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Two Tales, One Resolution  
for Physics-Informed Inference-time Scaling

 Debiasing and Precondition



Inference Time Scaling Law



How can we perform Inference-Time Scaling for 
Scientific Machine Learning?



Tale 1: Debiasing 
Hybrid Scientific Computing and Machine Learning



Consider How you use ChatGPT…

What is the most efficient route from Times Square 
to Chelsea Market that minimizes walking?

Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the 
Times Sq–42nd Street station.

2. Board the E Train: Catch an E train heading 
downtown (toward World Trade Center).

3. Ride to 8th Avenue–14th Street Station: Get off at 
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk 
east on 14th Street for a few blocks until you reach 
Chelsea Market at 75 9th Avenue.

double-check  
with a map

15-th street

2 stops for A

3 stops for C/E

Port Authortiy

1/2/3+L line is 
best choice

1. At Times Square: Enter the Times Square–42nd Street 
station.

2. Board the 1 Train: Hop on a downtown 1 train (the 
red line).

3. Ride to 14th Street: Stay on until you reach the 14th 
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th 
Avenue—this drop-off point is just a short walk from 
Chelsea Market (located at 75 9th Ave).
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This Position Paper: 
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via First-Principle
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Step 1. Train a Surrogate (ML) Model
Step 2. Correct with a Trustworthy Solver

Finite Element

Optimizer

Correction enables
Inference Time Scaling

Simulation



Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning
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Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

AIM: Compute   during Inference 
time

Φ( ̂θ) − Φ(θ)

Using (stochastic) simulation to calibrate the (scientific) machine learning output !



Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

How to estimate ?Φ( ̂θ) − Φ(θ)

Why it is easier than directly estimate ?Φ(θ) Variance Reduction

Physics-Informed! (Structure of )Φ



Debiasing a Machine Learning Solution
f
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Evaluate the error
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This Position Paper: 
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via First-Principle
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Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 
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Temperature, overall velocity… 

̂f
“piece-wise polynomial”->Simpson Rule



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

̂f
Estimate 𝔼P f ≈ 𝔼P

̂f
+𝔼 ̂P f − ̂f

An estimate to Φ( ̂θ) − Φ(θ)

Our Approah



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

̂f Estimate 𝔼P f ≈ 𝔼 ̂P f

Monte Carlo?



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

Regression-adjusted Control Variates Doubly Robust Estimator …

- Investigated the optimality of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare 

Events, Sobolev Embedding and Minimax Optimality Neurips 2023


- Extend to nonlinear functional estimation using iterative methods Later



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

Regression-adjusted Control Variates Doubly Robust Estimator …

- Investigated the optimality of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare 

Events, Sobolev Embedding and Minimax Optimality Neurips 2023

Class we consider {f : ∫ ∥∇sf∥p ≤ 1}
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Upper Bound

−1/2

Smoothness s

Truncate Monte Carlo

1
p

−
s
d

=
1
2q

Minimax rate

max {( 1
p

−
s
d ) q − 1, −

1
2

−
s
d }

Regression-adjusted Control Variate

finite/infinite 
variance

A different Transition Point



Why?

estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

How does step2 variance 
depend on estimation error?



Why?

estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

Embed  and   into “dual” spacef q−1 f − ̂f

How to select the 
Sobolev emebedding?



Take Home Message

x

Y

(a)

Y

(b)

Rare and extreme event

a) Statistical optimal regression is the optimal control variate 
b) It helps only if there isn’t a hard to simulate (infinite variance) 
Rare and extreme event

q control the extremeness



SCaSML

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Example 2  θ = A, Xi = (xi, Axi)  Φ(θ) = tr(A)
Estimation  via Randomized SVD̂A Estimate  via Hutchinson's estimatortr(A − ̂A)Huch++

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20 

What if  is nonlinear?Φ Iterative Solver!



This Talk: Debiasing
A new way for hybrid scientific computing and machine learning

• Eigenvalue decomposition


• Preconditioned (randomized) computation of Eigenvalue Problem via 
Debiasing


• PDE-Solver


• Inference time scaling for ML-based PDE solver



High Dimensional PDE-Solving

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Xi = (xi, Δu(xi))

PDE R.h.s PDE solution
u Mean/Variance/u(x)

PINN/DRM/Neural Galerkin

Let’s consider Δu = f

Δu = f

Δ ̂u = ̂f
Δ(u − ̂u) = f − ̂f

(u − ̂u)(x) = 𝔼∫ ( f − ̂f )(Xt)dt



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

Can you do simulation 
for nonlinear equation?

 is linear!Δ
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∂t
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Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN

Subtract two equations

∂(U − Û)
∂t

(x, t) + Δ(U − Û)(x, t)) + f(t, Û(x, t) + U(x, t) − Û(x, t)) − f(t, Û(x, t))

G(t, (U − Û)(x, t))

= g(x, t) .

Keeps the linear structure



Inference-Time Scaling
∂
∂t

u + [σ2u −
1
d

−
σ̄2

2 ](∇ ⋅ u) +
σ̄2

2
Δu = 0 have closed-form solution  g(x) =

exp(T + ∑i xi

1 + exp(T + ∑i xi)

Method Convergence Rate

PINN

MLP

ScaSML

O(n−s/d)

O(n−1/4)

O(n−1/4−s/d)
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Provide pure Simulation solution 
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Today 
Using Simulation to 

Calibrate ML



Tale 2: Pre-condition 
with a surprising connection with debiasing



Tale 2: Preconditioning

Nothing will be more central to computational 
science in the next century than the art of 
transforming a problem that appears intractable into 
another whose solution can be approximated 
rapidly.



What is precondition

• Solving  is equivalent to solving Ax = b BAx = Bb
hardness depend on κ(A) hardness depend on κ(BA)

Become easier when B ≈ A−1



A New Way to Implement  Precondition

• Debiasing is a way of solving 


• Using an approximate solver 

Ax = b

Bx1 = b
Error depends on ∥A−1(A − B)∥
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•  satisfies the equation 


• Using the approximate solver to approximate   via 

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1

x − x1 Bx2 = b − Ax1
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A New Way to Implement  Precondition

• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate   via 

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1

x − x1 Bx2 = b − Ax1

Error depends on ∥A−1(A − B)∥

What is the error of ?x1 + x2 A(x1 + x2) = b − (A − B)x2 Same level as ∥A−1(A − B)∥

Brings another ∥A−1(A − B)∥

∥A−1(A − B)∥2 Hardness depends on how  near identity!A−1b



• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate  via 

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement  Precondition

Iterative Refinement Algorithm



• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate  via 

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement  Precondition

Iterative Refinement Algorithm

xi+1 = (I − B−1A)xi + B−1b

Preconditioned Jacobi Iteration



This Talk: A New Way to Implement  Precondition
Via Debiasing

• Step 1: Aim to solve (potentially nonlinear) equation 


• Step 2: Build an approximate solver 


• Via machine learning/sketching/finite element….


• Step 3: Solve 

A(u) = b

A( ̂u) ≈ b

u − ̂u

Unrealiable approximate 
solver as preconditioner

Connection with control variate, doubly robust estimator, 
Multifidelity Monte Carlo

use Machine Learning

AIM: Debiasing a  Learned Solution = Using Learned Solution as preconditioner!



Dynamic Mode Decomposition
Experimental Dynamic System Data

X =
| | ⋯ |

x1 x2 ⋯ xm−1

| | ⋯ |

A ≈ YX†

Y =
| | ⋯ |

x2 x3 ⋯ xm

| | ⋯ |

Eign
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Dynamic Mode Decomposition
Experimental Dynamic System Data

X =
| | ⋯ |

x1 x2 ⋯ xm−1

| | ⋯ |

A ≈ YX†

Y =
| | ⋯ |

x2 x3 ⋯ xm

| | ⋯ |

Eign

Project to low-dimensional space

̂A ≈ ̂YX̂†

Can we update the mode estimation 
when a new data comes?

Includes Error
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A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ( ̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD



A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ( ̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD

Eigendecomposition of  A

How can we the error ?Φ(θ) − Φ( ̂θ)



A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ( ̂θ) ∈ ℝMachine Learning
dx(t)

dt
= Ax(t)

θ = A

Snapshot Data

{(xi, Axi)}n
i=1

Project to a subspace

Dynamic Mode Decomposition/Randomized SVD

Eigendecomposition of  A

θ − ̂θ = ϵ ⇒ Φ(θ) − Φ( ̂θ) − ∇Φ( ̂θ)(θ − ̂θ) = O(ϵ2)
Debiasing using Taylor Expansion

Our Observation: 
Taylor Expansion can be 

computed by snapshot data.



A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ( ̂θ) ∈ ℝ
Eigendecomposition of  A

dx(t)
dt

= Ax(t)

What is ?∇Φ( ̂A) ∇Φ( ̂A) = (λI − ̂A)†



A Data-Driven Debias View

{Xi}n
i=1, Xi ∼ Pθ

data

→ ̂θ ∈ Θ → Φ( ̂θ) ∈ ℝ
Eigendecomposition of  A

What is ?∇Φ( ̂A)

dx(t)
dt

= Ax(t)

∇Φ( ̂A) = (λI − ̂A)†

Our AIM

Embed dynamic to space Φ Embed dynamic to space Φ + ∇ΦdΦ

update using online 
snapshot data



u = a1x1 + ⋯ + at−1xt−1

Au = a2x2 + ⋯ + atxt

Computation of Taylor Expansion

∇Φ( ̂A)(A − ̂A)u = (λI − ̂A)†(A − ̂A)u

Prediction by DMD

“How much Error DMD have made”

“Inverse Power Method”

Proposition  The estimated mode at time  lies in t span{x1, ⋯, xt}



Computation of Taylor Expansion

∇Φ( ̂A)(A − ̂A)u = (λI − ̂A)†(A − ̂A)u
“Inverse Power Method”

Proposition  The estimated mode at time  lies in t span{x1, ⋯, xt}

=
1
λ

(I − UU†) + U(λI − Λ)†U† when we know the Eigen decomposition ̂A = UΛU†

Mode EigenSpan of modes

“Inverse Power method”

Orthogonal to modes

Decrease  timesλ

Enables computation using snapshot data!



Relationship with Inverse Power Methods

(Approximate) 
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate 

solver  changes the fixed point̂A

Ture eigenvector is the fix point 

for every approximate solver ̂A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

How you construct such iteration? 
What is the rule of  ?̂A

(Approximate) 
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate 

solver  changes the fixed point̂A

Ture eigenvector is the fix point 

for every approximate solver ̂A

Take Hoem Message 1:

Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project, 
Iterataive Sketching, ….

Low rank 
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix  as 

an approximation to 

̂A
A

Use sketched matrix  as 

an precondition to the probelm

̂A

Sorry… but I can’t see the 
relationship….

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project, 
Iterataive Sketching, ….

Low rank 
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix  as 

an approximation to 

̂A
A

Use sketched matrix  as 

an precondition to the probelm

̂A

Idea: using (approximate) Newton method to solve the Lagrange from




Thus Our convergence is linear-quadratic

min
u

u⊤Au − λ(x⊤x − 1)

We only sketch

 the Hessian

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Contraction coefficient improves when sketching quality increases



u = a1x1 + ⋯ + at−1xt−1

Au = a2x2 + ⋯ + atxt

Online Dynamic Mode Decomposition

Computational cost: 


O nTk log ( λk

ϵλk+1 ) + nk2 + k3

SVD of Dynamic 
(By Krylov Iteration)

Reconstruct 

Mode

Eigen Decomposition

Computational cost: 

O(nTk + nk2 + k3)

Embed dynamic to space Φ Embed dynamic to space Φ + ∇ΦdΦ

update using online 
snapshot data



Experimental Results
Error dominated by truncation of Krylov subspace


The help of more data is limited

Consistently improve

 has four eigenvalue 1 and then decreasing to 0.1  A



Eigenvalue Computation

Random ill-conditioned matrix Amazon (SNAP)

PDE (Laplacian) Web Stanford (SNAP)



Yiping Lu yiping.lu@northwestern.edu

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Step 1: Using Machine Learning to fit the rough function/environment 

Step 2: Using validation dataset to know how much mistake machine  
learning algorithm has made  f

̂f

Step 3: Using Simulation algorithm to estimate Φ(θ) − Φ( ̂θ) Examples Later!

What is SCaSML about?


