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Scientific Paradigm
Why Physics-Informed Machine Learning

Physical Science · · · · · · • theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science · · · · · · • numerical simulation to understand complex real systems

Paul M. Dirac ( )
“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.”

• Accurate “constitutive equation”
— e.g. Newton’s gravitational law→ Kepler’s Law

• Efficient algorithms required
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Challenges for Computational Physics
Why Physics-Informed Machine Learning

Traditional numerical methods approximate general functions using polynomials or
piecewise polynomials, however…

Curse of Dimensionality
The cost to represent a function is exponential in the dimensionality.

Physical systems require high-dimensional representations, e.g. dimension of quantum
many-body problem∝ # electrons
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Challenges for Computational Physics
Why Physics-Informed Machine Learning

Inverse Problem/Optimal Design
Inverse problems/optimal design involve solving

min
x

L(F(x)),

where F is the forward process, such as a physics simulation, and L is the objective aim to
optimize. Even when a single iteration of this forward process is manageable, the overall
task becomes computationally infeasible due to the iterative optimization process.
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Combating Curse of Dimensionality with ML
Why Physics-Informed Machine Learning

Physical Science · · · · · · • theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science · · · · · · • numerical simulation to understand complex real systems

Combating these challenges using Machine (Deep) Learning!
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Combating Curse of Dimensionality with ML
Why Physics-Informed Machine Learning

Physical Science · · · · · · • theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science · · · · · · • numerical simulation to understand complex real systems

Machine Learning · · · · · · • understand and build models that leverage empirical data to improve performance

Neural Networks provide tools to build flexible, universal, and efficient approximations
for complex high-dimensional functions and functionals.
• In practice

— Imagenet ( x dimension)
— Alpha Go ( x dimension)
— Large Language Models (dmodel ∼ O(103))

• In theory
— Separation to Kernel (Linear) Methods
— Depth Separation
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What is Phyiscs-Informed Machine Learning?
Why Physics-Informed Machine Learning

Physical Science · · · · · · • theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science · · · · · · • numerical simulation to understand complex real systems

Machine Learning · · · · · · • understand and build models that leverage empirical data to improve performance
Physics-Informed Machine

Learning · · · · · · • TODAY

Physics-informed Machine Learning study potential benefits for machine learning models
by incorporating the physical prior such as
• Differential Equations: ODEs, PDEs, S(P)DEs
• Law of conservation, Symmetry ...

Applications include
• Quantum Many-body Problem
• Turbulence Models
• Modeling Rare Events

Hao Z, Liu S, Zhang Y, et al. Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint arXiv: . , .
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What are the Challenges in PIML?
Why Physics-Informed Machine Learning

Representation: Higher Dimension
Imagenet only x dimension, which can only simulate∼ molecules
Thus we need to understand
• function space that we can approximate in high-dimension.
• physical prior can help to represent functions more efficiently.
• approximation theory in infinite dimensional.

Generalization: Expensive Data Collection
Labeling data for scientific research is expansive, thus we need to consider the
generalization theory for physics-informed machine learning

Small Data
Lots of Physics

Big Data
No Physics
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What is this tutorial about?
Why Physics-Informed Machine Learning

How to represent a physical solution and why it generalizes for
• Solving Differential Equations and Optimal Control
• Better Sampling for scientific problems

with applications in
• Inverse Problem
• Quantum Many-body Problem
• Rare Event (Transition Path) Sampling
• Large Deviations
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Formulation for Physics-Informed Machine Learning
Formulation for Physics-Informed Machine Learning

Physics-Informed Machine Learning
physics-informed machine learning as a structured risk minimization problem

min
f∈H

L(f,D) + Ω(f)︸︷︷︸
physical prior

( )

• DataD: we could augment the dataset utilizing available physical prior like symmetry
• Model f: we could embed physical prior into the model design
• Regularization Ω: regularization terms using given physical priors like differential
equations

Tasks that we are interested in
• Solving physical equations (First principle modeling)
• Operator Learning
• System Identification/Scientific Discovery

Hao Z, Liu S, Zhang Y, et al. Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint arXiv: . , .
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Partial Differential Equations (PDEs)
Formulation for Physics-Informed Machine Learning

Definition:PDEs
PDE is a relation of the following type, parameterized by λ ∈ Rm:

F(x1, ..., xn, ...; ux1 , ..., uxn ; ux1x1 , ux1x2 , ...;λ) = 0

with suitable boundary conditions

B(u, x⃗) = 0, x⃗ ∈ ∂Ω, ( )

Solving a PDE→ find a u function satisfying the governing equation.

where
• u = u(x1, ...xn) is a unknown function of n variables, i.e., u : Rd 7→ R;
(⃗u can be a vector, i.e.,⃗u ∈ Rd, here, we assume it to be a scalar for simplicity )

• uxi =
∂u
∂xi
, uxixj =

∂2u
∂xixj

,...
• f is the governing equation.
• B is the boundary condition./



Governing equation: Linear vs. Non-linear
Formulation for Physics-Informed Machine Learning

Linear PDE
A PDE is linear if and only if f is linear with respect to u and all its derivatives.

f (⃗x; u; ux1 , ..., uxn ; ux1x1 , ux1x2 ...;λ) = 0, x⃗ ∈ Ω, ( )

Non-linear PDE
• Semilinear PDE where f is nonlinear only with respect to u but is linear with respect
to all its derivatives;

• Quasi-linear PDE where f is linear with respect to the highest order derivatives of u;
• Fully nonlinear PDEwhere f is nonlinear with respect to the highest order derivatives
of u.
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Governing equation: order of PDEs
Formulation for Physics-Informed Machine Learning

Order of a PDE
The highest order of differentiation occurring in the equation is the order of the equation.

f (⃗x; u; ux1 , ..., uxn ; ux1x1 , ux1x2 ...;λ) = 0, x⃗ ∈ Ω, ( )

Second order PDEs
Most commonly used in engineering applications.

auxx + 2buxy + cuyy + dux + euy + hu = f

where a, ..., f are smooth (e.g. C2) functions of x, y.
• Elliptic: b2 − ac < 0, e.g., Laplace equation uxx + uyy = 0

• Parabolic: b2 − ac = 0, e.g., Diffusion equation ut − Duxx = 0

• Hyperbolic: b2 − ac > 0, e.g., Wave equation utt − c2uxx = 0
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Boundary conditions: Types of boundary value problems
Formulation for Physics-Informed Machine Learning

• Dirichlet: specifies the boundary value
of u: u|∂Ω = f

• Neumann: specifies the value of the
normal derivative of the u: ux|∂Ω = f

• Robin: c0u|∂Ω + c1ux|∂Ω = f

• Cauchy: Dirichlet and Neumann, i.e,
u|∂Ω = f and ux|∂Ω = f

• Mixed: different location (x) have
different boundary condition.

Figure: Boundary value problem

https://en.wikipedia.org/wiki/Boundary_value_problem
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Forward problem
Formulation for Physics-Informed Machine Learning

Forward problem: Given a fixed λ, solve for u(x)
Consider the following PDE parameterized by λ ∈ Rm:

F(x1, ..., xn, ...; ux1 , ..., uxn ; ux1x1 , ux1x2 , ...;λ) = 0

Traditionally, solved with finite difference method (FDM), finite element method (FEM),etc.

Advantages: Accurate, Reliable
Challenges: Expensive and time consuming, Hard to incorporate in downstream
applications

Learning is suitable for:
• Surrogate modeling: find a cheap model to surrogate the PDE governed system, i.e.,
u = fθ(x;λ).

• Incorporating physical knowledge (PDE) information for downstream tasks.
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Inverse problems
Formulation for Physics-Informed Machine Learning

Inverse problem: Given a set of observed u(x), find λ
Consider the following PDE parameterized by λ ∈ Rm:

F(x1, ..., xn, ...; ux1 , ..., uxn ; ux1x1 , ux1x2 , ...;λ) = 0

• Identifying unknown parameters in PDEs/boundary/initial conditions
• Data driven (with partail physics knowledge) spatio-temporal modeling

Traditionally, formulated as a PDE constraint optimization problem, and solved with
adjoint method.

Learning is suitable for:
• Incorporating PDE information in inverse problems
• Surrogate modeling : find a cheap model to surrogate (inversion of) the PDE
governed system, i.e., u = fθ(x;λ) (or λ = fθ′(u)).
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Physics-Informed Neural Network
Differential Equation Solving

Most of physics can be formulated as A(u) = f where A is a differential operator

PINN solving A(u) = f

Suppose we observe (xi, f(xi))ni=1, can we solve A(u) = f?
PINN minimizes the equation residual on observed data points, i.e.

u∗ = argmin
u∈H

n∑
i=1

‖A(u)(xi)− f(xi)‖2
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Methods Beyond PINN
Differential Equation Solving

The core idea behind PINN is transforming solving A(u) = f to a minimization problem
min ‖A(u)− f‖. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e. Ax = b ⇐⇒ min x⊤Ax− 2bx
Not all PDEs admit a variational form.
Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics,

Weak Adversarial Network Solving equation A(u) = f equalvalent to

min
u

max
∥v∥≤1

〈v,A(u)− f〉

and change the constraint to a log penalization.
Zang Y, Bao G, Ye X, et al. Weak adversarial networks for high-dimensional partial differential equations. Journal of Computational Physics,

Adversarial training L2 loss is not strong enough (for regualrity of PDE structure), we
should use L∞ loss for some PDEs.
Wang C, et al. Is L2 Physics Informed Loss Always Suitable for Training Physics Informed Neural Network? Advances in Neural Information Processing Systems, .
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Not Just Neural Network
Differential Equation Solving

A neural network is not the only ansatz (a high bias list...)
• Gaussian Process

Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, .

Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the

National Academy of Sciences, .

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, , : .

• Diffusion map
Lai R, Lu J. Point Cloud Discretization of Fokker–Planck Operators for Committor Functions. Multiscale Modeling & Simulation, .

Evans L, et al. Computing committors in collective variables via Mahalanobis diffusion maps. Applied and Computational Harmonic Analysis.

• Tensor Network
Bachmayr M, Schneider R, Uschmajew A. Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations.

Foundations of Computational Mathematics .

Richter L, Sallandt L, Nüsken N. Solving high-dimensional parabolic PDEs using the tensor train format International Conference on Machine Learning, .

Hur Y, Hoskins J G, Lindsey M, et al. Generative modeling via tensor train sketching. Applied and Computational Harmonic Analysis, .
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Data Acquisition and Importance Sampling
Differential Equation Solving

So far, we have only built loss functions. How should we sample data?

I(u) =
∫
Ω
L(x, u)dν(x),

• Simplest case dν(x) = dx
• Challenging case dν(x) = e−U(x)dx

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

10−5

10−4

10−3

10−2

10−1

100

ρ
(x

)

/



Adaptive Importance Sampling
Differential Equation Solving

On-the-fly variance reduction via adaptive importance sampling

L(x, f) = 1
2 |∇f(x)|2, dν(x) = e−βV(x)dx (β > 0)

• Idea : Window sampling with instantaneous solution f with a bias
• Idea : Reweight the expectation with these importance sampled points

Wl(x) ≥ 0 with l = 1, . . . , L such that ∀x ∈ Ω :
∑L

l=1Wl(x) = 1,

Eνϕ =

L∑
l=1

∫
Rd
ϕ(x)Wl(x)dν(x) ≡

L∑
l=1

wl Elϕ

GM Rotskoff, AR Mitchell, E Vanden-Eijnden Mathematical and Scientific Machine Learning, -
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Adaptive Importance Sampling
Differential Equation Solving

For any ϕ, define

Elϕ = Z−1
l

∫
Rd
ϕ(x)Wl(x)dν(x) where Zl =

∫
Rd

Wl(x)dν(x) ( )

as well as the weights
wl = EνWl. ( )

By choosing ϕ(x) = Wl′(x) in this expression, we deduce that the weights satisfy the
eigenvalue problem (Thiede et al )

wl′ =

L∑
l=1

wlpll′ , l′ = 1, . . . , L, subject to
L∑

l=1

wl = 1, ( )

where we defined
pll′ = 〈Wl′〉l. ( )
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Adaptive Importance Sampling
Differential Equation Solving

Sample Z−1
l Wl(x)dν(x) with MCMC biased

by− logWl(x) so that

Elϕ ≈ 1

n

n∑
i=1

ϕ(xi,l), xi,l ∼ Z−1
l Wl(x)dν(x)

This allows us to estimate Elϕ in ( ) as well
as pll′ in ( ) — can solve eigenvalue problem!
the weights wl, and finally estimate Eνϕ.
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Adaptive Importance Sampling
Differential Equation Solving

°1.5 °1.0 °0.5 0.0 0.5 1.0
°0.5

0.0

0.5

1.0

1.5

2.0

°16.00

°13.64

°11.29

°8.93

°6.57

°4.21

°1.86

0.50

0.00

0.16

0.32

0.48

0.64

0.80

0.96

°1.5 °1.0 °0.5 0.0 0.5 1.0
°0.5

0.0

0.5

1.0

1.5

2.0

°16.00

°13.64

°11.29

°8.93

°6.57

°4.21

°1.86

0.50

0.00

0.16

0.32

0.48

0.64

0.80

0.96

W
ith

 Im
po

rt
an

ce
 S

am
pl

in
g

W
ith

ou
t I

m
po

rt
an

ce
 S

am
pl

in
g

0.2 0.4 0.6 0.8

Committor Value

0.0

0.2

0.4

0.6

0.8

1.0

P
(t

(B
)
<

t(
A

))

Committor Analysis

Simulated

Expected

0.2 0.4 0.6 0.8

Committor Value

0.0

0.2

0.4

0.6

0.8

P
(t

(B
)
<

t(
A

))

Committor Analysis

Simulated

Expected

/



Examples of High-Dimensional PDEs
Differential Equation Solving

Important Examples of high-dimensional problems
• Optimal Control: Hamilton-Jacobi Equation

— Dimension: State Space Dimension

• Metastability: Backward Kolmogorov / Feynman-Kac
— Dimension: State Space Dimension

• Nonequilibrium Dynamics: Compute large deviation function
— Dimension: State Space Dimension

• QuantumMany-body problem: Eigenvalue Problems
— dimension∝ number of particles
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Backward Kolmogorov Equation
Differential Equation Solving

Dynamics driven by an SDE,

dXt = −∇V(Xt)dt+
√
2β−1dWt.

Various quantities satisfy Backward Kolmogorov Equation, including the committor
probability:

q(x) := Px(tB < tA)

where tA = inf{t : x(t) ∈ A} and tB is defined analogously. GM Rotskoff, AR Mitchell, E Vanden-Eijnden. Active
importance sampling for variational objectives dominated by rare events: Consequences for optimization and generalization. Mathematical and Scientific Machine
Learning, - , .
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Variational Formulation
Differential Equation Solving

We want to solve the PDE, 
(Lq)(x) = 0 for x 6∈ A ∪ B

q(x) = 0 for x ∈ A

q(x) = 1 for x ∈ B.

where−L is the infinitesimal generator of the process defined by (??):

Lq = ∇V · ∇q− β−1∆q.

Variational formulation:

C(q) =
∫
Rd

|∇q(x)|2dν(x) with dν(x) = Z−1e−βV(x)dx
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Example: low-dimensional metastable system
Differential Equation Solving
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Example: -dimensional molecular systems
Differential Equation Solving
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Formulation as a Feynman-Kac Equation
Differential Equation Solving

Molecular dynamics becomes Markovian on a lag-time τ.

T τ
A∪B[ϕ](x) = Exϕ(Xτ∗) where τ∗ = min(τ,T)

q(x) = 0 x ∈ A

q(x) = 1 x ∈ B

Then, the committor satisfies:

(T τ
A∪B[q]− Id)(x) = 0 x ∈ (A ∪ B)c

Strahan, J. et al. http://arxiv.org/abs/ . ( ).
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Application of Feynman-Kac to Hurricane Lead Times
Differential Equation Solving

FIG. 7. Illustration of some key properties of the Holton Mass model relevant to the prediction problems considered
here. Red and yellow ellipses approximately mark the projections of states A and B, respectively, on the collective
variables. The background color shows the average time to hit state B, clipped to a maximum of 1300 days to
show detail. Black contours show the negative logarithm of the stationary density marginalized on these collective
variables. Three transition paths harvested from a long simulation are shown in white.

z dimension in 27 layers. After enforcing boundary conditions, this results in a 75-dimensional state space:

Xt = [Re{ (�z, t)}, ...,Re{ (25�z, t)},
Im{ (�z, t)}, ..., Im{ (25�z, t)},
U(�z, t), ..., U(25�z, t)].

(26)

The two states of interest in this model are a strong polar vortex, with large positive U(z, t) (meaning
eastward wind, marked as state A in Figure 7), and a weak polar vortex, with a weak wind profile in which
U(z, t) sometimes dips negative (marked as state B in Figure 7). Specifically, we define A and B as spheres
centered on the model’s two stable fixed points ( a, Ua) and ( b, Ub) in the 75-dimensional state space.
The two spheres have radii of 8 and 20 respectively, with distances measured in the non-dimensionalized
state space specified in [34]. In physical units, these correspond to the ellipsoids

A =

⇢
 , U :

k � ak2

(7.2⇥ 105 m2/s)2
+

kU � Uak2

(2.9 m/s)2
 82

�
(27)

B =

⇢
 , U :

k � bk2

(7.2⇥ 105 m2/s)2
+

kU � Ubk2

(2.9 m/s)2
 202

�
(28)

where k·k is the complex vector 2-norm.
Figure 7 illustrates the key features of this model relevant to the prediction problems we consider here.

We see that the average time to reach B starting from A is over 1000 days, which is substantially longer
than the longest lag times we consider here ( 10 days). We can also see that the transition paths do not
proceed through the saddlepoint of the e↵ective free energy (i.e., the negative logarithm of the stationary
density, marked by the contours), indicating that purely dynamical e↵ects are important.

To generate an initial data set, we sampled 30,000 points uniformly in U(30 km) and | |(30 km) from a
long (50,000 days) trajectory and ran two ten-day trajectories from each starting point. Simulation details
are reported in [34]. We simulated with a time step of 0.005 days, and saved the state of the system every
0.1 days. To validate our neural network results, we use a long trajectory of 500,000 days to compute

hq(s)i = E[ B(X(⌧))|u✓⇤(X(0)) 2 [s, s+�s]] for s 2 [0, 1]. (29)

13

Strahan, J. et al. http://arxiv.org/abs/ . ( ).
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Nonequilibrium Dynamics
Differential Equation Solving

Aim to calculate the large deviation rate function for an observable, giving information
about the asymptotic probability distribution.

Large deviations on path measures

P(AT ∈ [a, a+ da]) � e−TI(a)

where P is the path measure associated with

dXt = b(Xt)dt+ σ(Xt)dWt

and

AT =

∫ T

0
f(Xt)dt+

∫ T

0
g(Xt) ◦ dXt

J Yan, GM Rotskoff. Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control. Journal of Chemical Physics ( )

/



Nonequilibrium Dynamics
Differential Equation Solving

Control problem hidden in a rare events problem

dXut = ut(Xut )dt+ σdWt, ( )

and then the SCGF can be estimated simply by reweighting the average

ψ(λ) = lim
T→∞

1

T
logEXu

(
eλTAT

dP[Xu]
dPu[Xu]

)
. ( )

ψ(λ) = lim
T→∞

1

T
logE[eλTAT ] = sup

u
lim
T→∞

{
λEu[AT]−

1

T
DKL[dPu‖dP]

}
. ( )
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Nonequilibrium Dynamics: Realizing rare events
Differential Equation Solving

Current in the asymmetric exclusion process; comparison with tensor network approach.
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Nonequilibrium Dynamics: Realizing rare events
Differential Equation Solving

Active nonequilibrium matter, quantifying entropy production fluctuations.
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QuantumMonte Carlo
Differential Equation Solving

Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo
here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.

Variational Monte Carlo
We can recast the problem that finding the eigenvalue ofH as

min
θ

L(θ) = 〈Ψθ,HΨθ〉
〈Ψθ,Ψθ〉

=

∫
x∈X Ψ∗

θ(x) · (HΨθ)(x)dx∫
x∈X Ψ∗

θ(x) ·Ψθ(x)dx

=

∫
x∈X

Ψ∗
θ(x) ·Ψθ(x)∫

x∈X Ψ∗
θ(x) ·Ψθ(x)dx︸ ︷︷ ︸

probability πθ(x)

HΨθ(x)
Ψθ(x)︸ ︷︷ ︸

local energy Eθ(x)

dx = Eπθ(x)Eθ(x)
( )

/



QuantumMonte Carlo
Differential Equation Solving

Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo
here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.

Variational Monte Carlo
We can recast the problem that finding the eigenvalue ofH as

min
θ

L(θ) = 〈Ψθ,HΨθ〉
〈Ψθ,Ψθ〉

=

∫
x∈X Ψ∗

θ(x) · (HΨθ)(x)dx∫
x∈X Ψ∗

θ(x) ·Ψθ(x)dx

=

∫
x∈X

Ψ∗
θ(x) ·Ψθ(x)∫

x∈X Ψ∗
θ(x) ·Ψθ(x)dx︸ ︷︷ ︸

probability πθ(x)

HΨθ(x)
Ψθ(x)︸ ︷︷ ︸

local energy Eθ(x)

dx = Eπθ(x)Eθ(x)
( )

/



QuantumMonte Carlo
Differential Equation Solving

Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo
here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.

Variational Monte Carlo
We can recast the problem that finding the eigenvalue ofH as

min
θ

L(θ) = 〈Ψθ,HΨθ〉
〈Ψθ,Ψθ〉

=

∫
x∈X Ψ∗

θ(x) · (HΨθ)(x)dx∫
x∈X Ψ∗

θ(x) ·Ψθ(x)dx

=

∫
x∈X

Ψ∗
θ(x) ·Ψθ(x)∫

x∈X Ψ∗
θ(x) ·Ψθ(x)dx︸ ︷︷ ︸

probability πθ(x)

HΨθ(x)
Ψθ(x)︸ ︷︷ ︸

local energy Eθ(x)

dx = Eπθ(x)Eθ(x)
( )

/



Variational Monte Carlo
Differential Equation Solving

Variational Monte Carlo
• Fisher-Rao Gradient

∇θLθ = 2Eπθ(x)[(Eθ(x)− Eπθ(x)Eθ(x))︸ ︷︷ ︸
deviation of local energy

∇θ log |Ψθ|︸ ︷︷ ︸
score

]

Pfau D, Spencer J S, et al. Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, , ( ):

.

• Wasserstein Gradient

∇θLθ = Eθ∇θ

〈
−2 ∇xEloc(x(i))︸ ︷︷ ︸

gradient of local energy

,∇x logπ(x(i), θ)

〉

Neklyudov K, Nys J, Thiede L, et al. Wasserstein quantum monte carlo: A novel approach for solving the quantum many-body schrödinger equation.

Neurips .
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Differential Equation Solving
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Why VMC is hard?
Differential Equation Solving

• Design of ani-symmetric Neural NetworkΨ(xσ(1), · · · , xσ(n)) = sgn(σ)Ψ(x1, · · · , xn)
(Slater) Determinant is slow and exists an exponential approximation lower bound.
Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv: . , .

Pang T, Yan S, Lin M. O(N2) Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv: . , .

• The calculation of∆ is slow in high dimension

H := −1

2

∑
i

∆i +
∑
i>j

1

|ri − rj|
−
∑
iI

ZI
|ri − RI|

+
∑
I>J

ZIZJ
|RI − RJ|

( )

Li R, Ye H, Jiang D, et al. Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo. arXiv preprint

arXiv: . , .

• Non-convex landscape and overfitting
Zhang H, Webber R J, Lindsey M, et al. Understanding and eliminating spurious modes in variational Monte Carlo using collective variables. Physical Review

Research, , ( ): .
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Beyond Physics
Differential Equation Solving

PINN-like idea can be used beyond physics. Generally speaking, you can always fusion
modeling with learning with PINN, for example
• Auction Design

Dütting P, Feng Z, Narasimhan H, et al. Optimal auctions through deep learning International Conference on Machine Learning.

Peri N, Curry M, Dooley S, et al. Preferencenet: Encoding human preferences in auction design with deep learning. Advances in Neural Information

Processing Systems .

• Neural Rendering
Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM.

Sitzmann V, Martel J, et al. Implicit neural representations with periodic activation functions. Advances in neural information processing systems .

• · · ·
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Statistics of Physics-Informed Neural Network
Theory Behind Physics-Informed Neural Network

What is the optimal sample complexity for learning with prior information A(u) = f?

Is PINN Optimal? Are All Losses Created Equal?
Recast Solving PDE as a Statistical Problem
Example: Solving∆u = f

• Hypothesis Space: the solution u in (Sobolev, Besov, Barron space...)
• Observation Data:

(u(xi), f(xi) = ∆u(xi)+noise)ni=1

Now we recast a solving PDE problem as a non-parametric estimation problem, so that we
can
• Using Fano, ... methods to know the lower bound
• Using empirical process, ... methods to build the upper bound

Lu, Yiping, et al. ”Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”
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Statistics of Physics-Informed Neural Network
Theory Behind Physics-Informed Neural Network

What is the optimal sample complexity for learning with prior information A(u) = f?
Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound
If A is a t−th order linear differential operator, then any Estimator H using (Xi, fi)ni=1 can’t
do better than

inf
H

sup
u∈Cα(Ω)

E‖H({Xi, fi}i=1,··· ,n)− u∗‖W2
s
≳ n−

2α− s
2α− t+d ,

• Solving a PDE equal to reconstructing a function with gradient information
inf means best estimator and sup means the hardest problem

Take Home Message PINN is Optimal! Not every consistent loss function is optimal! We
need case by case studying!
Lu, Yiping, et al. ”Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”
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A Fourier Basis View
Theory Behind Physics-Informed Neural Network

Why Deep Ritz Method is sub-optimal?

Solving a simple PDE∆u = f using Fourier Basis. Using
Deep Ritz Methods, the objective function is

min
∫

1

2
‖∇f(x)‖2 − u(x)f(x)dx

• Estimator : First learn f, the god solves the equation computationally intractable

Estimator
First Estimate f then solve u, fz = 1

n

∑
f(xi)ϕz(xi), then u =

∑
1

∥z∥2 fzϕz(x)

• Estimator : Deep ritz methods

Estimator
Plug u =

∑
uzϕz(x) into the Deep Ritz Objecive function

1

n

n∑
i=1

(∑
z

uz∇ϕz(xi)

)2

+
∑
z

uzϕz(xi)f(xi)
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A Fourier Basis View
Theory Behind Physics-Informed Neural Network

• Estimator : The Fourier coefficient of the solution of Estimator is

u1,z = diag
(
‖z‖22

)−1

∥z∥∞≤Z︸ ︷︷ ︸
MatrixA

fz. ( )

• Estimator : The Fourier coefficient of the solution of Estimator is

u2,z =

(
1

n

n∑
i=1

∇ϕi(xi)∇ϕj(xi)

)−1

∥i∥∞≤Z,∥j∥∞≤Z︸ ︷︷ ︸
Empirical Gram Matrix Â

fz, ( )

Suboptimality of Deep Ritz Methods
introduce a new variance Var(‖∇u(x)‖2 −∆u(x)u(x)), but neglectable in high-dimension

Lu, Yiping, et al. ”Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”
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Approximation Theory of Physics-Informed Neural
Network
Theory Behind Physics-Informed Neural Network

Question
Let’s consider the simplest PDE∆u = f. If f can be represented by a NN, can u be
represented by a NN?

The answer is YES. This helps us to understand the implicit bias of NN to solve PDEs.
• Parametric Complexity Bounds for Approximating PDEs with Neural Networks Tanya Marwah, Zachary C. Lipton, Andrej Risteski Neural Information

Processing Systems (NeurIPS),

• Neural Network approximations of PDEs Beyond Linearity: A Representational Perspective Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski
International Conference on Machine Learning (ICML),

• Deep Equilibrium Based Neural Operators for Steady-State PDEs Tanya Marwah*, Ashwini Pokle*, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu, Andrej
Risteski Neural Information Processing Systems (NeurIPS),

Reason: Neural Network can perform (preconditioned) gradient flow.
• Similar to the recent line of that transformer can perform gradient descent for
in-context learning.

• Precondition is essential for infinite-dimensional due to infinite condition number!
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Optimization of Physics-Informed Neural Network
Theory Behind Physics-Informed Neural Network

Will different loss function affects optimization speed?

).Physics-Informed
∫
(∆u(x)− f(x))2dx ).Deep Ritz

∫
‖∆u(x)‖2 − 2u(x)f(x)dx

Traditional Thoughts ) is much harder, for it involves condition number of∆2 while )
only involves∆
Machine Learning is a Kernelized gradient flow. Physics equations can precondition
machine learning!
Lu Y, Blanchet J, Ying L. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. Advances in Neural Information Processing

Systems, , : - .

Using Sobolev norm (
∫
‖∇k(∆u(x)− f(x))‖2dx) as loss function can further accelerates

training accelerates optimization
• Yu J, Lu L, Meng X, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, .

• Sobolev training for physics-informed neural networks, with J. W. Jang, W. J. Han, and H. J. Hwang,
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Sobolev Training vs L training
Theory Behind Physics-Informed Neural Network

Sobolev Training vs L training for function fitting.

/



Sobolev Training vs L training
Theory Behind Physics-Informed Neural Network

Sobolev Training vs L training for solving heat equation.
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Computation of PINN in High Dimension
Theory Behind Physics-Informed Neural Network

Computing and even back prop∆u = ux1x1 + · · ·+ uxdxd︸ ︷︷ ︸
d times computation

is hard when d is high!

Idea : Stein’s Lemma: u = Eδ∼N (0,σ2I)f(x+ δ), then∇xu = Eδ∼N (0,σ2I)[
δ
σ2 f(x+ δ)]

• Relates to Feyman-Kac

• Finite Difference with random direction!

He D, Li S, Shi W, et al. Learning physics-informed neural networks without stacked back-propagation International Conference on Artificial Intelligence and Statistics.

Idea : Sketching: random select dimension to descent

∆u(x) = Ei
d2

dx2i
u(x)

Hu Z, Shukla K, Karniadakis G E, et al. Tackling the curse of dimensionality with physics-informed neural networks. arXiv preprint arXiv: . , .
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Failure Modes of PINN
Theory Behind Physics-Informed Neural Network

Consider solving equation ∂u
∂t + β ∂u

∂x = 0 whose solution is u(x, t) = u(x− βt, 0) using
PINN

Propagation Failure: some collocation points start converging to trivial solutions before
the correct solution from initial/boundary points is able to reach them

• Curriculum training using easier β Krishnapriyan A, et al. Characterizing possible failure modes in physics-informed neural

networks. Neurips, .

• Respecting causality Wang S, et al. Respecting causality is all you need for training physics-informed neural networks. arXiv: . .

• Adaptive sampling Gao Z, Yan L, Zhou T. Failure-informed adaptive sampling for PINNs. SIAM Journal on Scientific Computing, .
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Motivation of Operator Learning: Meta-PINN?
Operator Learning

Parametric PDE
We consider PDEs parametrized by coefficent a(x):

−∇ · (a(x)∇u(x)) = f(x), x ∈ D.

Input: a(x) Output: u(x)

What if we have a dataset of a(x)

Khoo, Yuehaw, Jianfeng Lu, and Lexing Ying. ”Solving parametric PDE problems with artificial neural networks.” European Journal of Applied Mathematics
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Operator Learning
Operator Learning

How can we build a 
resolution invariant 

machine learning system?

Idea: Directly learn the mapping between functions.
Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of

operators. arXiv preprint arXiv: . , .

Kovachki N, Li Z, Liu B, et al. Neural operator: Learning maps between function spaces. arXiv preprint arXiv: . , .
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Operator Learning: General Framework
Operator Learning
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Operator Learning: Discretization-Invariant
Operator Learning

Idea: Directly learn the mapping between functions.

Discretized vector

Continuous function
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Neural Operators: Learning in the Function space
Operator Learning

Idea: Learning in the function space
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Operator Learning: Framework
Operator Learning

Operator learning aims to build a parametric approximation Gθ(θ ∈ Rp) to approximate a
(non-linear) operator G : A︸︷︷︸

Banach space

→ U︸︷︷︸
Banach space

• Banach spaceA : {a : D → Rda} and U : {a : D → Rda} are all function space
• Idea :

Function Rd1 Code Rd2 Code Function

— Linear Encoding from a function to Rd1 code
— Transform a Rd1 code to a Rd2 code
— Linear Decoding from Rd2 code to a function
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Operator Learning
Operator Learning

We need to generalize operations in neural networks to function space

Linear Transform
• Linear Encoding: u → {

∫
x u(x)fi(x)dx}

n
i=1

• a vector-input vector-output neural network
• Linear Decoding: {βk}pk=1 →

∑p
k=1 βk τk︸︷︷︸

function

Universal approximation theorem of Chen & Chen ( ) states that DeepONets can
approximate continuous operators
Lu L, Jin P, Pang G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature machine intelligence.
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Operator Learning
Operator Learning

We need to generalize operations in neural networks to function space

Linear Transform
• Linear Encoding: u → {

∫
x u(x)fi(x)dx}

n
i=1

• a vector-input vector-output neural network
• Linear Decoding: {βk}pk=1 →

∑p
k=1 βk τk︸︷︷︸

function

Universal approximation theorem of Chen & Chen ( ) states that DeepONets can
approximate continuous operators
Lu L, Jin P, Pang G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature machine intelligence./



Operator Learning: Framework
Operator Learning

Operator learning aims to build a parametric approximation Gθ(θ ∈ Rp) to approximate a
(non-linear) operator G : A︸︷︷︸

Banach space

→ U︸︷︷︸
Banach space

• Banach sapceA : {a : D → Rda} and U : {a : D → Rda} are all function space
• Idea :

Function Rd1 Code Rd2 Code Function

— Linear Encoding from a function to Rd1 code
— Transform a Rd1 code to a Rd2 code
— Linear Decoding from Rd2 code to a function

• Idea : Directly feature extraction in the function space!
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Operator Learning
Operator Learning

We need to generalize operations in neural networks to function space

Convolution

• vl+1(s) = σ

Wlvl(s) +
∫
D
kl(s, z)vl(z)dz︸ ︷︷ ︸
convolution

+ bls(s)


Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar A.,“Neural Operator: Learning Maps Between Function

Spaces”, JMLR, . doi: .

• Fast implementation: Fourier Neural Operator
FFT->multiplication->iFFT->nonlinear activation

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar A.,“Fourier Neural Operator for Parametric Partial Differential

Equations”, ICLR, .
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Operator Learning
Operator Learning

We need to generalize operations in neural networks to function space

Attention
Original Attention: Fourier Transform

∫
Ω(ξq(xi)ϕk(ξ))vj(ξ)dξ
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Computation scales O(n2k): n number of pixels, k number of ”Basis”
Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, , : - .
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Operator Learning
Operator Learning

We need to generalize operations in neural networks to function space

Attention
Galerkin Attention: zj(xi) =

∑d
j=1

(∫
Ω kl(ξ)vj(ξ)dξ

)
ql(xi)
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-th row
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Computation scales O(nk2): n number of pixels, k number of ”Basis”
Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, , : - .
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Linear Operator Learning
Operator Learning

Convergence Rate

• de Hoop M V, Nelsen N H, et al. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification

• BoulleN, Townsend A. Learning elliptic partial differential equations with randomized linear algebra. Foundations of Computational Mathematics

Improved Rates by Multi-level Methods
• Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix–vector multiplication. Journal of Computational Physics, .

• BoulléN, Kim S, et al. Learning Green’s functions associated with time-dependent partial differential equations. The Journal of Machine Learning Research.

• Schäfer F, Owhadi H. Sparse recovery of elliptic solvers from matrix-vector products. arXiv preprint arXiv: . , .

• Jin J, Lu Y, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. .
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Why Linear: Koopman Operator
Operator Learning

The Koopman operator is a linear but infinite-dimensional operator that describes the
evolution of observables in a finite dimensional dynamical system.

How the distribution of state space evolves through the dynamic!
(Mathematically: adjoint of generator)

/



Hardness of learning in infinite dimensions: Linear Case
Operator Learning

A linear operator is an“infinite-dimensional”matrix,

operator learning equals to
reconstruct a matrix using matrix-vector multiplication.
Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix–vector multiplication. Journal of Computational Physics, .

Evert Row is a Linear Regression

Optimal regularization differs for each row!

Multilevel algorithms are essential to achieve minimax optimality, which differs from
finite-dimensional matrix reconstruction!
Jin J, Lu Y, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. .
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Hardness of learning in infinite dimensions
Operator Learning

Neural operators can approximate any continuous operator. Chen & Chen , Nikola Kovachki et. al.

Curse of Dimensionality
The cost to represent a function is exponential to the dimensionality.

Smoothness only is not enough to break the Curse of dimensionality!
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Break Curse of Dimensionality: Non-linear Case
Operator Learning

Different from finite dimension, Smoothness only is not enough to break the Curse of
Dimensionty! Additional structure is needed, such as
• Holomorphic Mappings

Schwab, C. & Zech, J. ( ), Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ,

Analysis and Applications

• PDE Oerators
Lanthaler S, Mishra S, Karniadakis G E. Error estimates for deeponets: A deep learning framework in infinite dimensions. Transactions of Mathematics and

Its Applications, , ( ): tnac .

Open Question
What is the general structure that makes operator possible in infinite dimension?
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Break Curse of Dimensionality: PDE Operators
Operator Learning

Different structure that is used to break the curse of dimensionality includes
• Darcy Flow, Navier-Stokes via PCA-Net [ ]
• Hamilton-Jacobi Equation [ ]
• ...

Idea Neural Network can approximate known ”algorithms”
• Approximate convergent schemes such as spectral methdos
• Approximate the Method of Characteristics

Similar to approximation theory for PINN

[ ] Lanthaler S. Operator learning with PCA-Net: upper and lower complexity bounds. arXiv preprint arXiv: . , .

[ ] Lanthaler S, Stuart A M. The curse of dimensionality in operator learning. arXiv preprint arXiv: . , .
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Break Curse of Dimensionality: PDE Operators
Operator Learning

Neural Operator adaptive to certain structure is ensential!
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PDE-Net
Operator Learning

Approximate partial derivative using finite difference can be represent as convolution.

f(x, y)

f(x − ∆x, y)f(x + ∆x, y)
How to approximate ∂xxf(x, y)?

∂xxf(x, y) ≈ f(x−∆x,y)+f(x+∆x,y)−2f(x,y)
∆x2

equivalent to conv kernel [- , , ]

Question
How can we map convolution kernels with finite difference operators?
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PDE-Net
Operator Learning

What’s the property of a partial derivative?
Differentiation can because low order polynomial to zero!

Orders of sum rules
For a filter q, we say q to have sum rules of order α = (α1, α2), where α ∈ Z2

+, provided
that ∑

k∈Z2

kβq[k] = 0 ( )

for all β ∈ Z2
+ with |β| < |α| and for all β ∈ Z2

+ with |β| = |α| but β 6= α. If ( ) holds for
all β ∈ Z2

+ with |β| < K except for β 6= β0 with certain β0 ∈ Z2
+ and |β0| = J < K, then

we say q to have total sum rules of order K\{J+ 1}.

Linear constraints on convolutional weights!

/



PDE-Net
Operator Learning

What’s the property of a partial derivative?
Differentiation can because low order polynomial to zero!

Orders of sum rules
For a filter q, we say q to have sum rules of order α = (α1, α2), where α ∈ Z2

+, provided
that ∑

k∈Z2

kβq[k] = 0 ( )

for all β ∈ Z2
+ with |β| < |α| and for all β ∈ Z2

+ with |β| = |α| but β 6= α. If ( ) holds for
all β ∈ Z2

+ with |β| < K except for β 6= β0 with certain β0 ∈ Z2
+ and |β0| = J < K, then

we say q to have total sum rules of order K\{J+ 1}.

Linear constraints on convolutional weights!

/



PDE-Net
Operator Learning

PDE-Net is a neural network but can also represent a PDE with form

ut = f(u, ux, uxx, · · · )

• Linear constrained convolution kernel to approximate spatial derivatives
• x convolution kernel to approximate function f Lin M, Chen Q, Yan S. Network in network. arXiv preprint

arXiv: .
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Boundary Condition
Operator Learning

Dirichlet BCs Neumann/Robin BCs

Internal nodes Edge nodesGhost nodes Conv filter

Periodic BCs

1 2 3 4 5 6

1 2 3 4 5 6

10 11 12987

10 11 12987

Rao C, Ren P, Wang Q, et al. Encoding physics to learn reaction–diffusion processes. Nature Machine Intelligence, , ( ): - .
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Sparse Identification of Nonlinear Dynamics (SIDy)
Operator Learning

Build a big dictionary

Θ(U) = [1,U,U2, · · · , sin(U), · · · ,Ux,U2
x , · · · ,Uxx,U2

xx, · · · ]︸ ︷︷ ︸
possible dictionary

and then preform sparse regression methods

Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan . ”Discovering governing equations from data by sparse identification of nonlinear dynamical systems”.
Proceedings of the National Academy of Sciences.

Chen Z, Liu Y, Sun H. Physics-informed learning of governing equations from scarce data. Nature communications.
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Data-Driven Discovery of New Physics
Operator Learning
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Data-Driven Discovery of New Physics
Operator Learning

Intuitively speaking, the balls in our data set (whiffle balls, perhaps, excluded) are similar
enough objects that the equations governing their trajectories should include similar
terms. Group Sparsity!

de Silva B M, Higdon D M, Brunton S L, et al. Discovery of physics from data: Universal laws and discrepancies. Frontiers in artificial intelligence, , : .
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Data-Driven Discovery of New Physics
Operator Learning

The Reynolds number for a ball with diameter D and velocity v will then be

Re = 0.6667Dv× 105

Complex secondary physical mechanisms, like unsteady fluid drag forces, can obscure the
underlying law of gravitation, leading to an erroneous model.
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Latent SINDY
Operator Learning

Bakarji J, Champion K, Nathan Kutz J, et al. Discovering governing equations from partial measurements with deep delay autoencoders. Proceedings of the Royal

Society A, , ( ): .
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Different Levels of Interpretability
Operator Learning

Fully white box, limited capacity

· · ·

Gray box neural network
Physics knowledge as network structure, differentiable physics that integrate

FEM/FDM solvers

· · ·

Fully black box, universal approximator

DeepONet, FNO

PDE-Net

SIDy
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Summary
Summary

In this tutorial, we introduced empirical and theoretical challenges to cooperate physical
information Au = f to machine learning systems
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Recent Advances in Physics-Informed
Machine Learning

Thank you for listening!
Any questions?
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