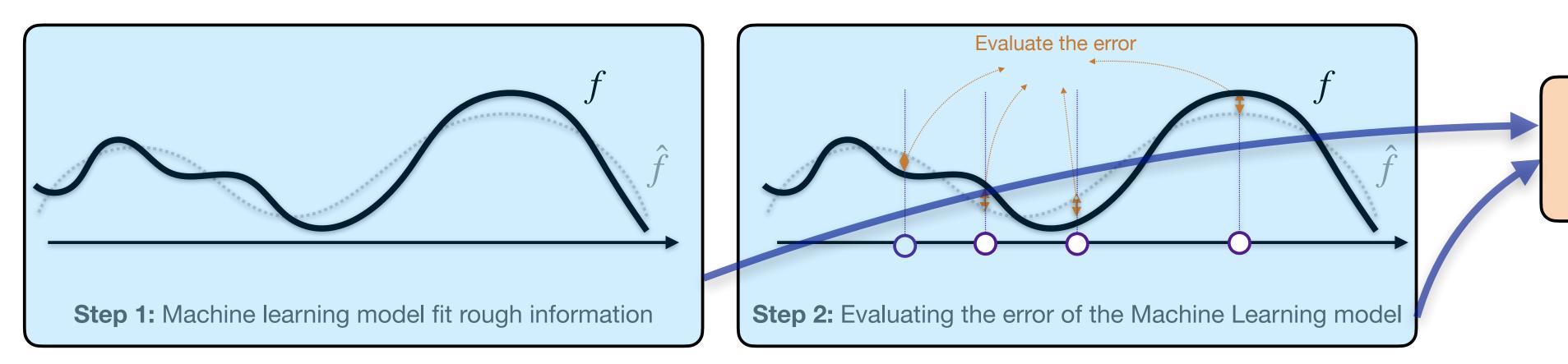
Why it is easier than directly estimate $\Phi(\theta)$?





Physics-Informed! (Structure of Φ)

Variance Reduction



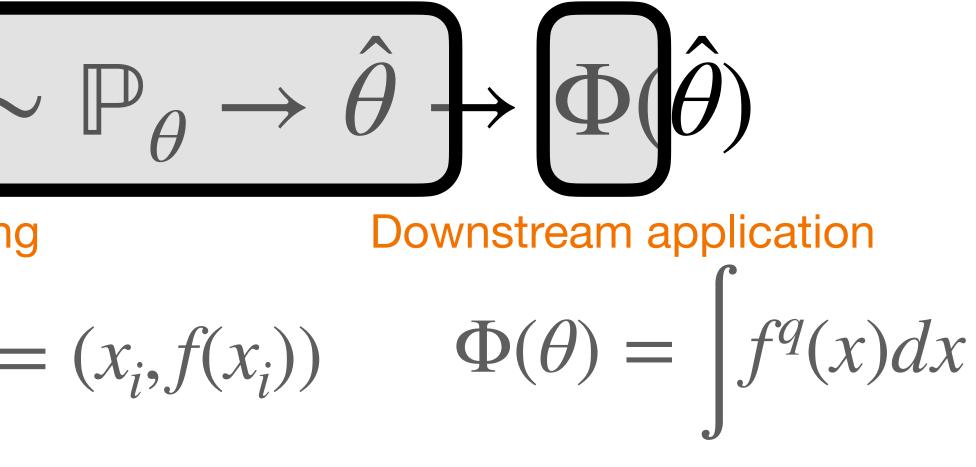
$$\{X_1, \cdots, X_n\} \sim$$

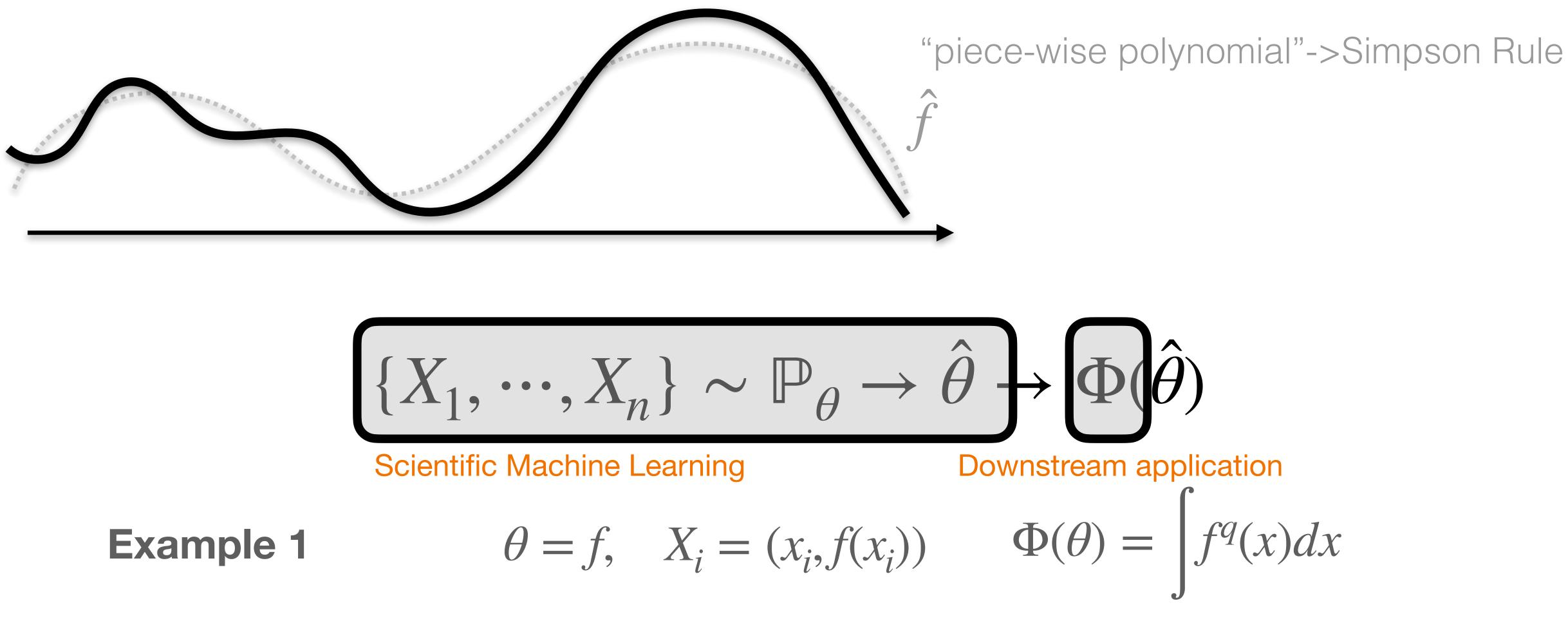
Scientific Machine Learning

Example 1

$$\theta = f, \quad X_i =$$

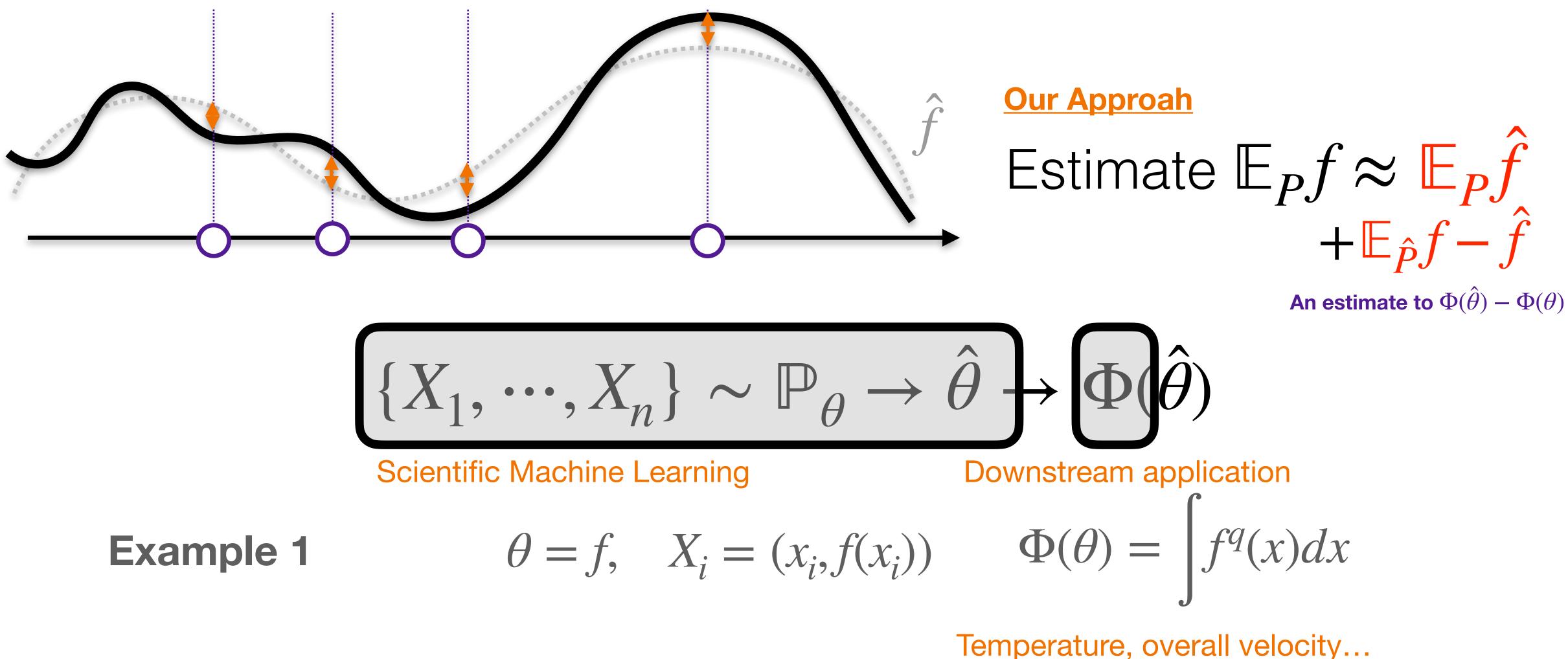
This Position Paper: Aggregate step 1 and step 2 via First-Principle



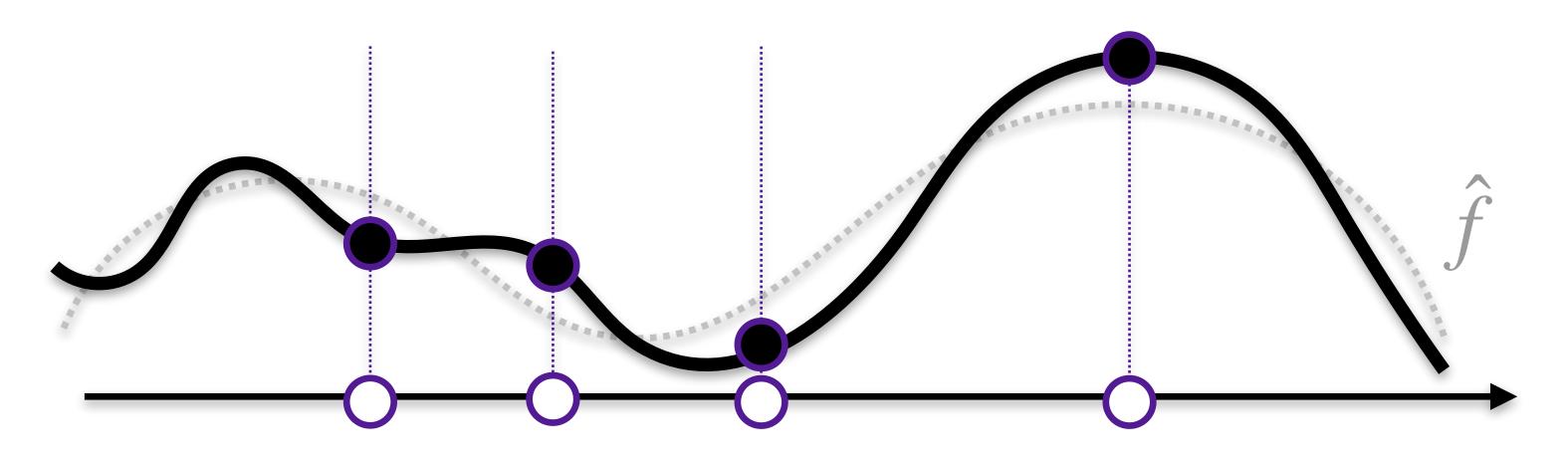


$$\{X_1, \cdots, X_n\}$$

$$\theta = f, \quad X_i =$$



$$\{X_1, \cdots, X_n\}$$



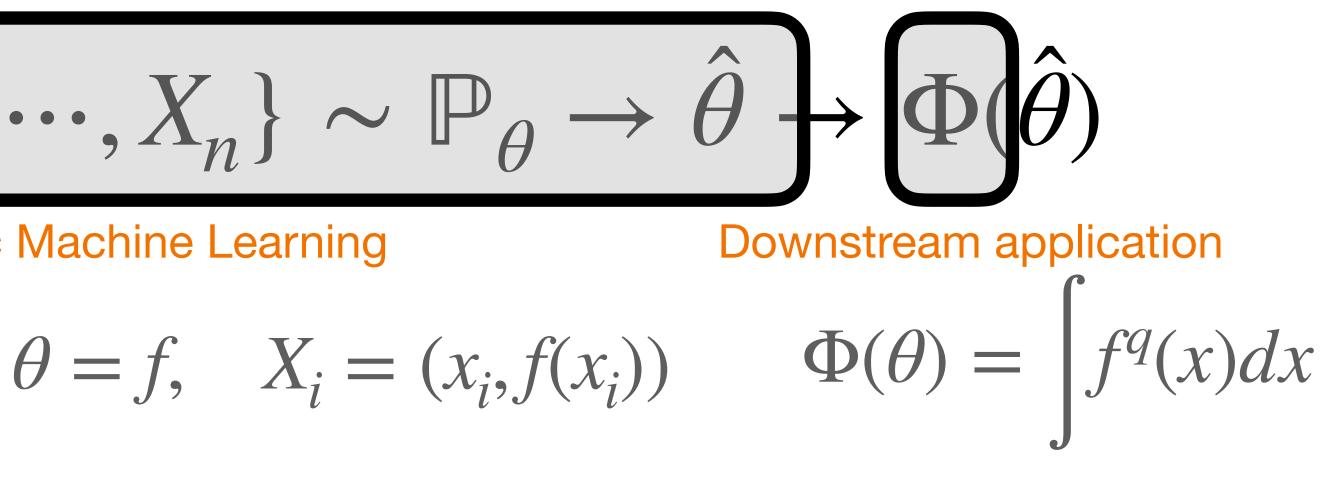
$$\{X_1, \cdots, X_n\}$$

Scientific Machine Learning

Example 1

Monte Carlo?

Estimate $\mathbb{E}_P f \approx \mathbb{E}_{\hat{p}} f$



Regression-adjusted Control Variates

- Investigated the optimality of the SCaSML Framework
 - Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality Neurips 2023
- Extend to nonlinear functional estimation using iterative methods

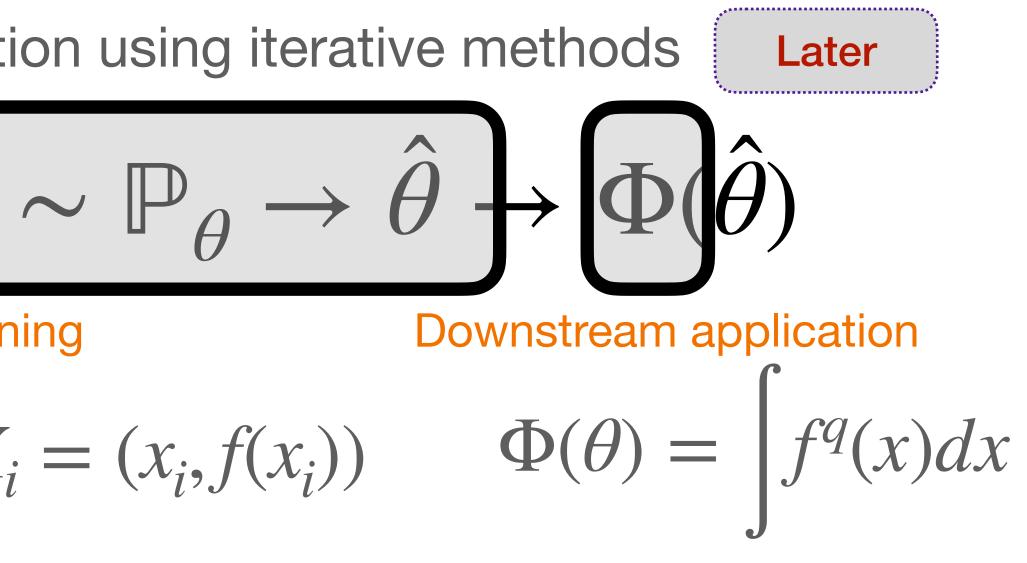
$$\{X_1, \cdots, X_n\} \sim$$

Scientific Machine Learning

Example 1

$$\theta = f, \quad X_i =$$

Doubly Robust Estimator



Regression-adjusted Control Variates

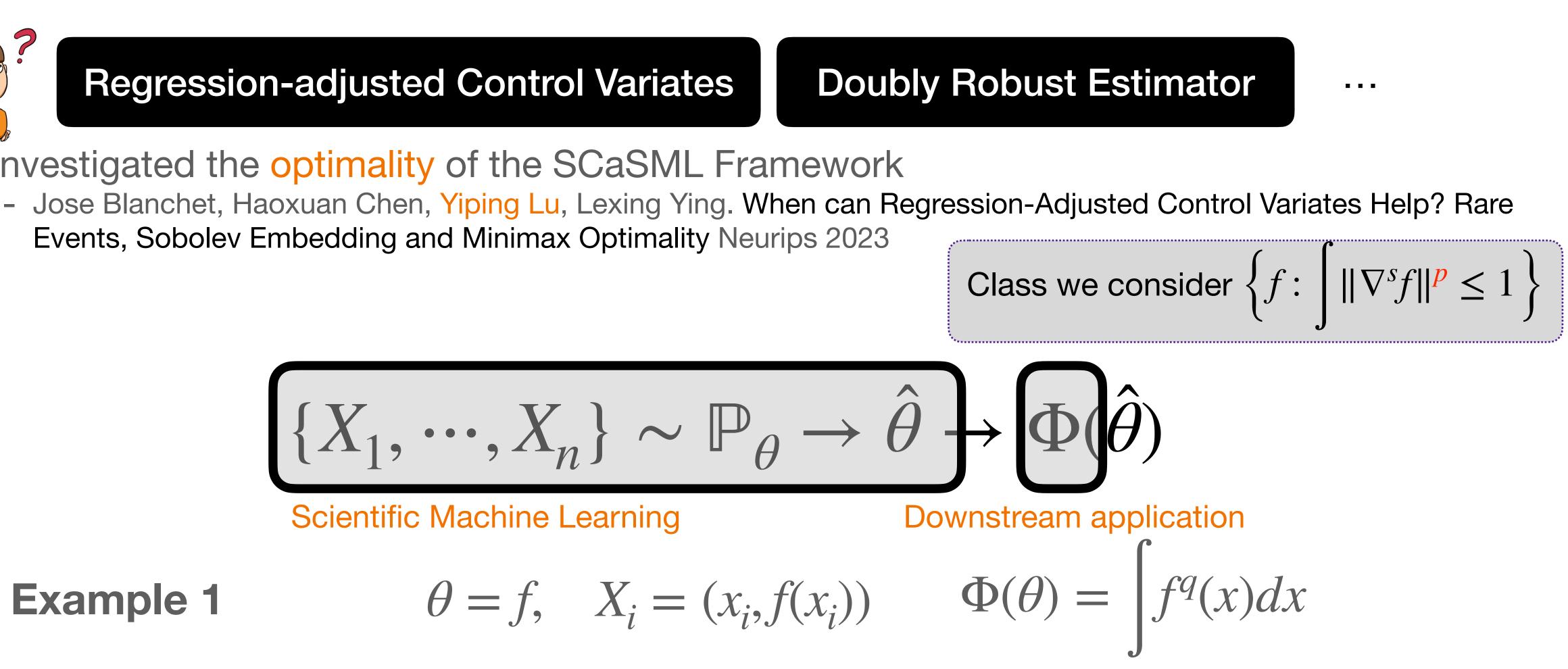
- Investigated the optimality of the SCaSML Framework
 - Events, Sobolev Embedding and Minimax Optimality Neurips 2023

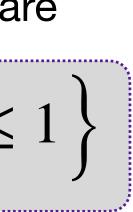
$$\{X_1, \cdots, X_n\}$$

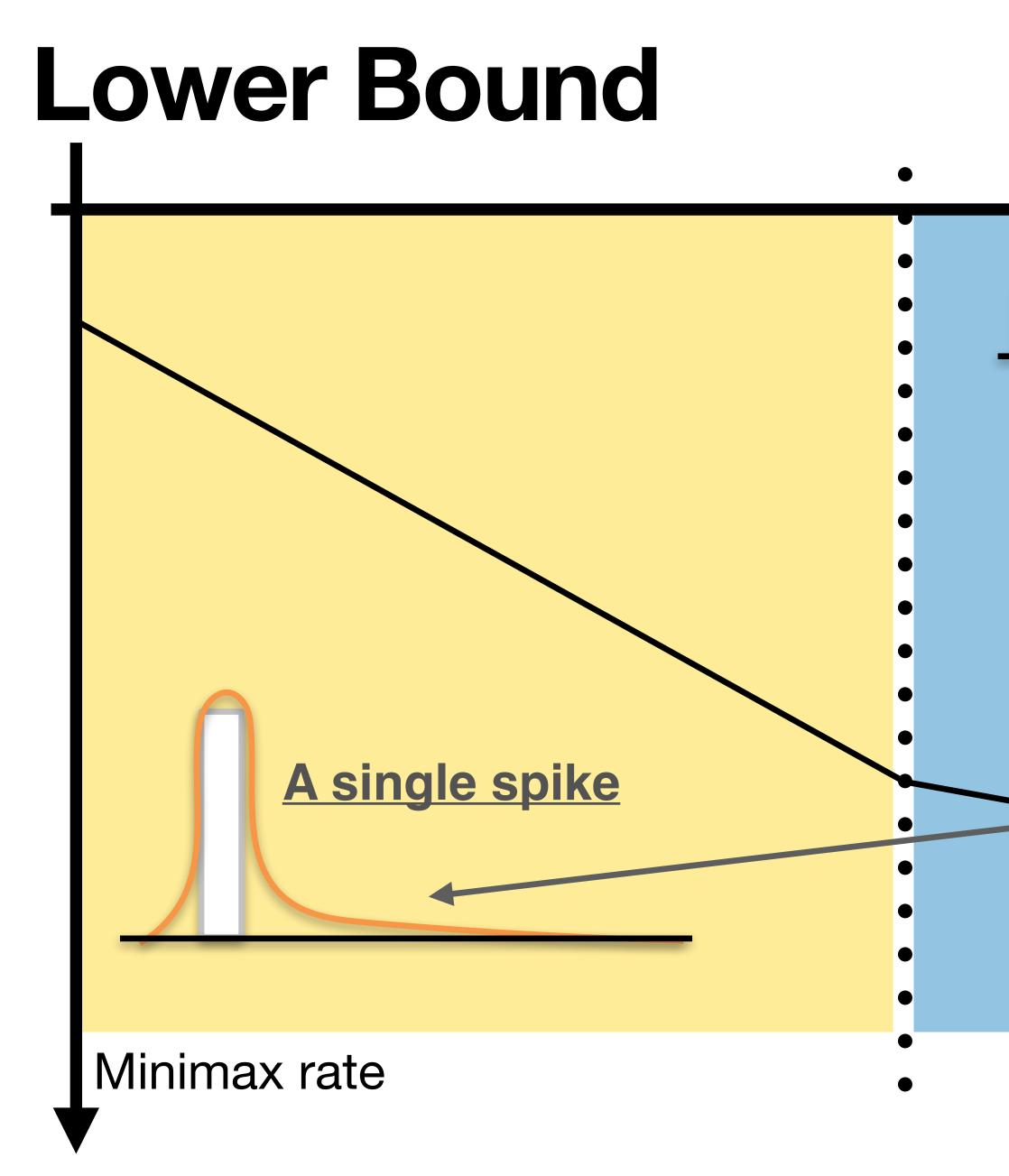
Scientific Machine Learning

Example 1

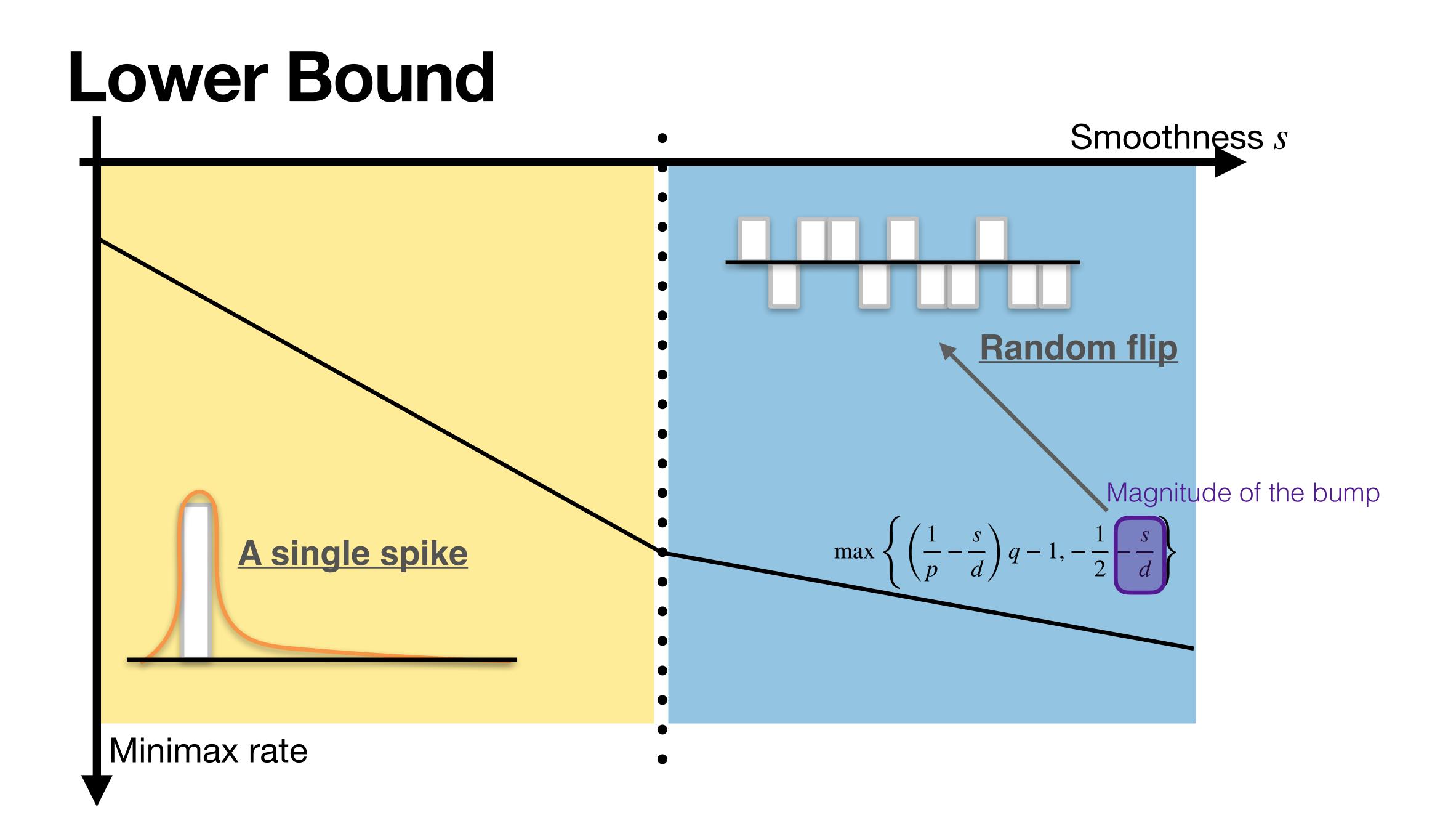
$$\theta = f, \quad X_i =$$

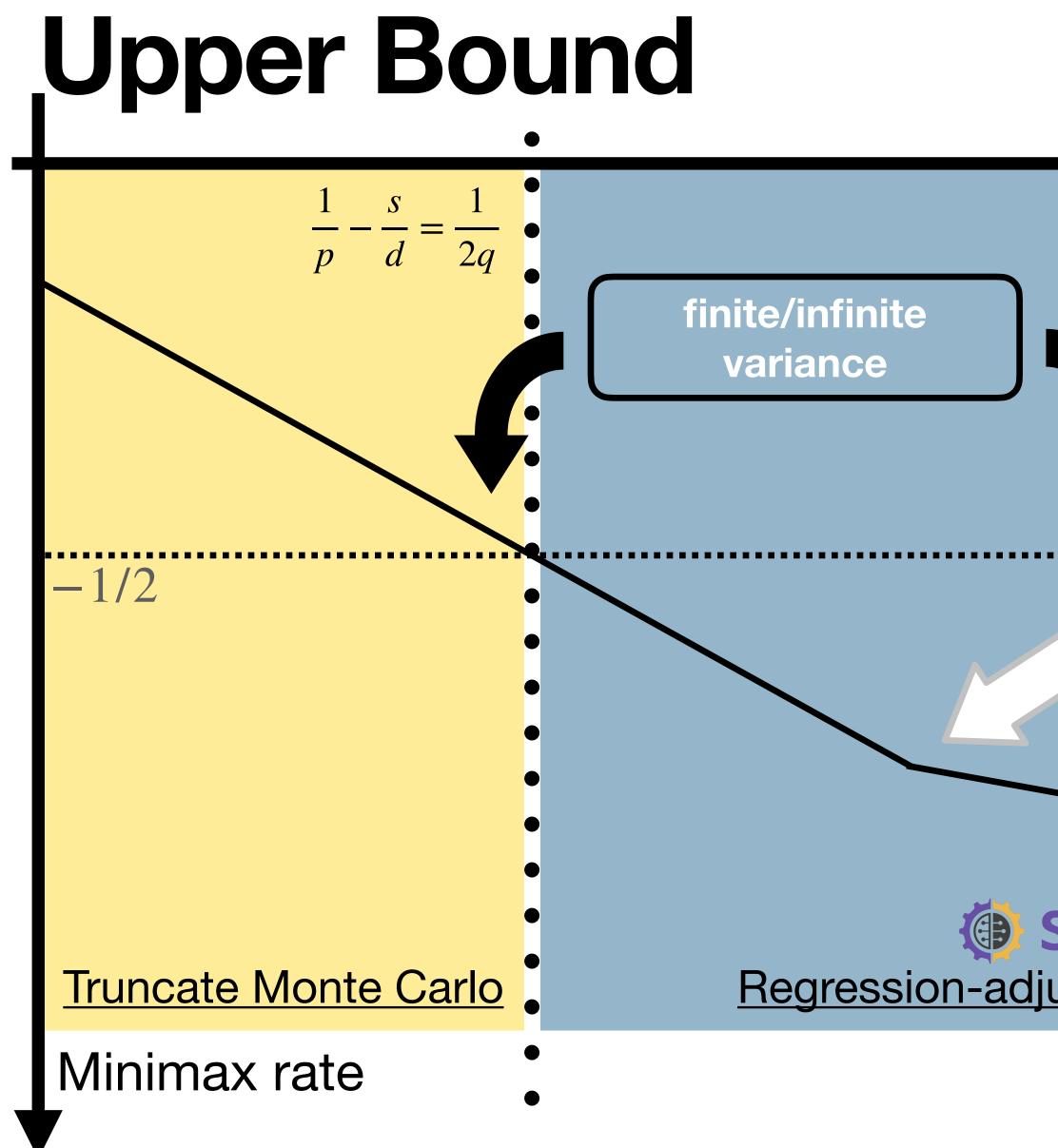






Smoothness s Random flip Magnitude of the spike $q-1, -\frac{1}{2}-\frac{s}{d}$ max ·





Smoothness s

A different Transition Point

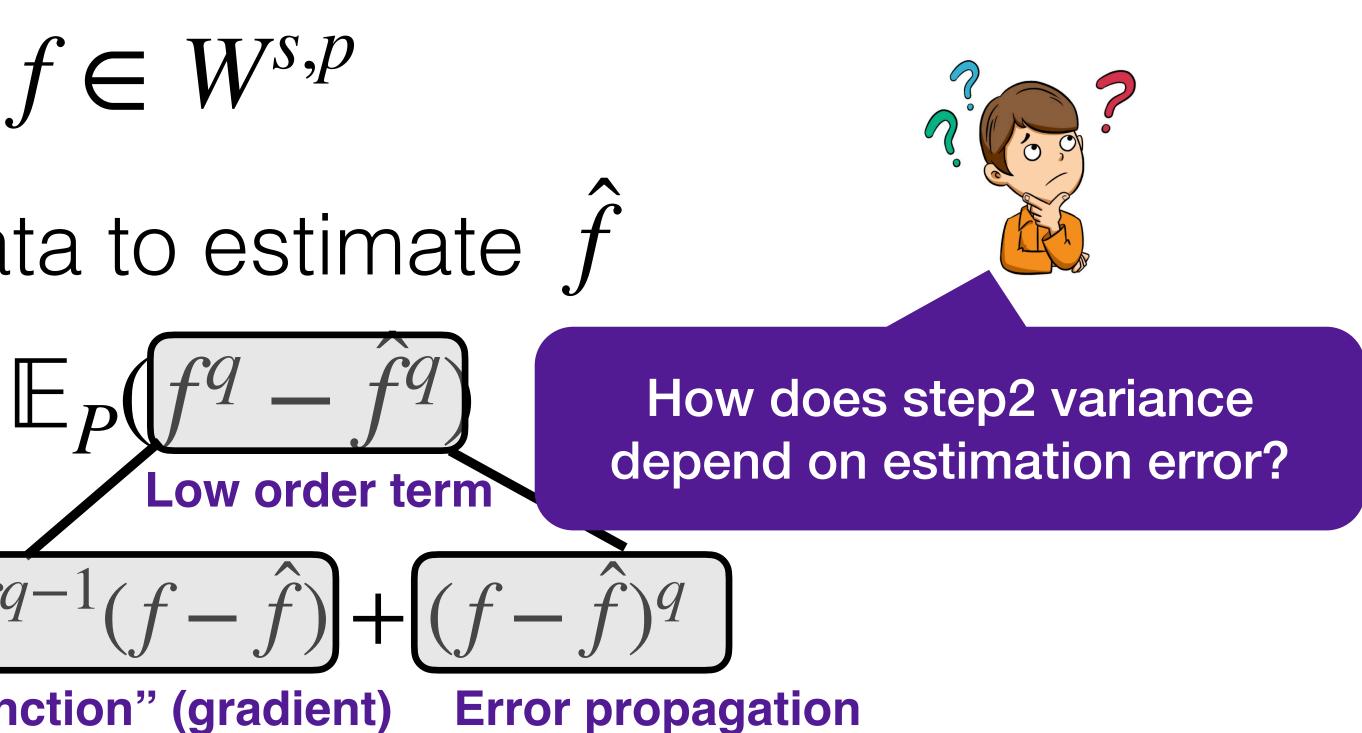
$$\max\left\{\left(\frac{1}{p} - \frac{s}{d}\right)q - 1, -\frac{1}{2} - \frac{s}{d}\right\}$$

SCaSML Regression-adjusted Control Variate

Why?

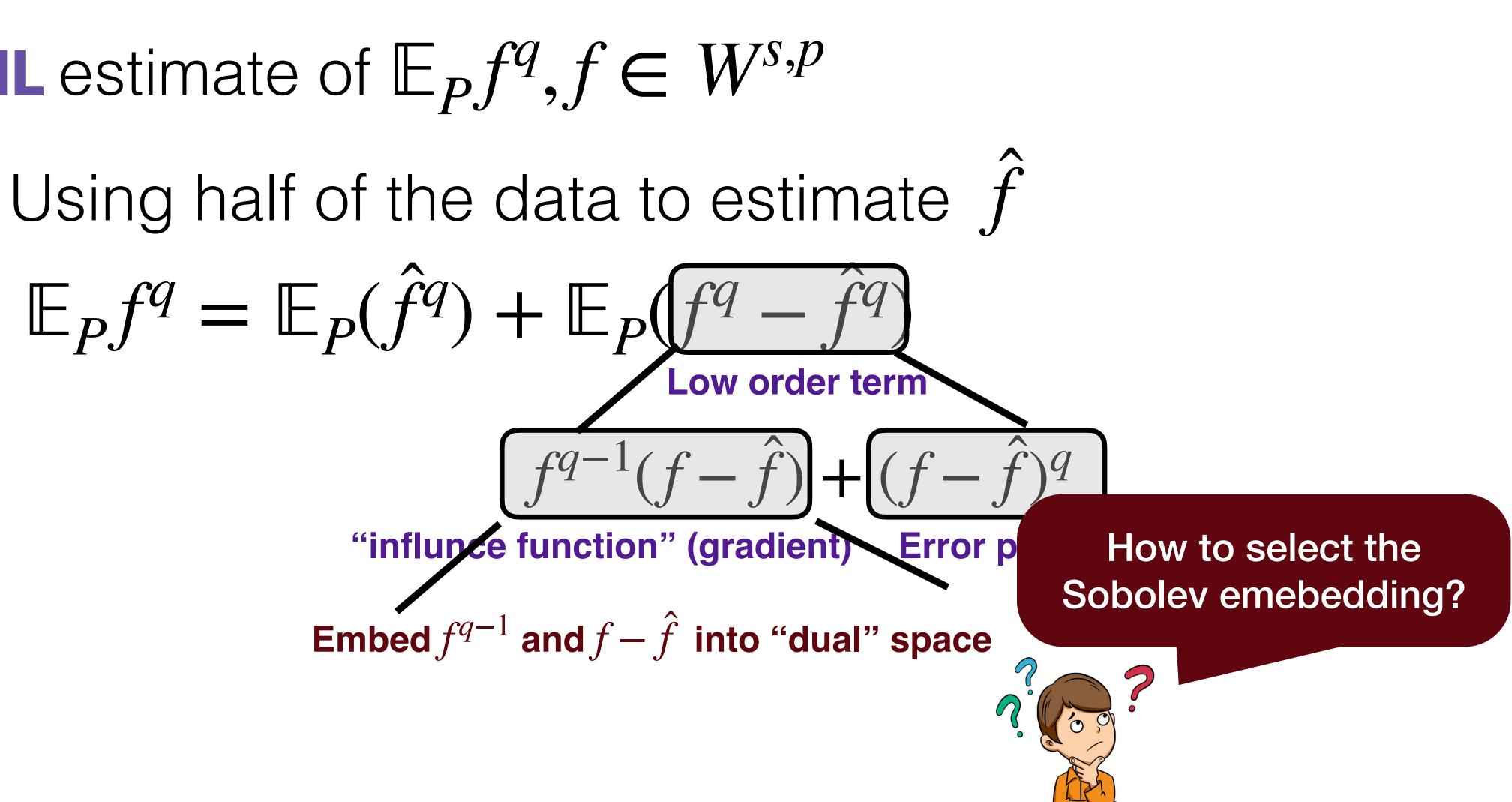
SCaSML estimate of $\mathbb{E}_{P} f^{q}, f \in W^{s,p}$ Using half of the data to estimate \hat{f} Step 1 **Step 2** $\mathbb{E}_P f^q = \mathbb{E}_P(\hat{f}^q) + \mathbb{E}_P(f^q)$

"influnce function" (gradient)



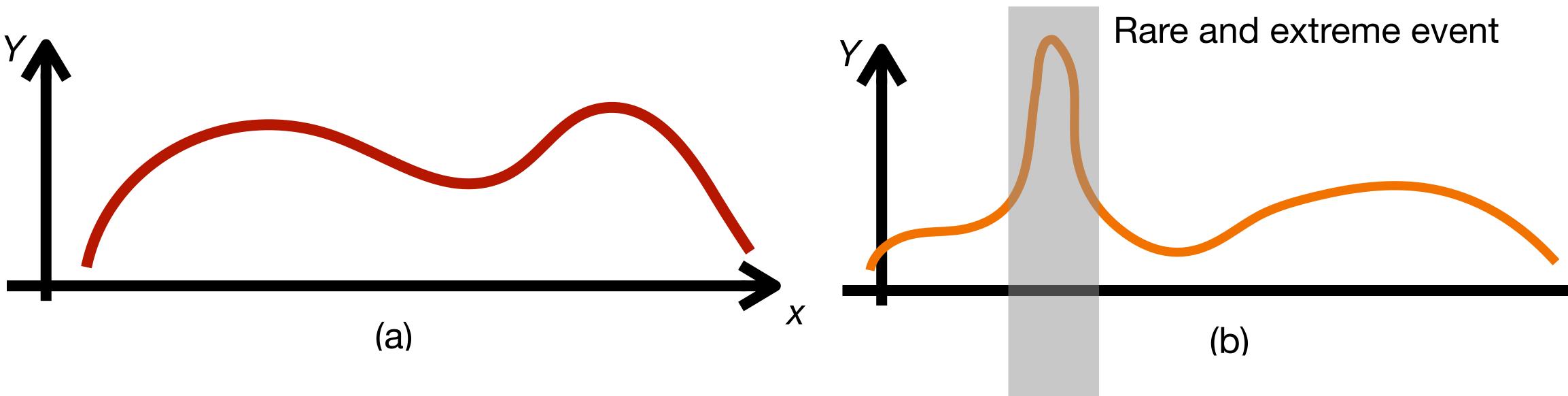
Why?

SCaSML estimate of $\mathbb{E}_{P} f^{q}, f \in W^{s,p}$ Step 1 **Step 2** $\mathbb{E}_P f^q = \mathbb{E}_P(\hat{f}^q) + \mathbb{E}_P(f^q)$



Take Home Message

Rare and extreme event



a) Statistical optimal regression is the optimal control variate b) It helps only if there isn't a hard to simulate (infinite variance)

<u>q control the extremeness</u>

SCaSML

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_{\theta} \to \hat{\theta} \to \Phi \hat{\theta}$$
Scientific Machine Learning Downstream application
$$\theta = f, \quad X_i = (x_i, f(x_i)) \qquad \Phi(\theta) = \int f^q(x) dx$$

$$\theta = A, \quad X_i = (x_i, Ax_i) \qquad \Phi(\theta) = \operatorname{tr}(A)$$
Estimation \hat{A} via Randomized SVD Estimate $\operatorname{tr}(A - \hat{A})$ via Hutchinson's estimate Mathematik and Mewyer-Musco-Musco-Woodruff 20

Example 1

Example 2 Huch++

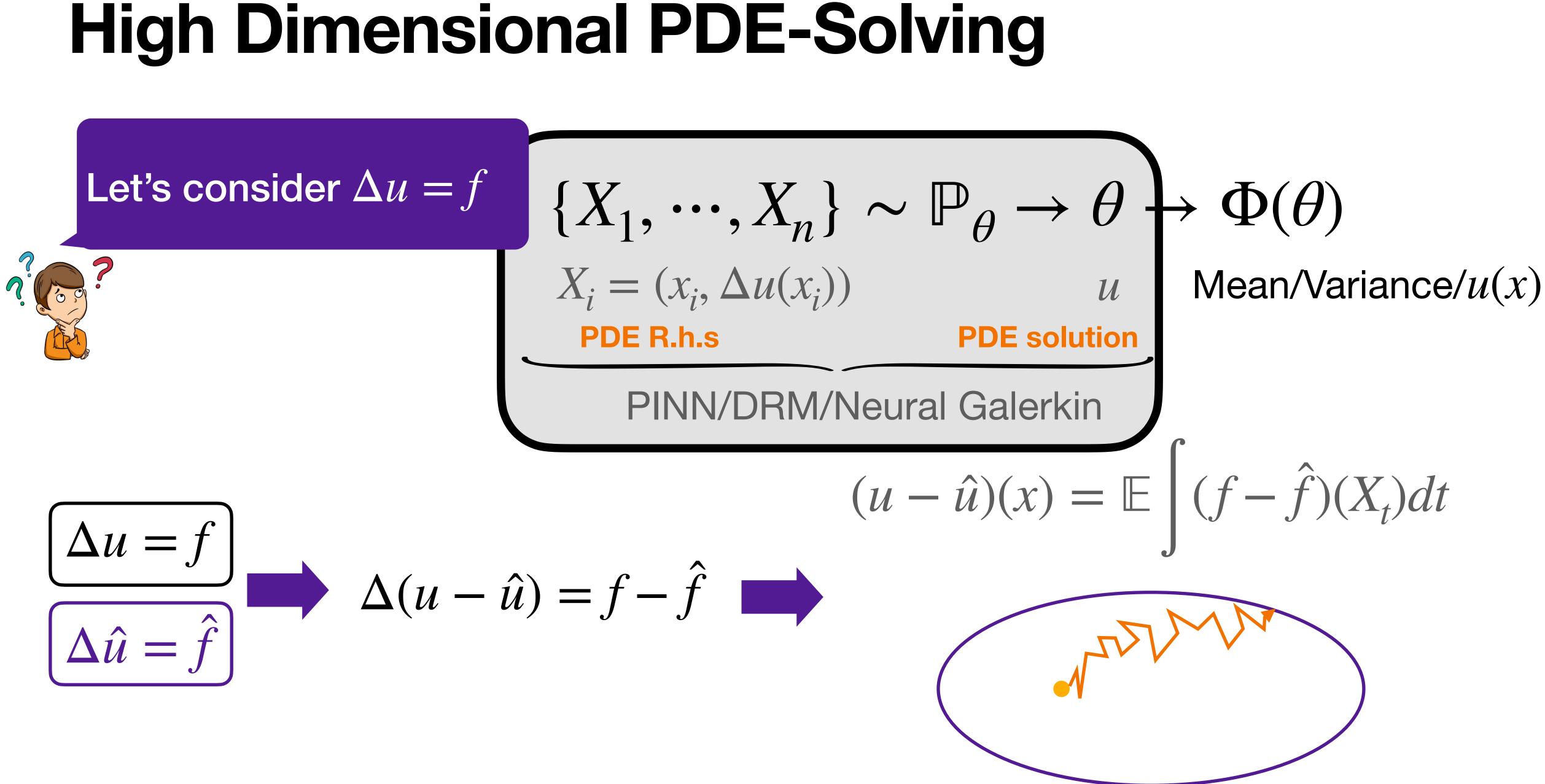
Lin 17 Numeris J

timator

This Talk: Debiasing A new way for hybrid scientific computing and machine learning

- Eigenvalue decomposition
 - Debiasing
- PDE-Solver
 - Inference time scaling for ML-based PDE solver

Preconditioned (randomized) computation of Eigenvalue Problem via



Works for Semi-linear PDE

 ∂U $\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation

Can you do simulation for nonlinear equation?

2

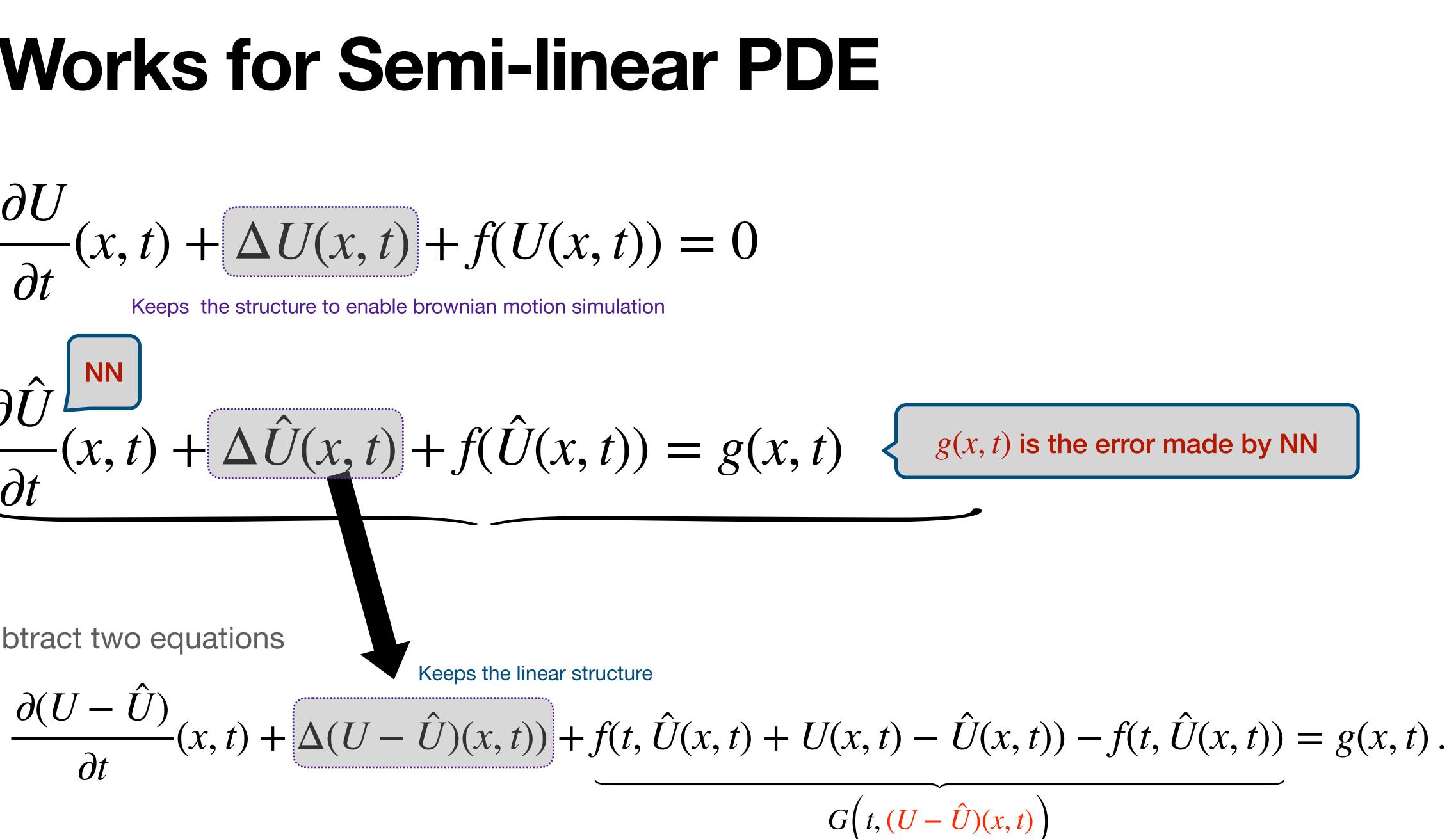
Δ is linear!

Works for Semi-linear PDE

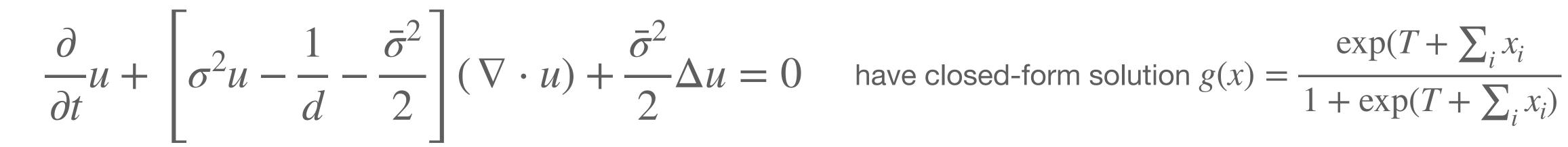
 $\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation NN $\frac{\partial U}{\partial t}(x,t) + \Delta \hat{U}(x,t) + f(\hat{U}(x,t)) = g(x,t) \quad \left\{ \begin{array}{c} g(x,t) \text{ is the error made by NN} \\ g(x,t) = g(x,t) \end{array} \right\}$

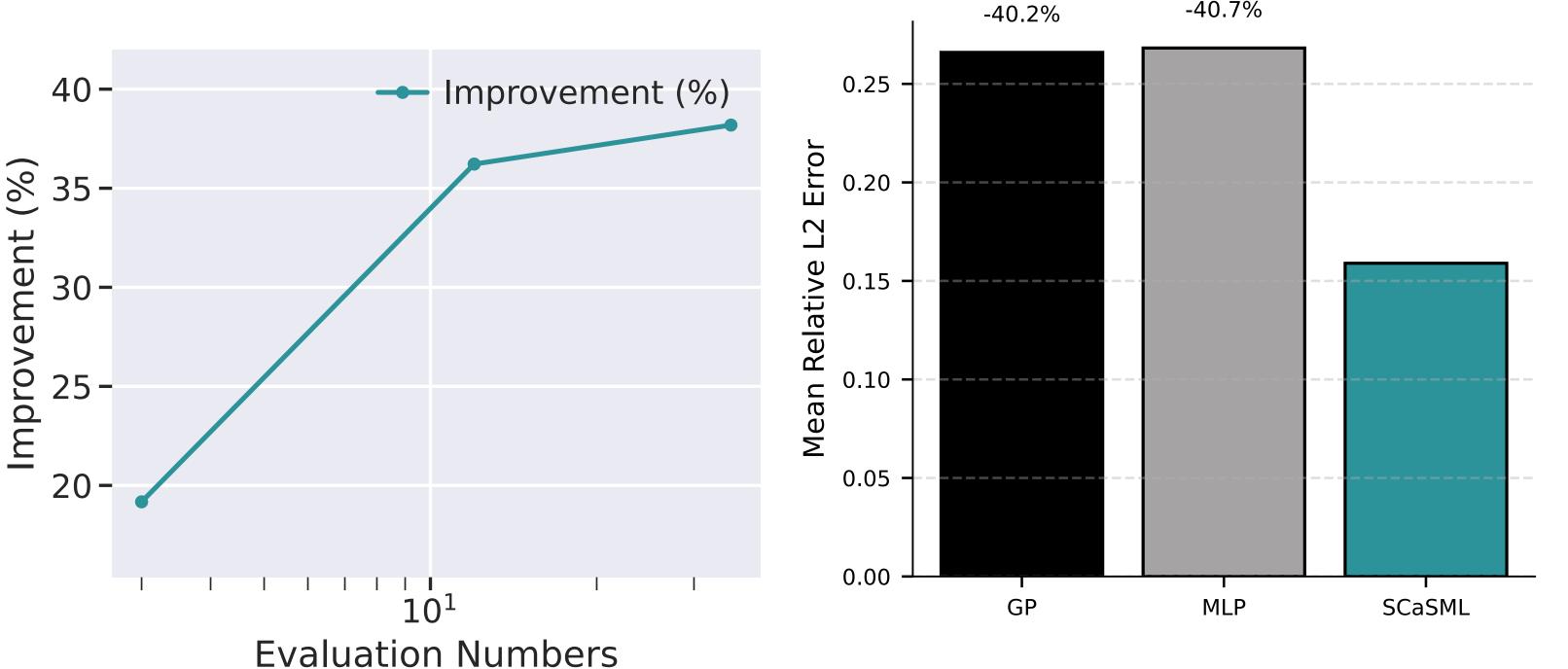
Works for Semi-linear PDE

 ∂U $\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation NN Subtract two equations Keeps the linear structure

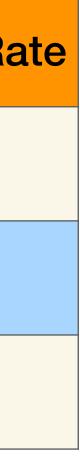


Inference-Time Scaling

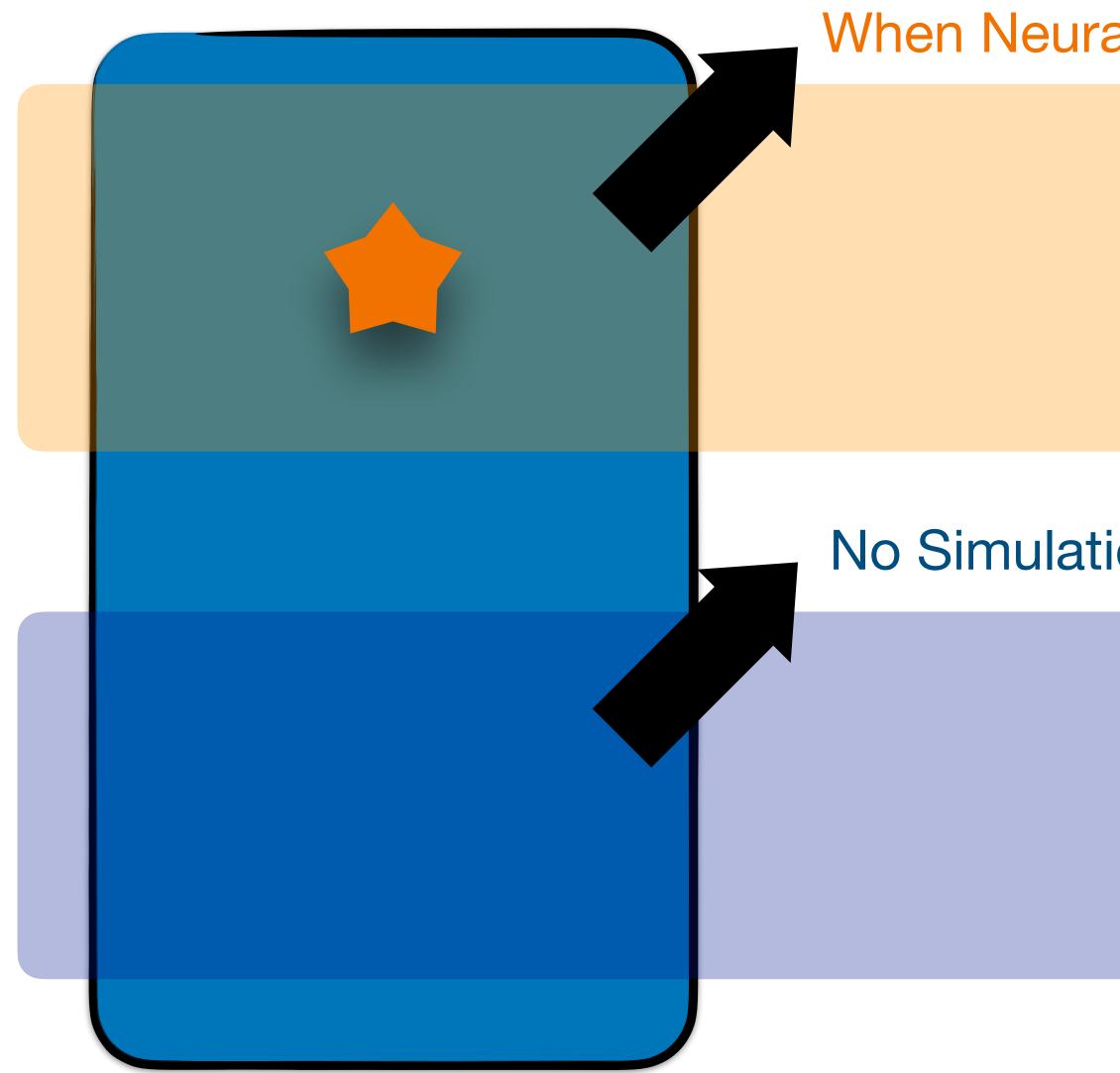




Method	Convergence Ra
PINN	$O(n^{-s/d})$
MLP	$O(n^{-1/4})$
ScaSML	$O(n^{-1/4-s/d})$



Our Aim Today : A Marriage



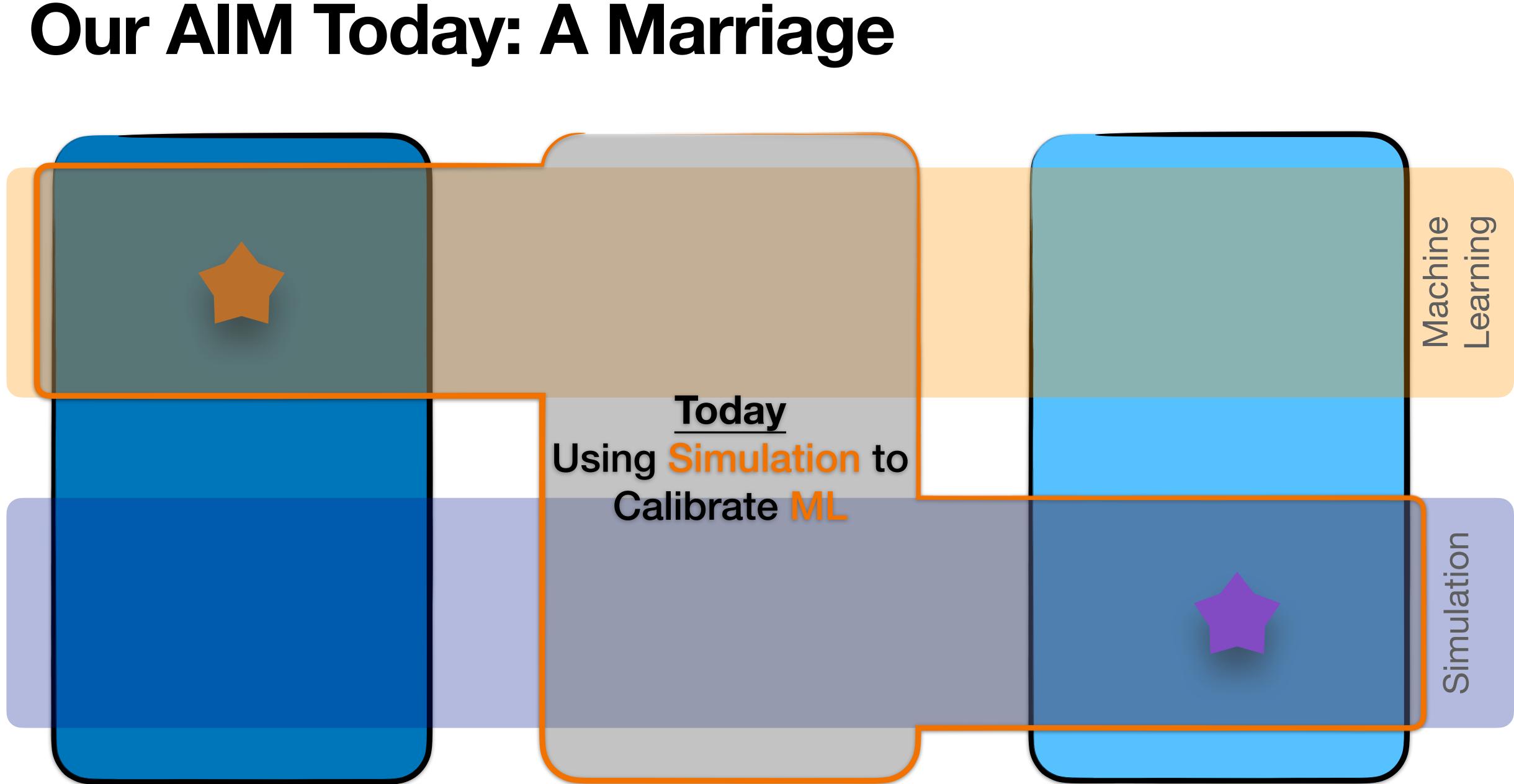
When Neural Network is good

No Simulation cost is needed

Our Aim Today : A Marriage

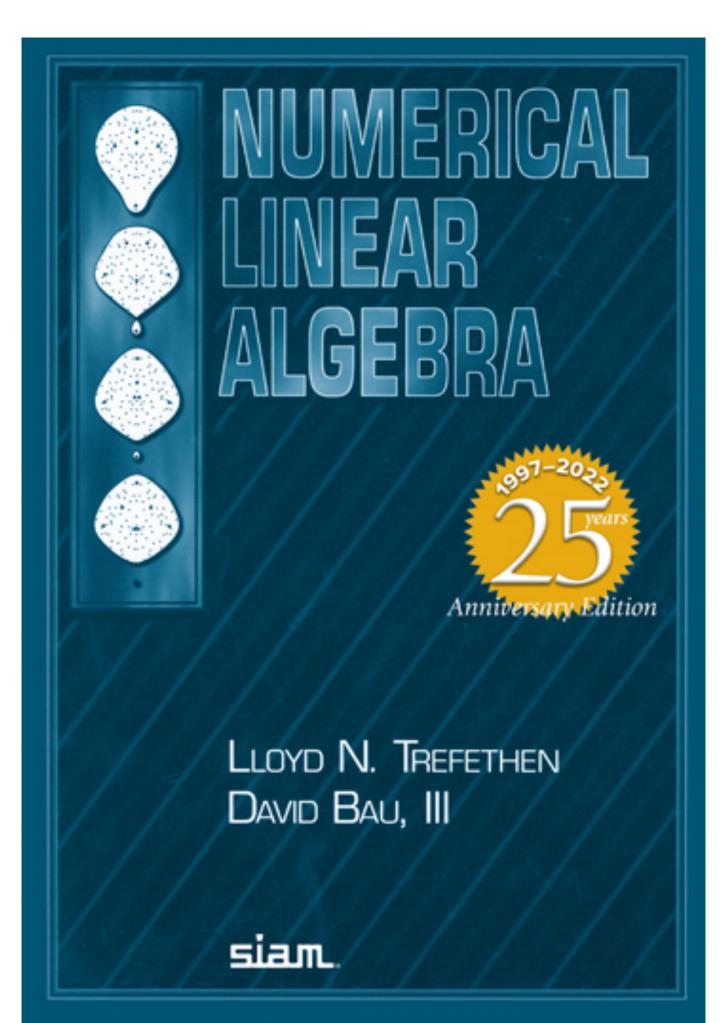
Provide pure Simulation solution

When Neural Network is bad



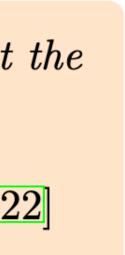
Tale 2: Pre-condition with a surprising connection with debiasing

Tale 2: Preconditioning



"In ending this book with the subject of preconditioners, we find ourselves at the philosophical center of the scientific computing of the future." - L. N. Trefethen and D. Bau III, Numerical Linear Algebra [TB22]

Nothing will be more central to computational science in the next century than the art of transforming a problem that appears intractable into another whose solution can be approximated rapidly.



What is precondition

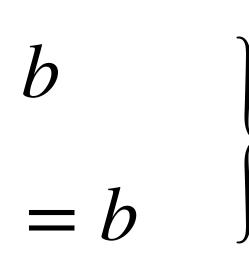
• Solving Ax = b is equivalent to solving BAx = Bb

hardness depend on $\kappa(A)$

Become easier when $B \approx A^{-1}$

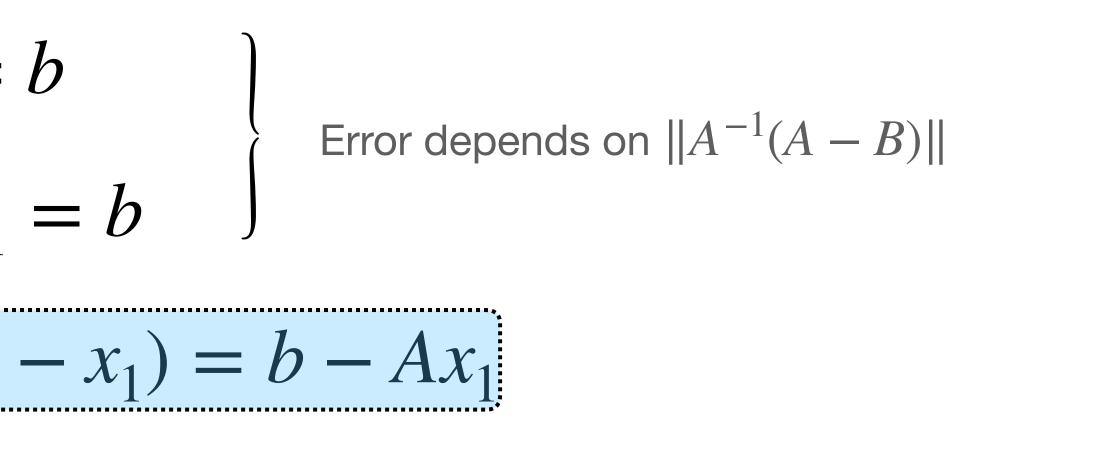
A New Way to Implement Precondition

- Debiasing is a way of solving Ax = b
 - Using an approximate solver $Bx_1 = b$



Error depends on $||A^{-1}(A - B)||$

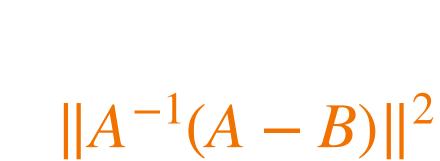
- Debiasing is a way of solving Ax = b
 - Using an approximate solver $Bx_1 = b$
 - $x x_1$ satisfies the equation $A(x x_1) = b Ax_1$

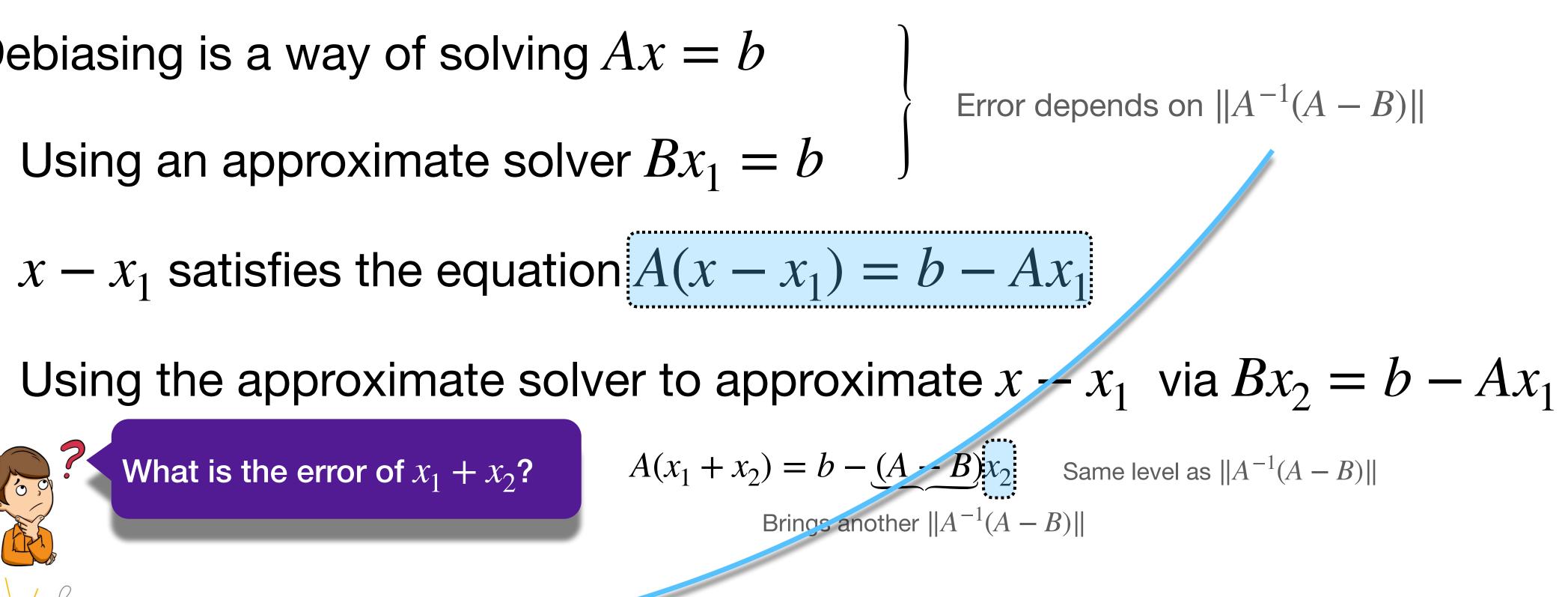


• Using the approximate solver to approximate $x - x_1$ via $Bx_2 = b - Ax_1$

- Debiasing is a way of solving Ax = b
 - Using an approximate solver $Bx_1 = b$
 - $x x_1$ satisfies the equation $A(x x_1) = b Ax_1$

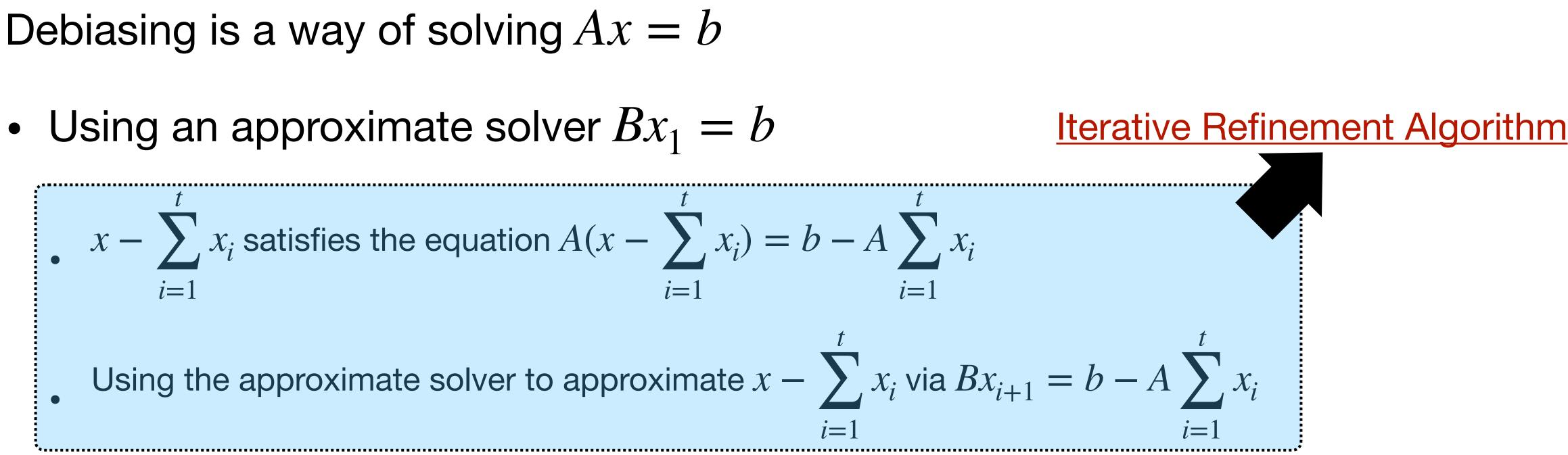
What is the error of $x_1 + x_2$?





<u>Hardness depends on how $A^{-1}b$ near identity!</u>

- Debiasing is a way of solving Ax = b

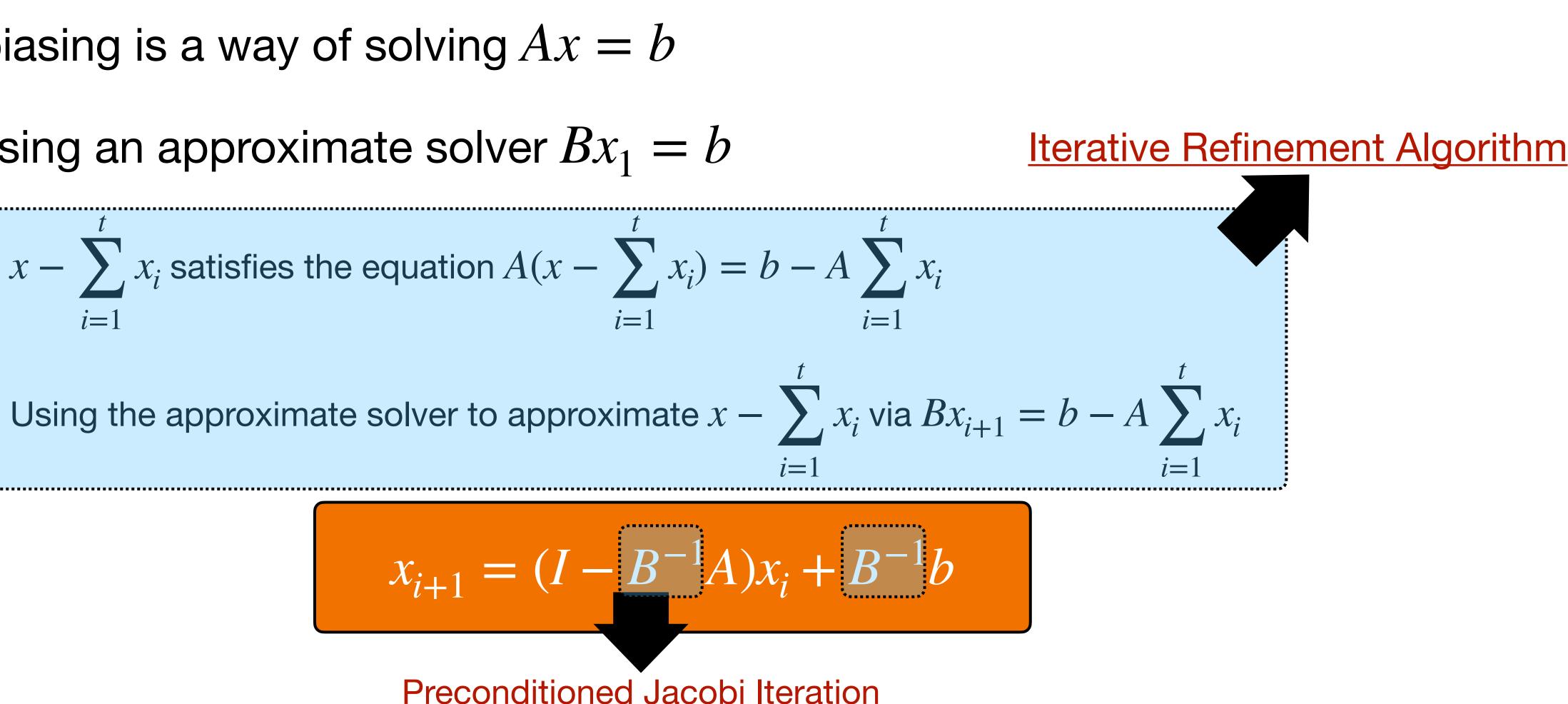


- Debiasing is a way of solving Ax = b
 - Using an approximate solver $Bx_1 = b$

• $x - \sum x_i$ satisfies the equation $A(x - \sum x_i) = b - A \sum x_i$

$$x_{i+1} = (I - I)$$

Preconditioned Jacobi Iteration



This Talk: A New Way to Implement Precondition **Via Debiasing**

- Step 1: Aim to solve (potentially nonlinear) equation A(u) = b
- Step 2: Build an approximate solver $A(\hat{u}) \approx b$
 - Via machine learning/sketching/finite element....
- **Step 3:** Solve $u \hat{u}$

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!

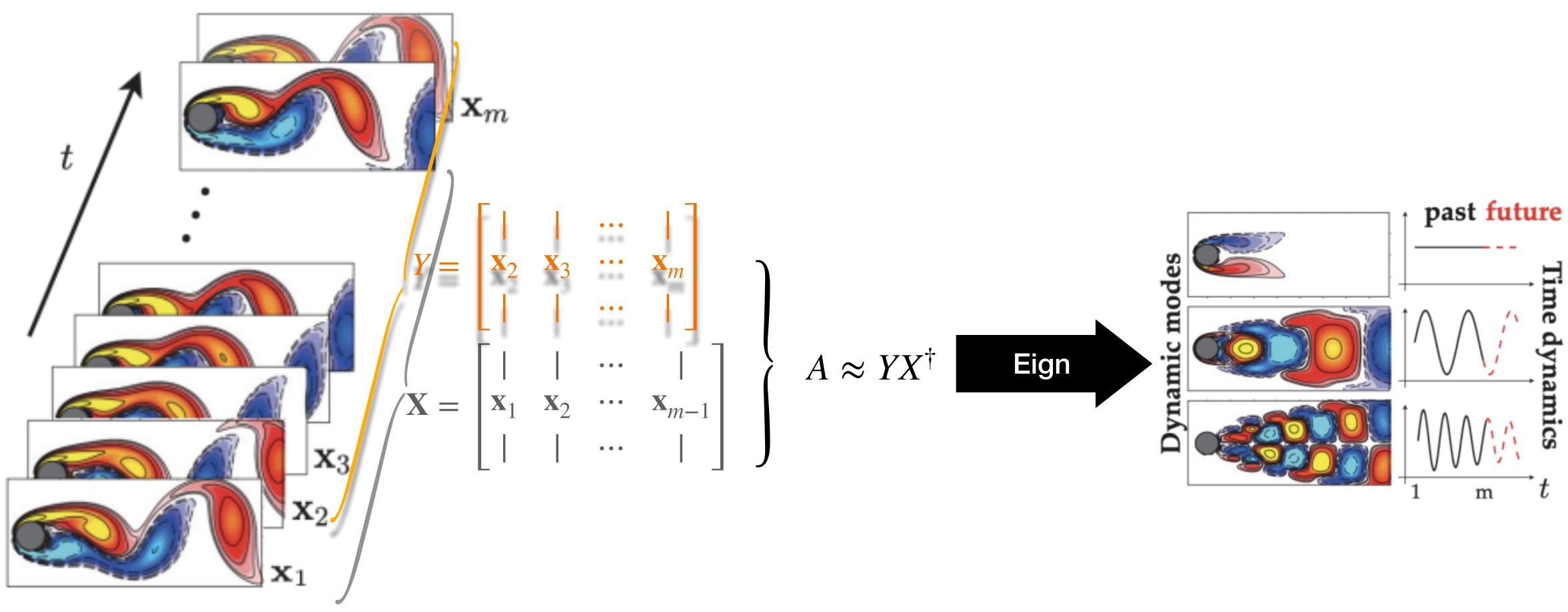
use Machine Learning

Unrealiable approximate solver as preconditioner

Connection with control variate, doubly robust estimator, Multifidelity Monte Carlo

Dynamic Mode Decomposition

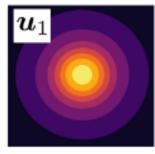
Experimental Dynamic System Data

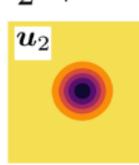


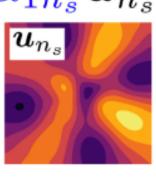
Dynamic Mode Decomposition

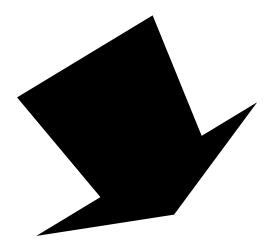
Experimental Dynamic System Data $\alpha_{21}u_1 + \alpha_{22}u_2 + \cdots + \alpha_{2n_s}u_{n_s}$ Project to low-dimensional space $\hat{A} \approx \hat{Y} \hat{X}^{\dagger}$ \mathbf{x}_m t • • • ---• • • ... • • • --- $A \approx Y X^{\dagger}$ Eign • • • $\mathbf{X} =$ $\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots$ \mathbf{X}_{m-1} • • • \mathbf{x}_3

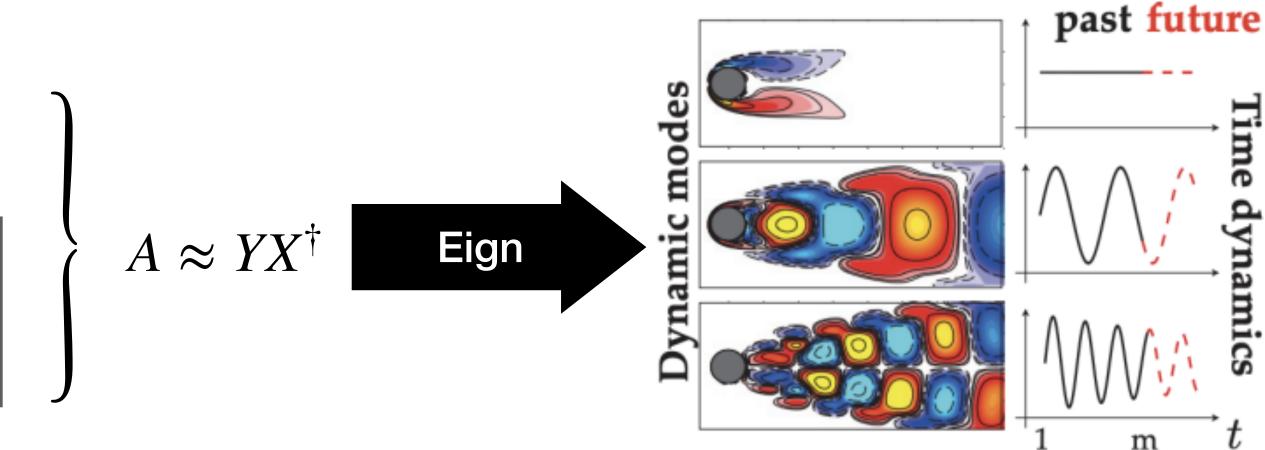
 $\alpha_{11}u_1 + \alpha_{12}u_2 + \cdots + \alpha_{1n_s}u_{n_s}$







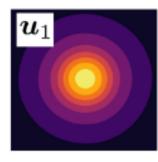


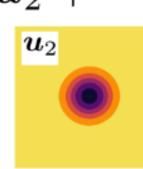


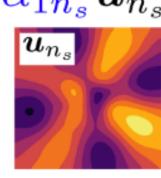
Dynamic Mode Decomposition

Experimental Dynamic System Data \mathbf{x}_m t • • • ---• • • ... • • • ---• • • $\mathbf{X} =$ $\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots$ \mathbf{X}_{m-1} • • • \mathbf{x}_3 \mathbf{x}_2 $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$ \mathbf{x}_1

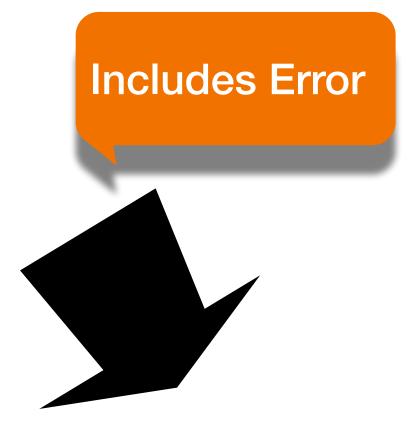
 $\alpha_{11}u_1 + \alpha_{12}u_2 + \cdots + \alpha_{1n_s}u_{n_s}$

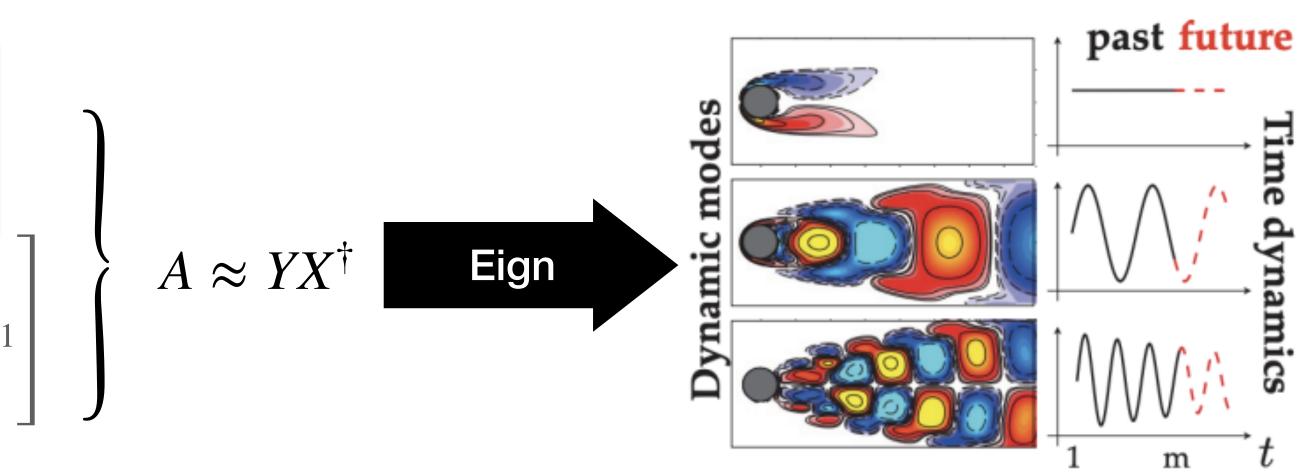


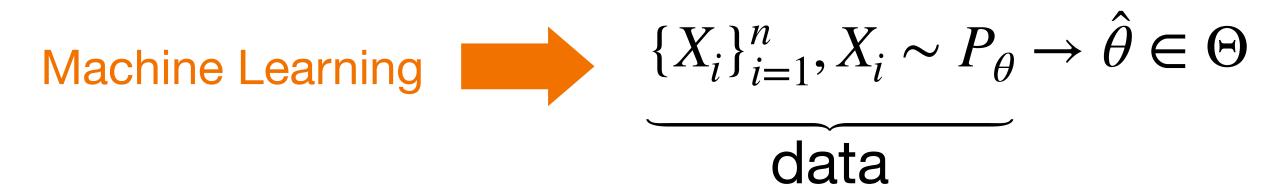


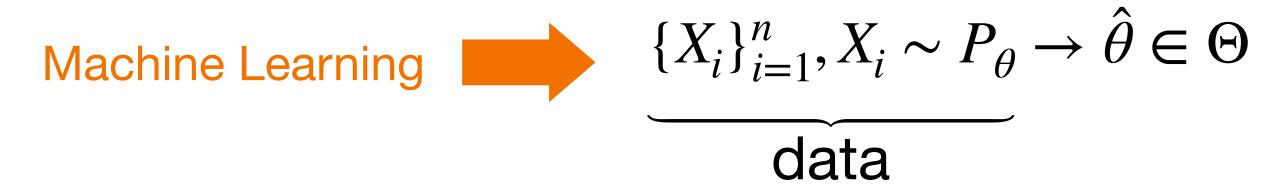


 $\alpha_{21}u_1 + \alpha_{22}u_2 + \cdots + \alpha_{2n_s}u_{n_s}$ Project to low-dimensional space $\hat{A} \approx \hat{Y} \hat{X}^{\dagger}$

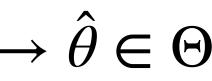


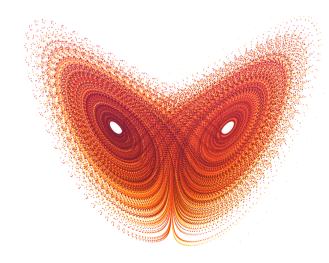




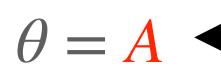


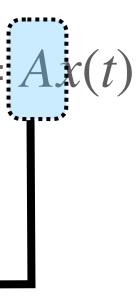
View





dx(t)dt



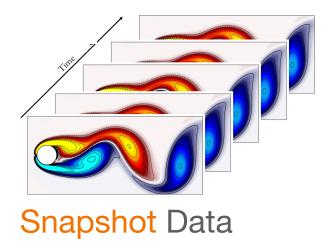


A Data-Driven

Machine Learning

 $\{X_i\}_{i=1}^n, X_i \sim P_\theta \to \hat{\theta} \in \Theta$

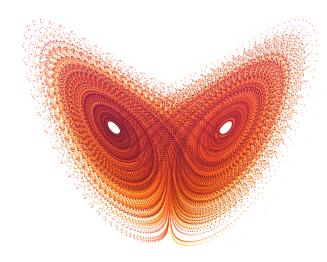
data



 $\{(x_i, Ax_i)\}_{i=1}^n$

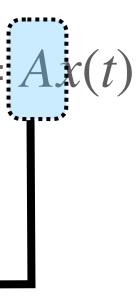
Project to a subspace Dynamic Mode Decomposition/Randomized SVD

View



dx(t)dt

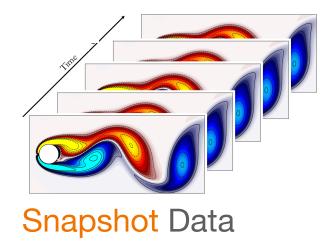
 $\theta = A$



A Data-Driven Debias View

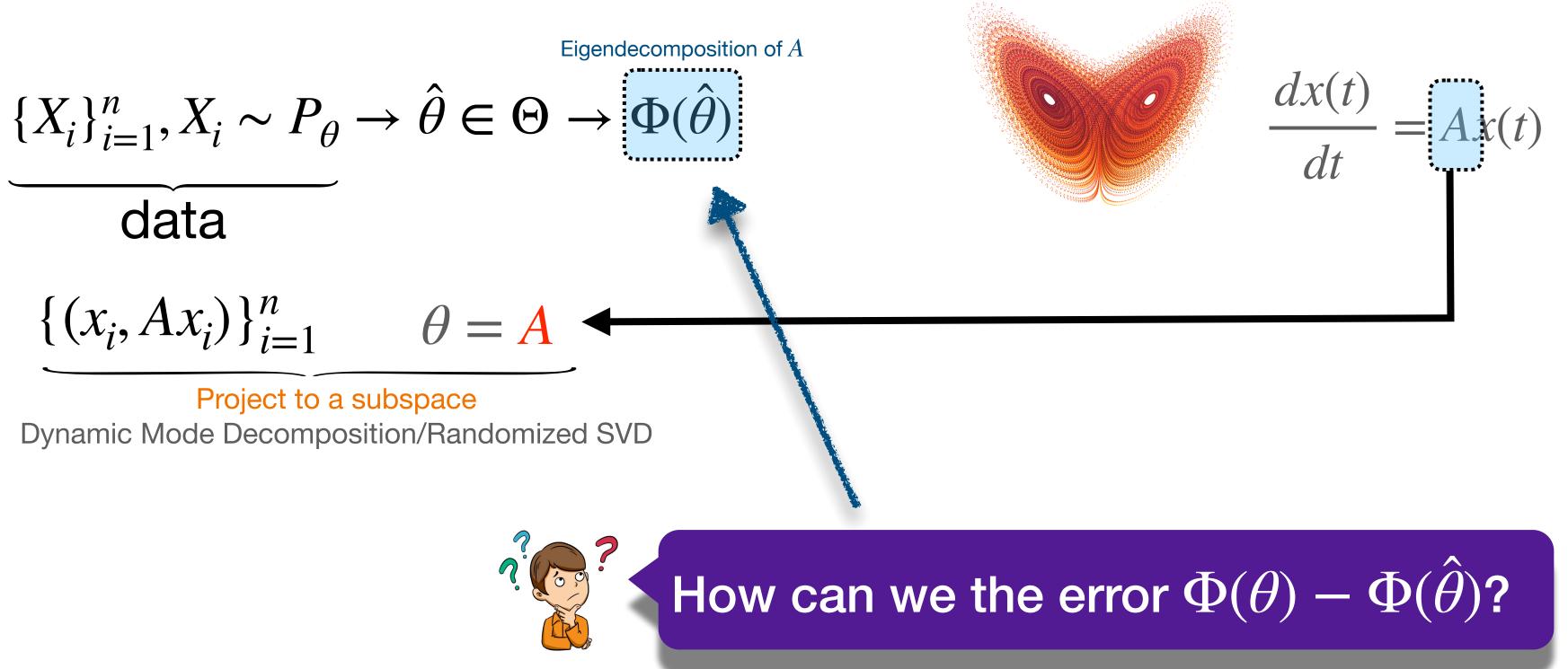
Machine Learning

data



 $\{(x_i, Ax_i)\}_{i=1}^n$

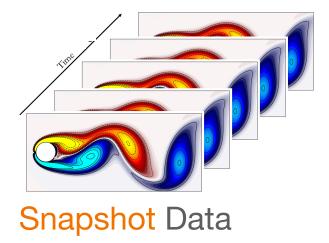
Project to a subspace Dynamic Mode Decomposition/Randomized SVD



A Data-Driven Debias View

Machine Learning

data

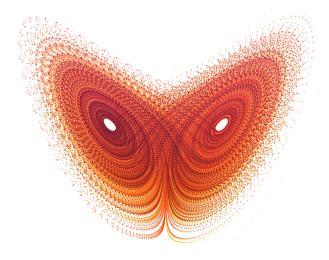


 $\{(x_i, Ax_i)\}_{i=1}^n$

Project to a subspace Dynamic Mode Decomposition/Randomized SVD

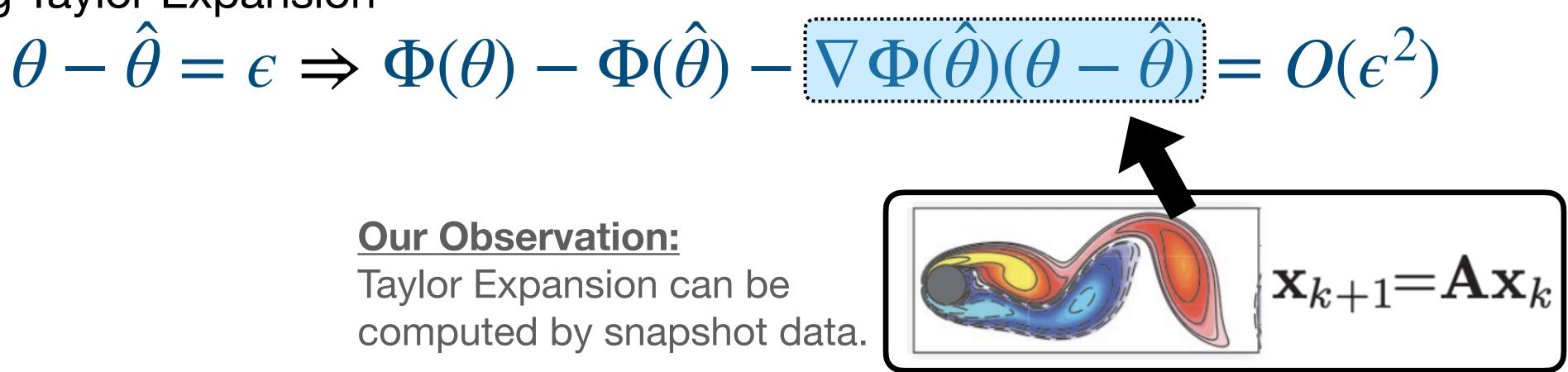
Debiasing using Taylor Expansion

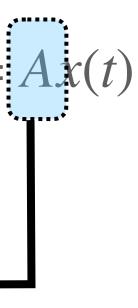
Eigendecomposition of A $\{X_i\}_{i=1}^n, X_i \sim P_\theta \to \hat{\theta} \in \Theta \to \Phi(\hat{\theta})$



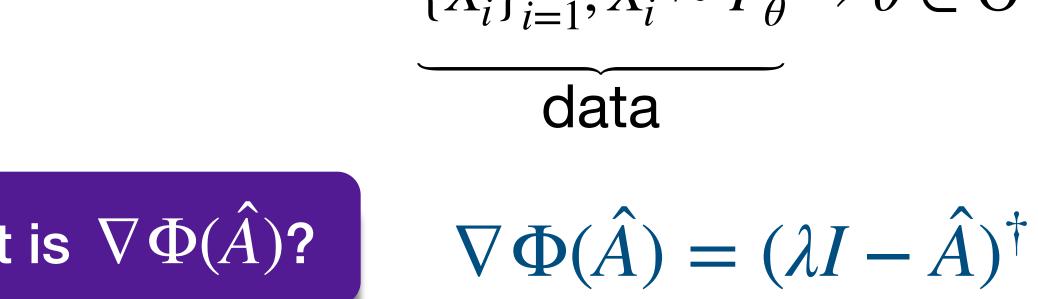
dx(t

 $\theta = A$

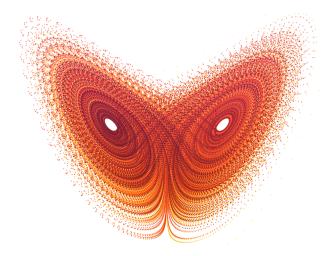




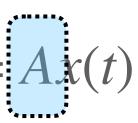
A Data-Driven Debias View

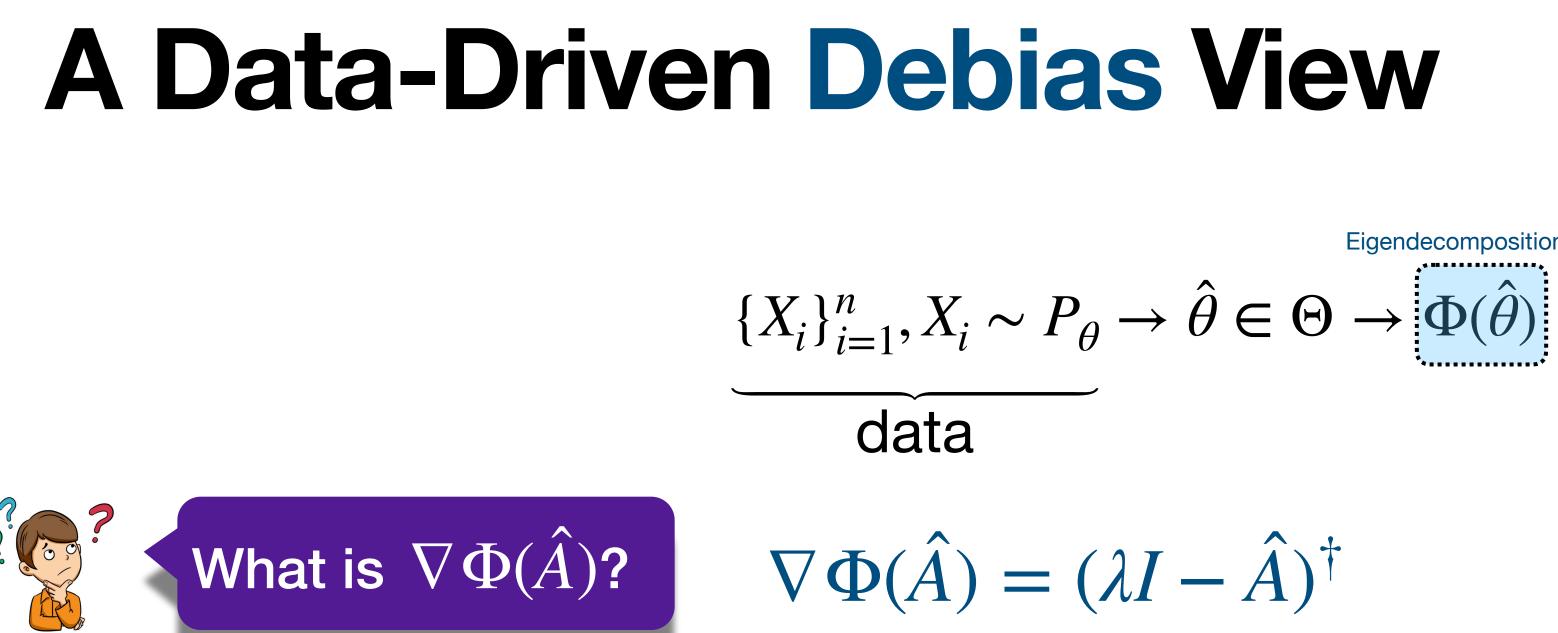


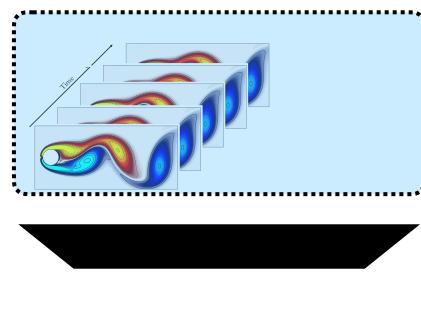
Eigendecomposition of A $\{X_i\}_{i=1}^n, X_i \sim P_\theta \to \hat{\theta} \in \Theta \to \Phi(\hat{\theta})$

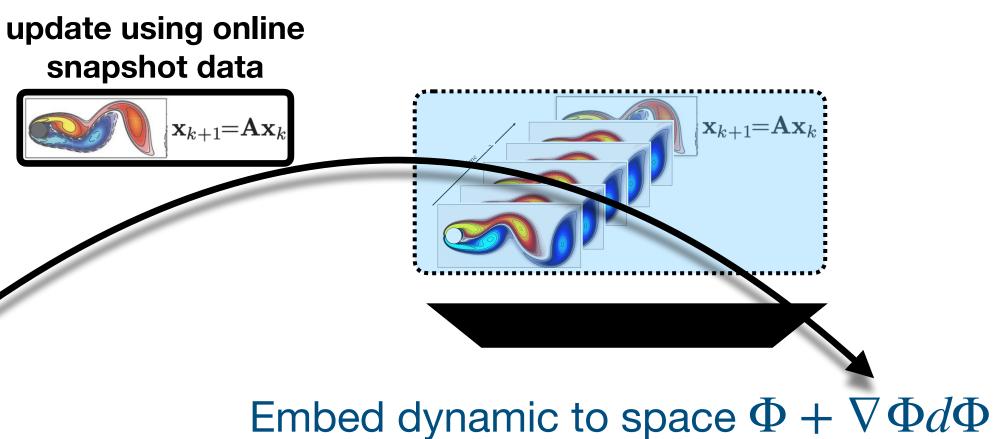


 $\frac{dx(t)}{dt} = Ax(t)$



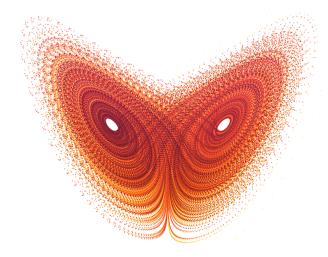




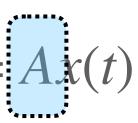


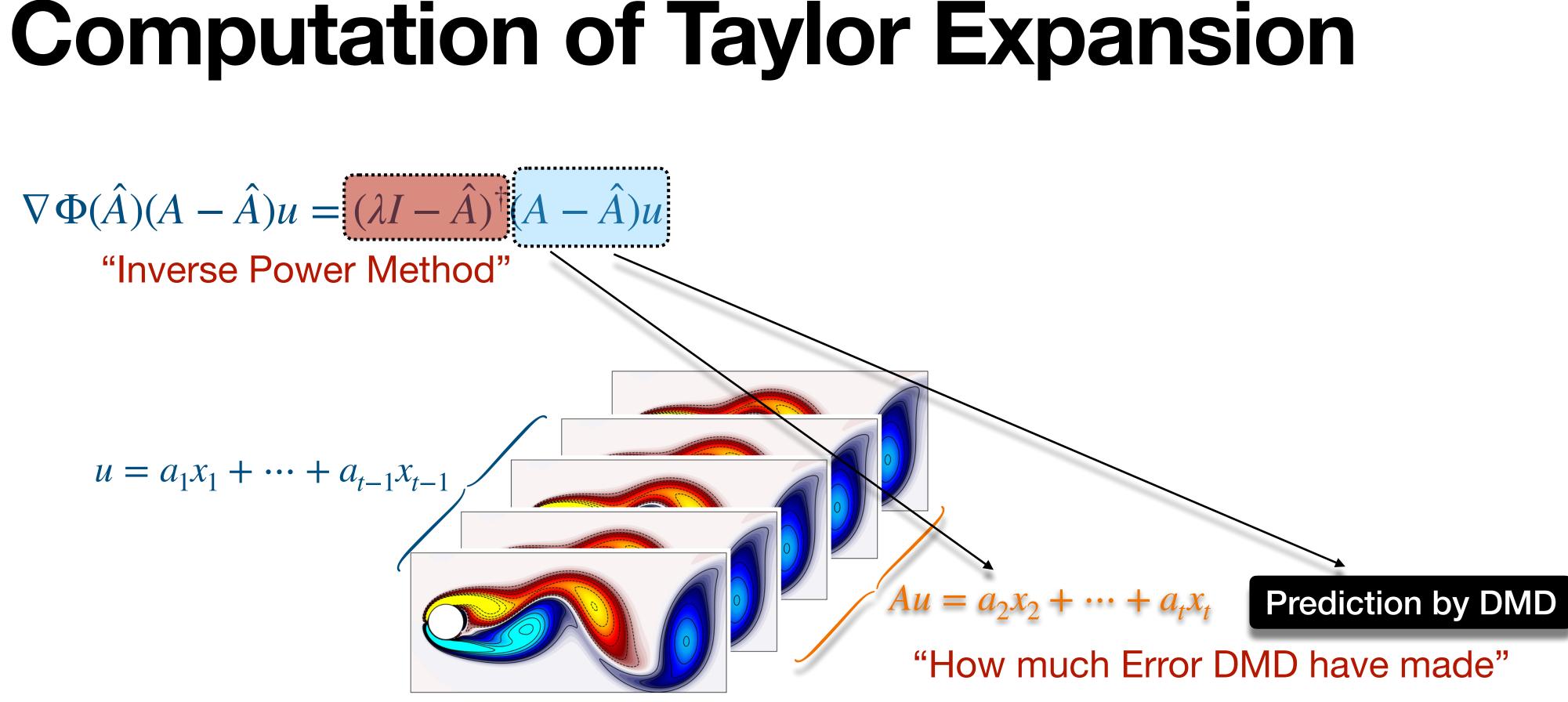
Embed dynamic to space Φ

Eigendecomposition of A



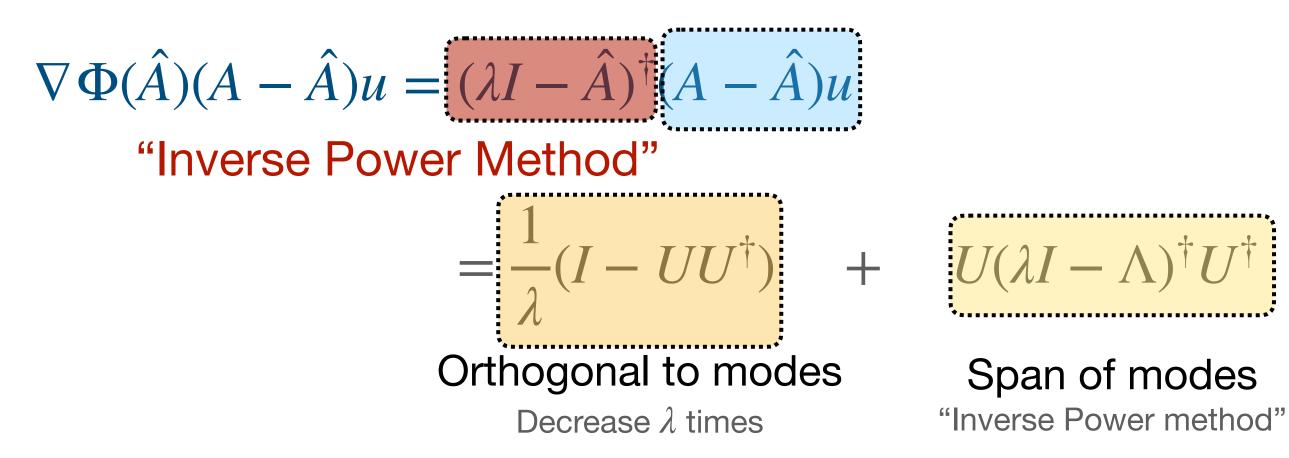
dx(t)





<u>Proposition</u> The estimated mode at time *t* lies in span $\{x_1, \dots, x_t\}$

Computation of Taylor Expansion



Proposition The estimated mode at time *t* lies in span $\{x_1, \dots, x_t\}$

Span of modes "Inverse Power method" when we know the Eigen decomposition $\hat{A} = U \Lambda U^{\dagger}$ Mode Eigen

Enables computation using snapshot data!

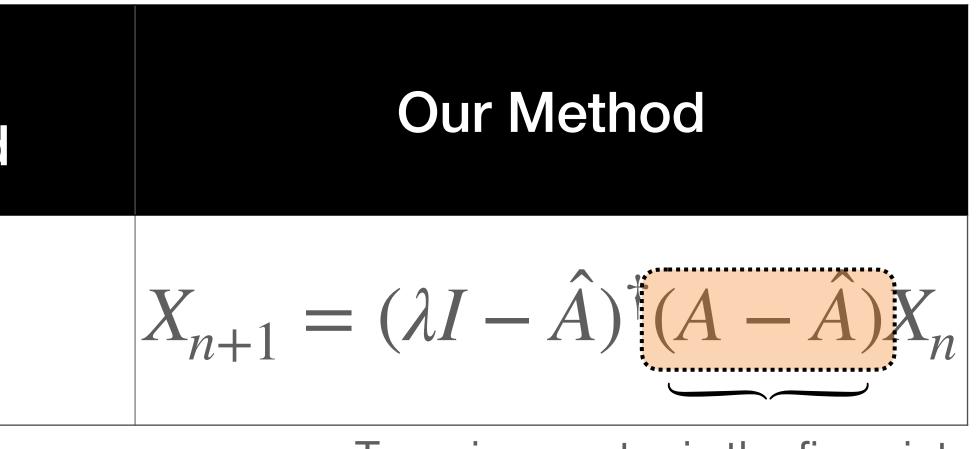
Relationship with Inverse Power Methods

(Approximate) **Inverse Power Method**

$$X_{n+1} = (\lambda I - A)^{\dagger} X_n$$

Replace with an approximate solver \hat{A} changes the fixed point

Ruihan Xu, **Yiping Lu**. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Ture eigenvector is the fix point for every approximate solver \hat{A}

Relationship with Inverse Power Methods

(Approximate) **Inverse Power Method**

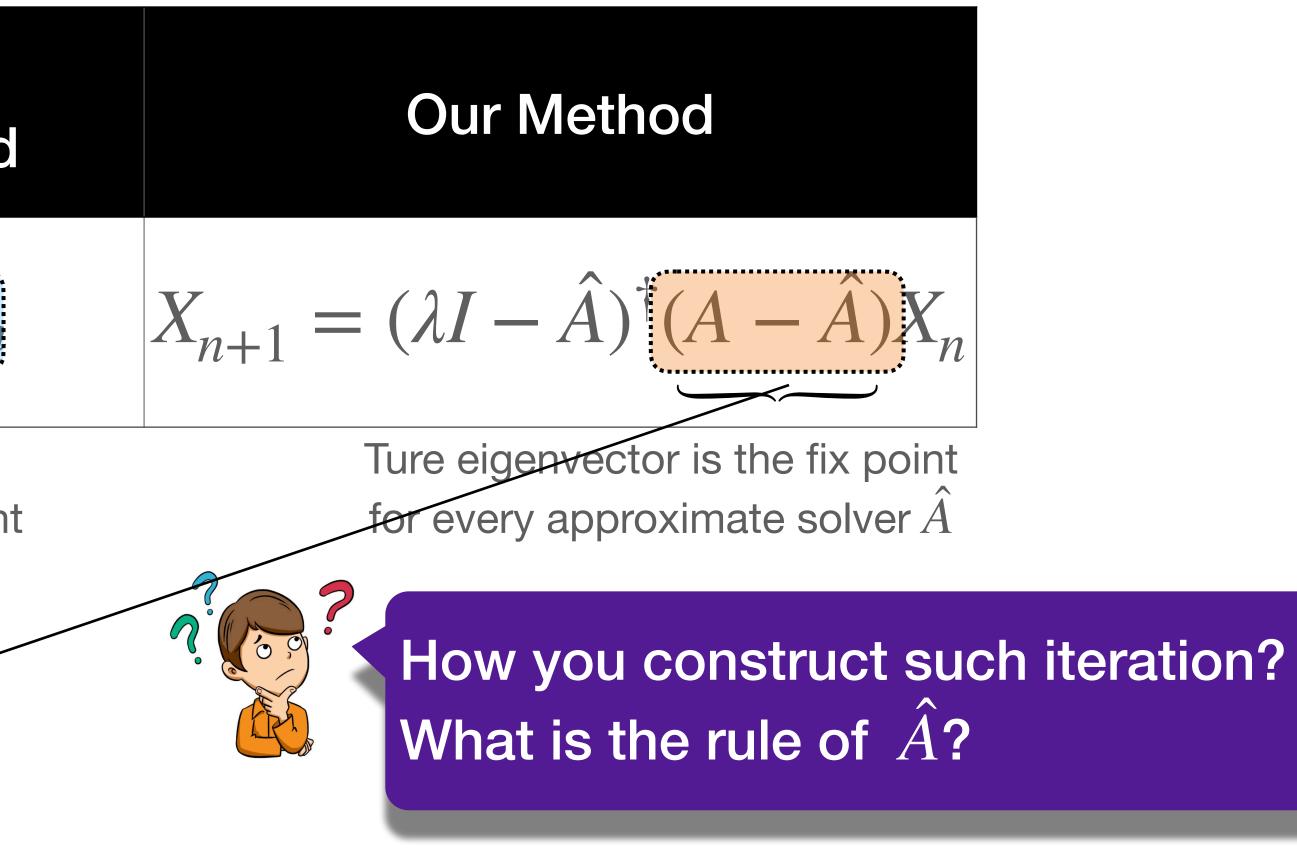
 $X_{n+1} = (\lambda I - A)^{\mathsf{T}} X_n$

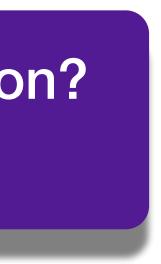
Replace with an approximate solver \hat{A} changes the fixed point

Take Hoem Message 1:

Power the Residual but not Power the vector

Ruihan Xu, **Yiping Lu**. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?





Why better than Directly DMD "Sketch-and-Solve" VS "Sketch-and-Precondition"

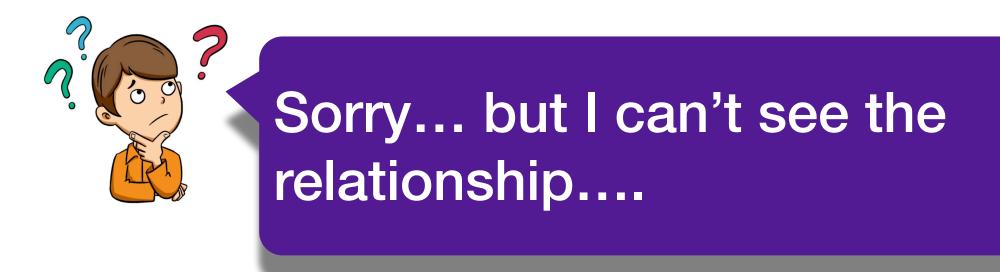
	Sketch-and-Solve	Sketch-and-Precondition
Least Square		Sketch-and-precondition, Sketch-and-project, Iterataive Sketching,
Low rank Approx	Idea 1: plug in a SVD Solver: Random SVD Idea 2: plug in a inverse power method	Our Work!

Use sketched matrix \hat{A} as

an approximation to A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Use sketched matrix \hat{A} as an precondition to the probelm



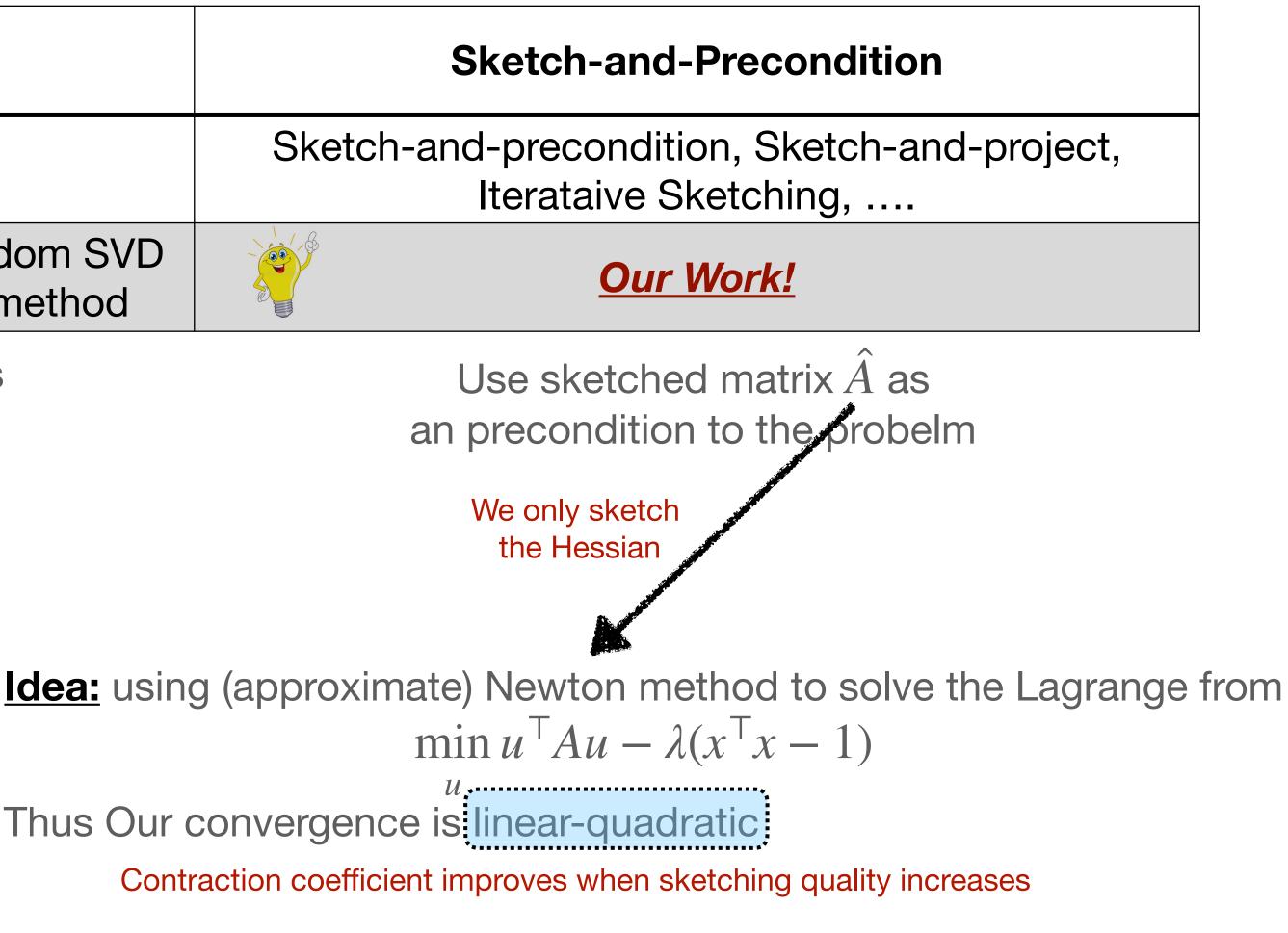
Why better than Directly DMD "Sketch-and-Solve" VS "Sketch-and-Precondition"

	Sketch-and-Solve
Least Square	
Low rank Approx	Idea 1: plug in a SVD Solver: Randon Idea 2: plug in a inverse power met

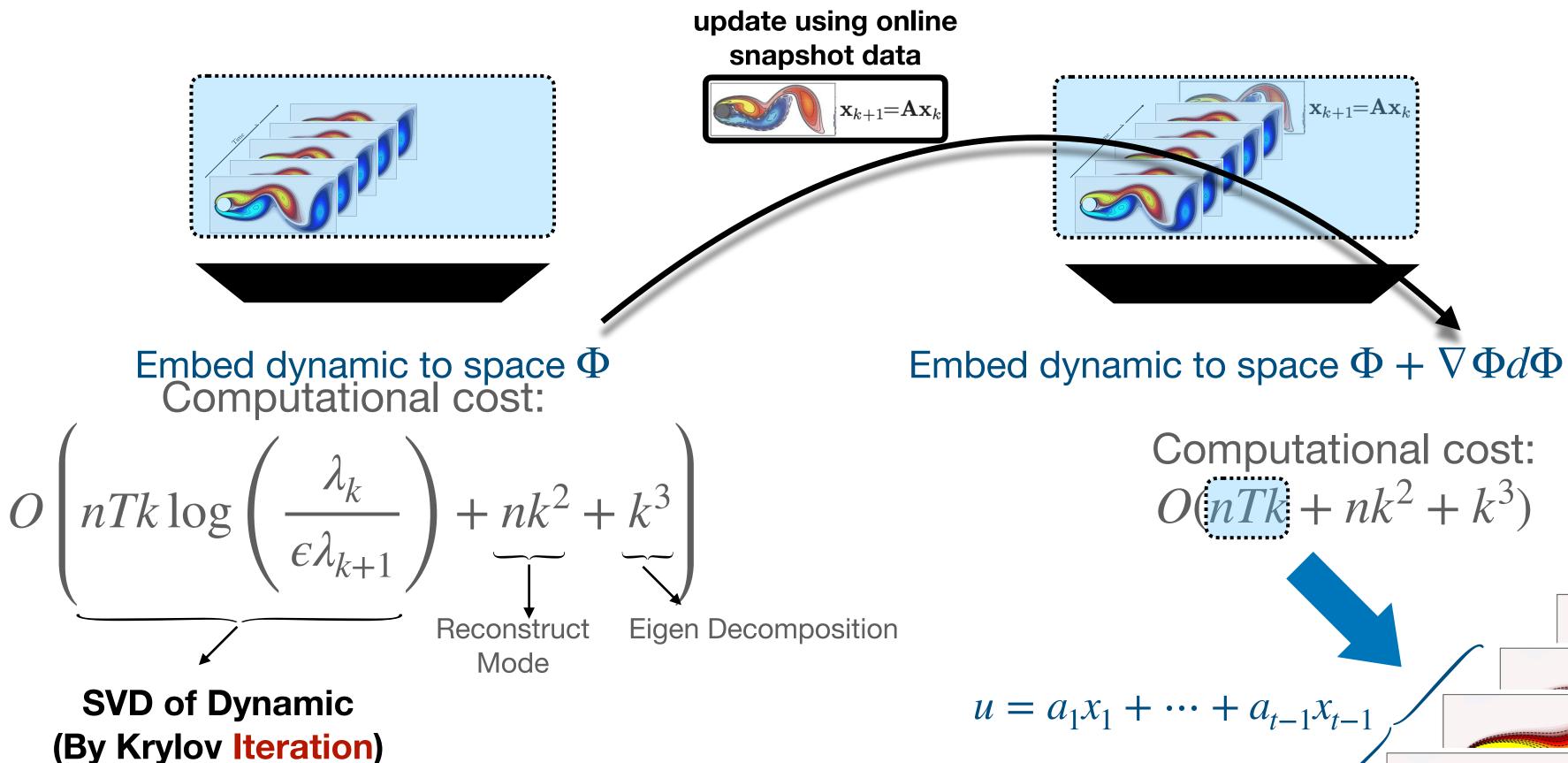
Use sketched matrix \hat{A} as

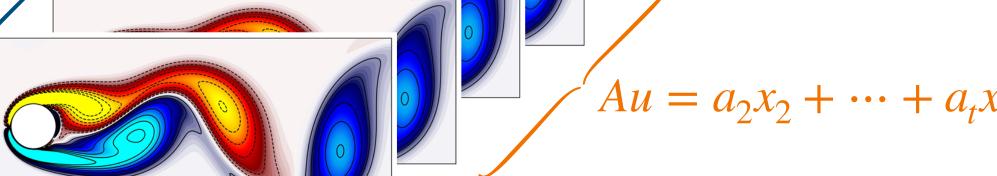
an approximation to A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

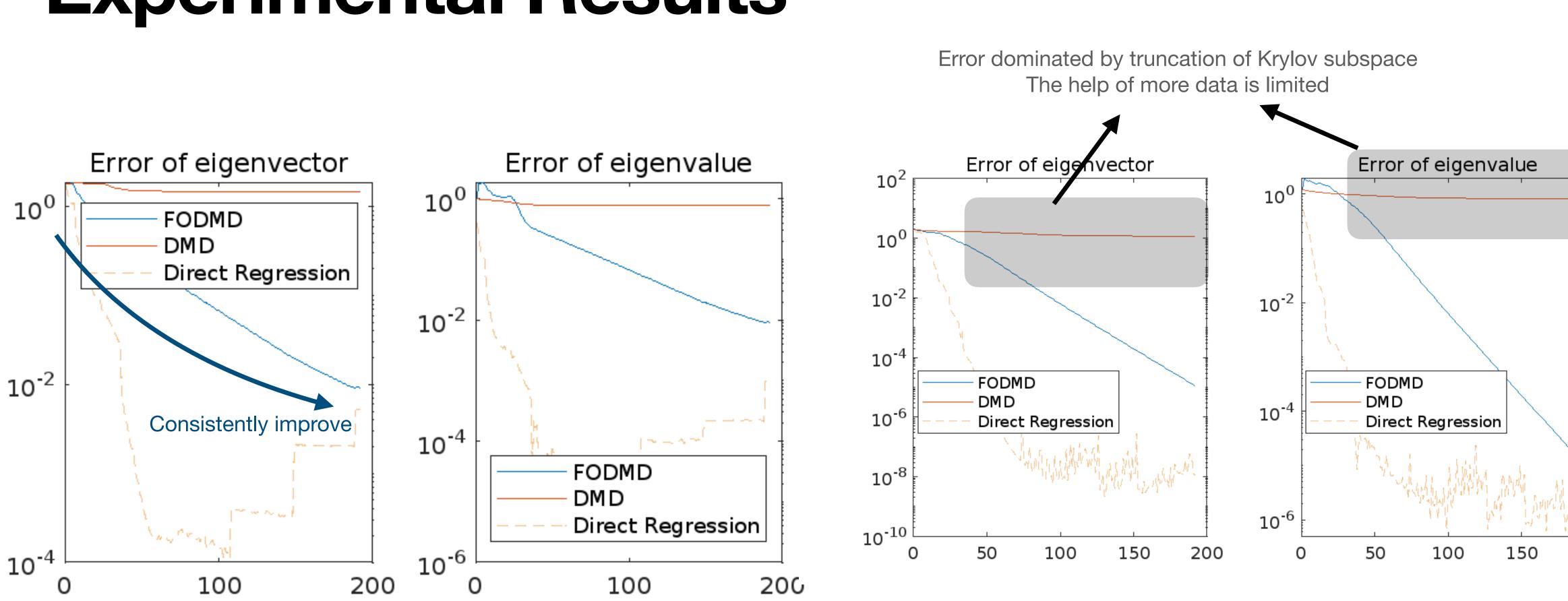


Online Dynamic Mode Decomposition



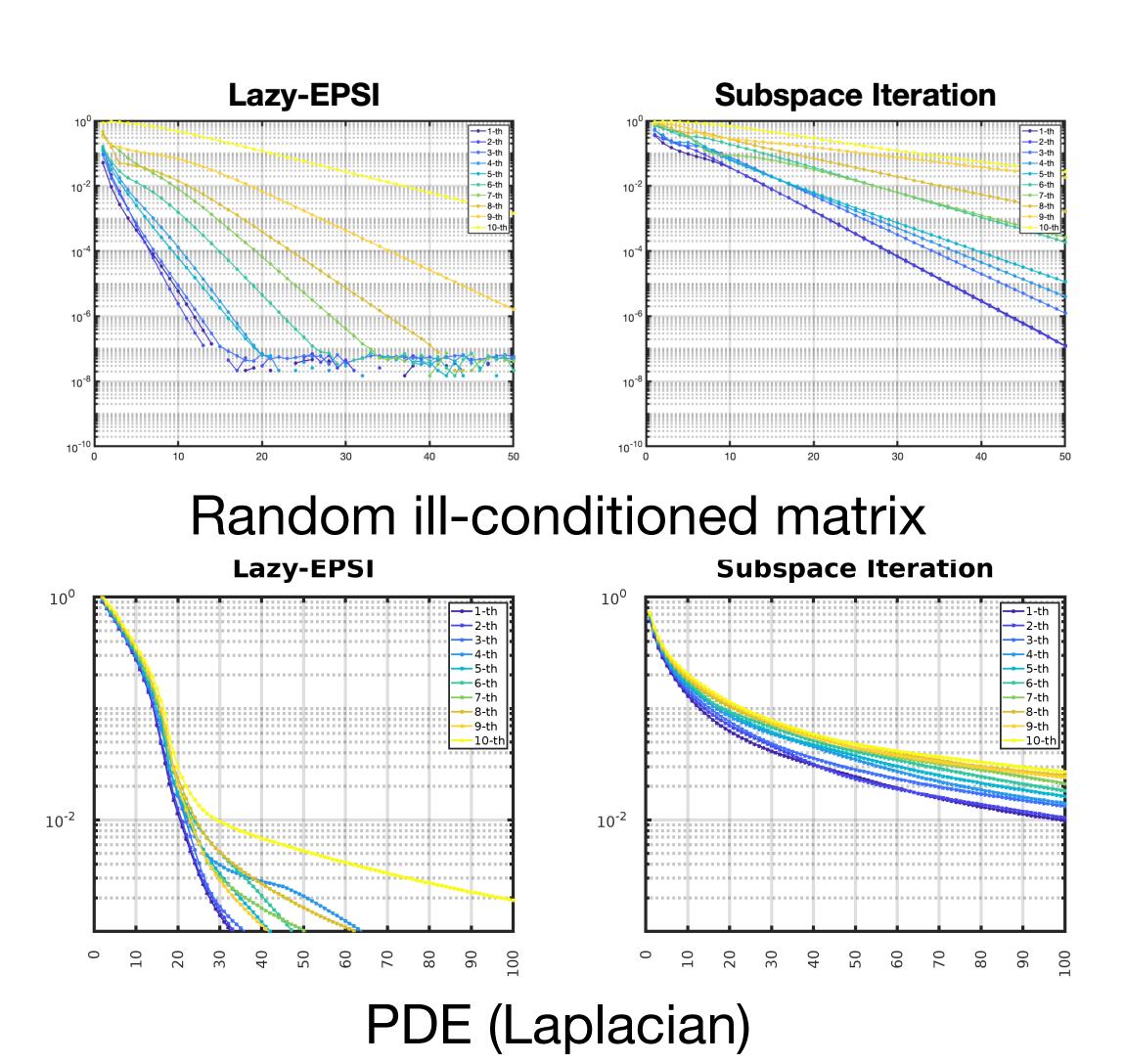


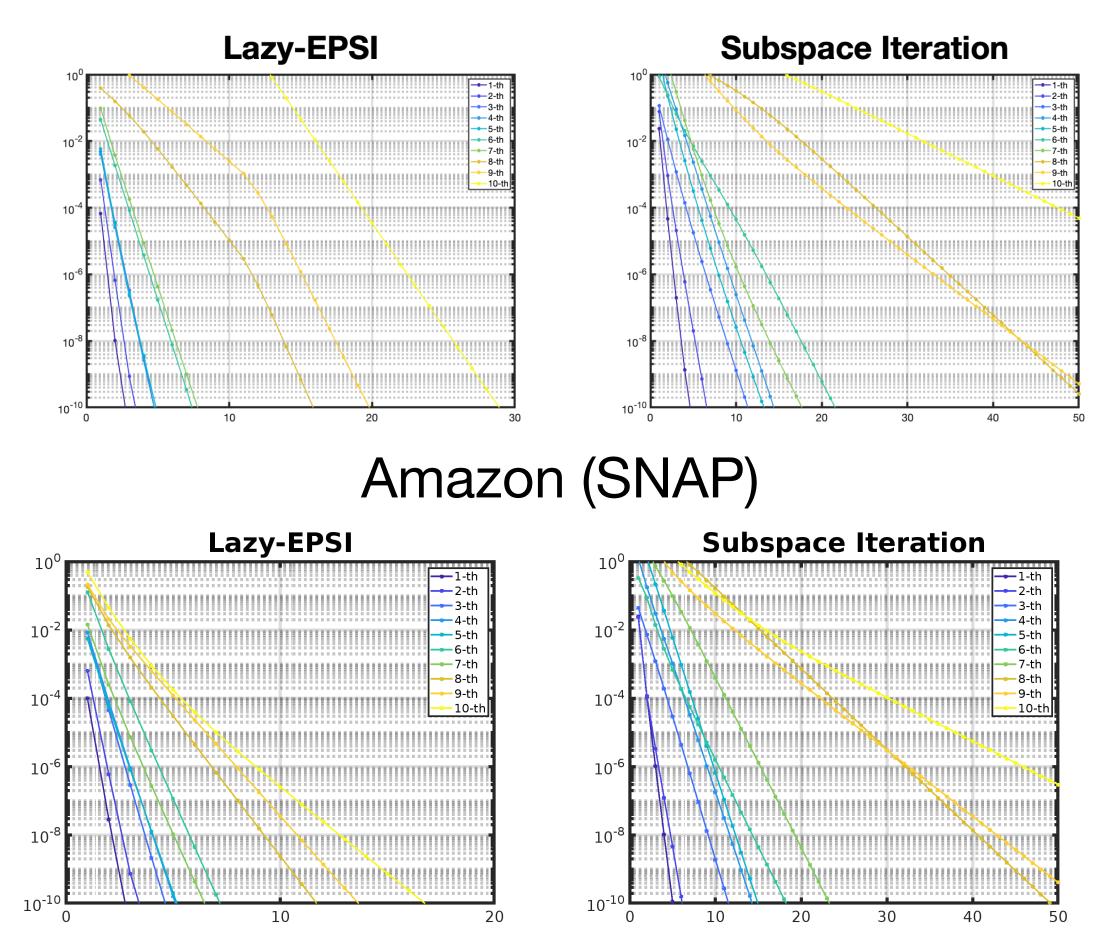
Experimental Results



A has four eigenvalue 1 and then decreasing to 0.1

Eigenvalue Computation





Web Stanford (SNAP)

What is SCaSML about?

$$\{X_1, \cdots, X_n\} \sim \mathbb{P}$$

Step 1: Using Machine Learning to fit the rough function/environment

Step 2: Using validation dataset to know how much mistake machine learning algorithm has made

Step 3: Using Simulation algorithm to estimate $\Phi(\theta) - \Phi(\theta)$

 $\theta_{\theta} \to \theta \to \Phi(\theta)$

