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Paul M. Dirac (1929)
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Physical Science - - - - - - theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science » « - - - - numerical simulation to understand complex real systems

Paul M. Dirac (1929)

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.”

e Accurate “constitutive equation”
— e.g. Newton’s gravitational law — Kepler’s Law

e Efficient algorithms required
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//Am& Challenges for Computational Physics

1 Why Physics-Informed Machine Learning

Traditional numerical methods approximate general functions using polynomials or
piecewise polynomials, however...

Curse of Dimensionality

The cost to represent a function is exponential in the dimensionality.

OO9000
— >

Physical systems require high-dimensional representations, e.g. dimension of quantum
many-body problem o< # electrons
4/85



//‘:\m& Challenges for Computational Physics

1 Why Physics-Informed Machine Learning

Inverse Problem/Optimal Design

Inverse problems/optimal design involve solving

min £(F(x)),

X

where F is the forward process, such as a physics simulation, and L is the objective aim to
optimize. Even when a single iteration of this forward process is manageable, the overall
task becomes computationally infeasible due to the iterative optimization process.
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Physical Science - - - - - - theoretical derivation combined with experimental verification to study natural phenomena

Numerical Science « + « « « + numerical simulation to understand complex real systems

Combating these challenges using Machine (Deep) Learning!
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//Amz Combating Curse of Dimensionality with ML

1 Why Physics-Informed Machine Learning

Physical Science - - - - - - theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science » « + - - + numerical simulation to understand complex real systems
Machine Learning « - - - - - understand and build models that leverage empirical data to improve performance

Neural Networks provide tools to build flexible, universal, and efficient approximations
for complex high-dimensional functions and functionals.
e In practice
— Imagenet (32x32 dimension)
— Alpha Go (19x19 dimension)
— Large Language Models (dmoder ~ O(10%))
¢ In theory

— Separation to Kernel (Linear) Methods
— Depth Separation
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Physical Science - - - - - - theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science * -+ - - « numerical simulation to understand complex real systems
Machine Learning -« -+ - - - understand and build models that leverage empirical data to improve performance

Physics-Informed Machine

Learning « - - - - - TODAY

Physics-informed Machine Learning study potential benefits for machine learning models
by incorporating the physical prior such as

¢ Differential Equations: ODEs, PDEs, S(P)DEs

e Law of conservation, Symmetry ...
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1 Why Physics-Informed Machine Learning

Physical Science - - - - - - theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science * -+ - - « numerical simulation to understand complex real systems
Machine Learning -« -+ - - - understand and build models that leverage empirical data to improve performance

Physics-Informed Machine

Learning « - - - - - TODAY

Physics-informed Machine Learning study potential benefits for machine learning models
by incorporating the physical prior such as

¢ Differential Equations: ODEs, PDEs, S(P)DEs

e Law of conservation, Symmetry ...
Applications include

e Quantum Many-body Problem

e Turbulence Models

e Modeling Rare Events

Hao Z, Liu S, Zhang Y, et al. Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint arXiv:2211.08064, 2022.
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1 Why Physics-Informed Machine Learning

: Higher Dimension

Imagenet only 32 x 32 dimension, which can only simulate ~300 molecules
Thus we need to understand

e function space that we can approximate in high-dimension.
e physical prior can help to represent functions more efficiently.

e approximation theory in infinite dimensional.
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//‘:\m& What are the Challenges in PIML?

1 Why Physics-Informed Machine Learning

Representation: Higher Dimension

Imagenet only 32 x 32 dimension, which can only simulate ~300 molecules
Thus we need to understand

e function space that we can approximate in high-dimension.
e physical prior can help to represent functions more efficiently.

e approximation theory in dimensional.

Generalization: Expensive Data Collection

Labeling data for scientific research is expansive, thus we need to consider the
generalization theory for physics-informed machine learning

Small Data Big Data
Lots of Physics No Physics
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1 Why Physics-Informed Machine Learning

How to represent a physical solution and why it generalizes for
¢ Solving Differential Equations and Optimal Control

e Better Sampling for scientific problems
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//Amz What is this tutorial about?

1 Why Physics-Informed Machine Learning

How to represent a physical solution and why it generalizes for
¢ Solving Differential Equations and Optimal Control
e Better Sampling for scientific problems
with applications in
e Inverse Problem
e Quantum Many-body Problem
e Rare Event (Transition Path) Sampling

e Large Deviations
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2 Formulation for Physics-Informed Machine Learning

Physics-Informed Machine Learning

physics-informed machine learning as a structured risk minimization problem

min L(f,D) + Q(f) (1)
feH ~—~
physical prior
e Data D: we could augment the dataset utilizing available physical prior like symmetry
e Model f: we could embed physical prior into the model design

e Regularization (): regularization terms using given physical priors like differential
equations
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2 Formulation for Physics-Informed Machine Learning

Physics-Informed Machine Learning

physics-informed machine learning as a structured risk minimization problem

min L(f,D) + Q(f) (1)
feH ~—~
physical prior
e Data D: we could augment the dataset utilizing available physical prior like symmetry
e Model f: we could embed physical prior into the model design
e Regularization (): regularization terms using given physical priors like differential
equations
Tasks that we are interested in
e Solving physical equations (First principle modeling)
e Operator Learning
e System Identification/Scientific Discovery

12/85 Hao Z, Liu S, Zhang Y, et al. Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint arXiv:2211.08064, 2022.



//‘:\m& Partial Differential Equations (PDEs)

2 Formulation for Physics-Informed Machine Learning

Definition:PDEs

PDE is a relation of the following type, parameterized by A € R™:
F(X1, ey Xpy oeej Uy s ooey Uy s Usyxg s Ungxgs -5 A) = 0
with suitable boundary conditions
B(u,X) =0, Xe€ 09, (2)

Solving a PDE — find a u function satisfying the governing equation.

where
e u = u(xy,...x,) is a unknown function of n variables, i.e., u : R? — R;

(ii can be a vector, i.e.,ii € RY, here, we assume it to be a scalar for simplicity )
du 9%u

° uxi = ox’ uxixj = Wixj,...
e fis the governing equation.
%% Bis the boundary condition.



//I:\M Governing equation: Linear vs. Non-linear

2 Formulation for Physics-Informed Machine Learning

Linear PDE

A PDE is linear if and only if fis linear with respect to u and all its derivatives.

f()?v U Uyxy y +ens Uy Uxyxg s Uxgxo -5 /\) =0, Xe Q, (3)
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//‘:\m& Governing equation: Linear vs. Non-linear

2 Formulation for Physics-Informed Machine Learning

Linear PDE

A PDE is linear if and only if fis linear with respect to u and all its derivatives.

f()?v U5 Uyxy y oens Uy Uxyxg s Uxgxo -5 /\) =0, Xe Q, (3)

Non-linear PDE

e Semilinear PDE where fis nonlinear only with respect to u but is linear with respect
to all its derivatives;

e Quasi-linear PDE where fis linear with respect to the highest order derivatives of u;

¢ Fully nonlinear PDE where fis nonlinear with respect to the highest order derivatives
of u.
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//‘:{w& Governing equation: order of PDEs

2 Formulation for Physics-Informed Machine Learning

Order of a PDE

The highest order of differentiation occurring in the equation is the order of the equation.

F Uy ugy ooy Uy Unyxyy Ukyxp -5 A) = 0, X € Q, (4)
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//‘:{m‘ Governing equation: order of PDEs

2 Formulation for Physics-Informed Machine Learning

Order of a PDE

The of differentiation occurring in the equation is the order of the equation.

Fus Uy, ooy Uy Unyxyy Ukyxp -5 A) = 0, X € Q, (4)

Second order PDEs

Most commonly used in engineering applications.
AUyy + 2buy, + cuyy + duy + euy, +hu = f

where a, ..., fare smooth (e.g. C?) functions of x, y.
e Elliptic: b?> — ac < 0, e.g., Laplace equation uxy + Uy, = 0
e Parabolic: b® — ac = 0, e.g., Diffusion equation u; — Duy, = 0
e Hyperbolic: b> — ac > 0, e.g., Wave equation Uy — ¢y, = 0

15/85



//Am& Boundary conditions: Types of boundary value problems

2 Formulation for Physics-Informed Machine Learning

e Dirichlet: specifies the boundary value

of u: u‘aQ = f Boundary value
ore i
e Neumann: specifies the value of the gven along the

. . boundary curve
normal derivative of the u: uy|so = f /

e Cauchy: Dirichlet and Neumann, i.e,

ulao = fand uylan = f

e Mixed: different location (x) have Figure: Boundary value problem
different boundary condition.

Region governed
by a differential
equation

e Robin: cou|pn + cruxloa = f

"https://en.wikipedia.org/wiki/Boundary_value_problem
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// ««  Forward problem
A 2 Formulation for Physics-Informed Machine Learning

Forward problem: Given a fixed ), solve for u(x)
Consider the following PDE parameterized by A € R™:

F(X1, ooy Xy oeej Uxyy ooy Uy s Uy, Ukgegy -5 A) = 0

eTtrcaditionaIIy, solved with finite difference method (FDM), finite element method (FEM),
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F(X1, ooy Xy oeej Uxyy ooy Uy s Uy, Ukgegy -5 A) = 0
eTtrcaditionaIIy, solved with finite difference method (FDM), finite element method (FEM),

Advantages: Accurate, Reliable
Challenges: Expensive and time consuming, Hard to incorporate in downstream
applications
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// ««  Forward problem
A 2 Formulation for Physics-Informed Machine Learning

Forward problem: Given a fixed ), solve for u(x)
Consider the following PDE parameterized by A € R™:

F(X1, ooy Xy oeej Uxyy ooy Uy s Uy, Ukgegy -5 A) = 0
eTtrcaditionaIIy, solved with finite difference method (FDM), finite element method (FEM),

Advantages: Accurate, Reliable
Challenges: Expensive and time consuming, Hard to incorporate in downstream
applications
Learning is suitable for:
e Surrogate modeling: find a cheap model to surrogate the PDE governed system, i.e.,
u=fo(x; A).

e Incorporating physical knowledge (PDE) information for downstream tasks.
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// ««  Inverse problems
A 2 Formulation for Physics-Informed Machine Learning

Inverse problem: Given a set of observed u(x), find A
Consider the following PDE parameterized by A € R™:

F(X1, ooy Xy oeej Uxyy ooy Uy s Uy, Ukgegy -5 A) = 0

o |dentifying unknown parameters in PDEs/boundary/initial conditions
e Data driven (with partail physics knowledge) spatio-temporal modeling

Traditionally, formulated as a PDE constraint optimization problem, and solved with
adjoint method.
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// ««  Inverse problems
A 2 Formulation for Physics-Informed Machine Learning

Inverse problem: Given a set of observed u(x), find A

Consider the following PDE parameterized by A € R™:
TE1 o o P20 o Wk o 2y Whe & Whesin 5 Wiy g aced ) = )

o |dentifying unknown parameters in PDEs/boundary/initial conditions
e Data driven (with partail physics knowledge) spatio-temporal modeling

Traditionally, formulated as a PDE constraint optimization problem, and solved with
adjoint method.

Learning is suitable for:
e Incorporating PDE information in inverse problems

e Surrogate modeling 1: find a cheap model to surrogate (inversion of) the PDE
governed system, i.e., u = fp(x; A) (or A = fpr (u)).
18/85
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//Amz Physics-Informed Neural Network

3 Differential Equation Solving

Most of physics can be formulated as A(u) = fwhere A is a differential operator
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3 Differential Equation Solving

Most of physics can be formulated as A(u) = fwhere A is a differential operator

PINN solving A(u) = f

Suppose we observe (x;, f(x;))!_;, can we solve A(u) = f?
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//I\M Physics-Informed Neural Network

3 Differential Equation Solving

Most of physics can be formulated as A(u) = fwhere A is a differential operator

PINN solving A(u) = f

Suppose we observe (x;, f(x;))!_;, can we solve A(u) = f?
PINN minimizes the equation residual on observed data points, i.e.

u* = arg min ; 14 (u) (x:) — fxo)|1*
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«s.  Methods Beyond PINN
A

3 Differential Equation Solving

The core idea behind PINN is transforming solving A(u) = fto a minimization problem
min ||A(u) — f]|. New transformation can bring new methods!
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«s«  Methods Beyond PINN
A

3 Differential Equation Solving
The core idea behind PINN is transforming solving A(u) = fto a minimization problem
min ||A(u) — f]|. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e. Ax — b <— minx Ax — 2bx
Not all PDEs admit a variational form.

Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018
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«s«  Methods Beyond PINN
A

3 Differential Equation Solving

The core idea behind PINN is transforming solving A(u) = fto a minimization problem
min ||A(u) — f]|. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e.
Not all PDEs admit a variational form.

Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018

Weak Adversarial Network Solving equation A(u) = fequalvalent to

min (v,A(u) — f)

u

and change the constraint to a log penalization.

Zang Y, Bao G, Ye X, et al. Weak adversarial networks for high-dimensional partial differential equations. Journal of Computational Physics, 2020
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«s«  Methods Beyond PINN
A

3 Differential Equation Solving

The core idea behind PINN is transforming solving A(u) = fto a minimization problem
min ||A(u) — f]|. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e.
Not all PDEs admit a variational form.

Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018

Weak Adversarial Network Solving equation A(u) = fequalvalent to

muin (v,A(u) — f)
and change the constraint to a log penalization.
Zang Y, Bao G, Ye X, et al. Weak adversarial networks for high-dimensional partial differential equations. Journal of Computational Physics, 2020
Adversarial training L? loss is not strong enough (for regualrity of PDE structure), we
should use L*° loss for some PDEs.
WangC, etal. Is iz Physics Informed Loss Always Suitable for Training Physics Informed Neural Network? Advances in Neural Information Processing Systems, 2022.
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/ ««. Not Just Neural Network
/A 3 Differential Equation Solving
A neural network is not the only ansatz (a high bias list...)
e Gaussian Process
Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018.
Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the
National Academy of Sciences, 2021.

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.
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A neural network is not the only ansatz (a high bias list...)

e Gaussian Process
Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018.
Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the
National Academy of Sciences, 2021.
Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.

e Diffusion map
Lai R, Lu J. Point Cloud Discretization of Fokker-Planck Operators for Committor Functions. Multiscale Modeling & Simulation, 2018.

Evans L, et al. Computing committors in collective variables via Mahalanobis diffusion maps. Applied and Computational Harmonic Analysis.
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Gaussian Process

Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018.
Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the
National Academy of Sciences, 2021.

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.
Diffusion map

Lai R, Lu J. Point Cloud Discretization of Fokker-Planck Operators for Committor Functions. Multiscale Modeling & Simulation, 2018.

Evans L, et al. Computing committors in collective variables via Mahalanobis diffusion maps. Applied and Computational Harmonic Analysis.

Tensor Network

Bachmayr M, Schneider R, Uschmajew A. Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations.
Foundations of Computational Mathematics 2016.

Richter L, Sallandt L, Niisken N. Solving high-dimensional parabolic PDEs using the tensor train format International Conference on Machine Learning, 2021.

Hur Y, Hoskins J G, Lindsey M, et al. Generative modeling via tensor train sketching. Applied and Computational Harmonic Analysis, 2023.



//Amz Data Acquisition and Importance Sampling

3 Differential Equation Solving

So far, we have only built loss functions. How should we sample data?

T(u) = /Q £(%, u)dv(x),
e Simplest case dv(x) = dx

e Challenging case dv(x) = e~ V®dx
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/ ««  Adaptive Importance Sampling

3 Differential Equation Solving

On-the-fly variance reduction via adaptive importance sampling

Laxf) =3VR)P,  dvx)=e@ax  (5>0)

o Idea 1: Window sampling with instantaneous solution fwith a bias
e |dea 2: Reweight the expectation with these importance sampled points
Wi(x) > Owithl =1,...,Lsuchthatvx € Q : S/, Wy(x) =1

E.é= Z/¢ ) W) (x Zwﬂﬁz

GM Rotskoff, AR Mitchell, E Vanden-Eijnden Mathematical and Scientific Machine Learning, 757-780
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//Amz Adaptive Importance Sampling

3 Differential Equation Solving
For any ¢, define

Ei¢ = Zl_1 / o(x)Wi(x)dv(x) where Z; = Wi(x)dv(x) (5)

Rd Rd
as well as the weights
w) = EZIWZ' (6)

By choosing ¢(x) = Wy (x) in this expression, we deduce that the weights satisfy the
eigenvalue problem (Thiede et al 2016)

L

L
wpy = Zwlp”/, ll = 1, e ,L, subject to ZWI = 17 (7)
1=1 1=1

where we defined
pw = (W) (8)

25/85



//Amé Adaptive Importance Sampling

3 Differential Equation Solving

Sample Zl_1W1(x)dy(x) with MCMC biased
by — log W)(x) so that

1 o .
Ej¢ ~ - Z b(xiy), Xi1 ~ Z; 'Wi(x)dv(x)
i=1

This allows us to estimate [E;¢ in (7) as well
as py in (8) — can solve eigenvalue problem!
the weights w;, and finally estimate E,, ¢.
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//Amz Adaptive Importance Sampling

27/85

3 Differential Equation Solving

‘With Importance Sampling

Without Importance Sampling
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//Aw& Examples of High-Dimensional PDEs

3 Differential Equation Solving

Important Examples of high-dimensional problems
e Optimal Control: Hamilton-Jacobi Equation
— Dimension: State Space Dimension
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3 Differential Equation Solving

Important Examples of high-dimensional problems
e Optimal Control: Hamilton-Jacobi Equation
— Dimension: State Space Dimension
e Metastability: Backward Kolmogorov / Feynman-Kac
— Dimension: State Space Dimension
¢ Nonequilibrium Dynamics: Compute large deviation function
— Dimension: State Space Dimension
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//Am& Examples of High-Dimensional PDEs

3 Differential Equation Solving

Important Examples of high-dimensional problems
e Optimal Control: Hamilton-Jacobi Equation
— Dimension: State Space Dimension
e Metastability: Backward Kolmogorov / Feynman-Kac
— Dimension: State Space Dimension
¢ Nonequilibrium Dynamics: Compute large deviation function
— Dimension: State Space Dimension

e Quantum Many-body problem: Eigenvalue Problems
— dimension o< number of particles

28/85



//Amz Backward Kolmogorov Equation

3 Differential Equation Solving

Dynamics driven by an SDE,

dxt - —VV(Xt)dt + V 2571th.

Various quantities satisfy Backward Kolmogorov Equation, including the committor
probability:
q(x) :=P*(tp < ta)

where ty = inf{t : x(t) € A} and tp is defined analogously. o rotsoft, AR Mitchel, £ vanden-Eiinden. Active

importance sampling for variational objectives dominated by rare events: Consequences for optimization and generalization. Mathematical and Scientific Machine
Learning, 757780, 2022.
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««.  Variational Formulation
Y/

3 Differential Equation Solving

We want to solve the PDE,

(Lq)(x) =0 forx¢Z AUB
q(x)=0 forxe A
qix) =1 forx € B.

where —L is the infinitesimal generator of the process defined by (??):

Lq=VV-Vq—- B 'Aq.
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««.  Variational Formulation
Y/

3 Differential Equation Solving

We want to solve the PDE,

(Lq)(x) =0 forx¢Z AUB
q(x)=0 forxe A
qix) =1 forx € B.

where —L is the infinitesimal generator of the process defined by (??):
Lq=VV-Vq—- B 'Aq.
Variational formulation:

C(q) = /R d\Vq(x)yzdy(x) with  du(x) = Z le F"®ax
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//Amz Example: low-dimensional metastable system

3 Differential Equation Solving

o m o ; 0.100
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//Amx Example: 66-dimensional molecular systems

3 Differential Equation Solving
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//Amz Formulation as a Feynman-Kac Equation

3 Differential Equation Solving

Molecular dynamics becomes Markovian on a lag-time .

Taupl0)(x) = Ex¢(Xr,) where 7, = min(7,T)
qx)=0 xe€A
qx)=1 x€B

Then, the committor satisfies:

(Tilal —1d)(x) =0 x € (AUB)®

Strahan, J. et al. http://arxiv.org/abs/2208.01717 (2022).
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//‘:\m& Application of Feynman-Kac to Hurricane Lead Times

3 Differential Equation Solving

11250
g 1000
E P
= 750 =
S 3
x =
2 500 &
= 250

0.0 0.5 1.0
|W|(30 km)(m?/s) le7

Strahan, J. et al. http://arxiv.org/abs/2208.01717 (2022).
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«s  Nonequilibrium Dynamics
Y/

3 Differential Equation Solving

Aim to calculate the large deviation rate function for an observable, giving information
about the asymptotic probability distribution.

Large deviations on path measures
P(Ar € [a,a + da]) < e~ (@)
where P is the path measure associated with
dXt = b(Xt)dt -+ O'(Xt)th
and
T T
AT = / f(X[)dt + / g(Xt) o dXt
0 0

J Yan, GM Rotskoff. Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control. Journal of Chemical Physics 157 (7)

35/85



«s  Nonequilibrium Dynamics
Y/

3 Differential Equation Solving

Control problem hidden in a rare events problem

dxg = ut(xg)dt + O'th,
and then the SCGF can be estimated simply by reweighting the average

o sa, APIXY]
V() = lim 7 logEx: (e ! dIP’u[X“]>'

Y(\) = lim %ng[eATAT] = sup lim {/\EH[AT} — ;DKL[dIPquP}}.

T—o0 u T—o0
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//Amx Nonequilibrium Dynamics: Realizing rare events

3 Differential Equation Solving

Current in the asymmetric exclusion process; comparison with tensor network approach.

(@)

0.1
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//Amx Nonequilibrium Dynamics: Realizing rare events

3 Differential Equation Solving

Active nonequilibrium matter, quantifying entropy production fluctuations.

x10*

(b) [ control force
B total force

(a) -®- N =100
—A- N =200
—m- N =400
4~ N =800
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«s  Quantum Monte Carlo
A

3 Differential Equation Solving
Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo

here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.
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3 Differential Equation Solving

Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo

here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.

Variational Monte Carlo

We can recast the problem that finding the eigenvalue of H as

Vo, HUp)  Jeen Vo (x) - (HTp)(x)dx
(o, W) [y U5(x) - Vy(x)dx

mein L(6) = <
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««  Quantum Monte Carlo
A

3 Differential Equation Solving

Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo

here means handle the multi-dimensional integrals that arise in the different formulations
of the many-body problem.

Variational Monte Carlo

We can recast the problem that finding the eigenvalue of H as

(Ug, HUp)  Jren Vo(x) - (HTp)(x)dx

min £(0) = =
O = 00 T e T Updx
- \l/H(X) . \ll()<X) H\IJH(X) _ (12)
B /xeX Jeer Vo (x) - Uy(x)dx Uy(x) B = ErowFolx)
= ——

probability g (x) local energy Eg(x)
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««.  \ariational Monte Carlo
Y/

3 Differential Equation Solving

Variational Monte Carlo

e Fisher-Rao Gradient

VoLy = 2B, (x| Vo log |[Wy|]

score

Pfau D, Spencer J S, et al. Ab initio solution of the many-electron Schrédinger equation with deep neural networks. Physical Review Research, 2020, 2(3):

033429.
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««.  \ariational Monte Carlo
Y/

3 Differential Equation Solving

Variational Monte Carlo

e Fisher-Rao Gradient

VoLy = 2B, (x| Vo log |[Wy|]

score

Pfau D, Spencer J S, et al. Ab initio solution of the many-electron Schrédinger equation with deep neural networks. Physical Review Research, 2020, 2(3):

033429.

e Wasserstein Gradient

VoLy =EgVg ( —2 , Vilogm(x®, 6)
——

Neklyudov K, Nys J, Thiede L, et al. Wasserstein quantum monte carlo: A novel approach for solving the quantum many-body schrédinger equation.

Neurips 2023.
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// «s  Why VMC is hard?
A 3 Differential Equation Solving
e Design of ani-symmetric Neural Network W(x,(1), -+ ,X5(n)) = 58N(0) ¥ (X1, - , Xn)

(Slater) Determinant is slow and exists an exponential approximation lower bound.

Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.

Pang T, Yan S, Lin M. O(Nz) Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.
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3 Differential Equation Solving

Design of ani-symmetric Neural Network W (x,(1), -+ , X5(n)) = 58N(0) W (X1, -, Xn)
(Slater) Determinant is slow and exists an exponential approximation lower bound.

Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.

Pang T, Yan S, Lin M. O(Nz) Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.

The calculation of A is slow in high dimension
Lz
A + (13)
Z :Z: Iri — r1| Z ri — RI! 2R [Rr — By|
J I>]

LiR, Ye H, Jiang D, et al. Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo. arXiv preprint

arXiv:2307.08214, 2023.
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«s.  Why VMC is hard?

3 Differential Equation Solving

Design of ani-symmetric Neural Network W (x,(1), -+ , X5(n)) = 58N(0) W (X1, -, Xn)
(Slater) Determinant is slow and exists an exponential approximation lower bound.
Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.

Pang T, Yan S, Lin M. O(N2) Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.

The calculation of A is slow in high dimension

712y
Z“Zrn—m Z\rl R R-r

i>j I>]

LiR, Ye H, Jiang D, et al. Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo. arXiv preprint
arXiv:2307.08214, 2023.

Non-convex landscape and overfitting

Zhang H, Webber R J, Lindsey M, et al. Understanding and eliminating spurious modes in variational Monte Carlo using collective variables. Physical Review

Research, 2023, 5(2): 023101.



// ««  Beyond Physics
A 3 Differential Equation Solving

PINN-like idea can be used beyond physics. Generally speaking, you can always fusion
modeling with learning with PINN, for example

e Auction Design
Dutting P, Feng Z, Narasimhan H, et al. Optimal auctions through deep learning International Conference on Machine Learning.

Peri N, Curry M, Dooley S, et al. Preferencenet: Encoding human preferences in auction design with deep learning. Advances in Neural Information

Processing Systems 2021.
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PINN-like idea can be used beyond physics. Generally speaking, you can always fusion
modeling with learning with PINN, for example
e Auction Design
Dutting P, Feng Z, Narasimhan H, et al. Optimal auctions through deep learning International Conference on Machine Learning.
Peri N, Curry M, Dooley S, et al. Preferencenet: Encoding human preferences in auction design with deep learning. Advances in Neural Information
Processing Systems 2021.
e Neural Rendering
Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM.

Sitzmann V, Martel J, et al. Implicit neural representations with periodic activation functions. Advances in neural information processing systems 2020.
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//Amz Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

What is the optimal sample complexity for learning with prior information A(u) = f?
Is PINN Optimal? Are All Losses Created Equal?
Recast Solving PDE as a Statistical Problem
Example: Solving Au = f

e Hypothesis Space: the solution u in (Sobolev, Besov, Barron space...)

e Observation Data:

(u(x;),f(xi) = Au(x;)+noise)i;

Now we recast a solving PDE problem as a non-parametric estimation problem, so that we
can

e Using Fano, ... methods to know the lower bound

e Using empirical process, ... methods to build the upper bound
Lu, Yiping, et al. "Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”
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//‘:{w& Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

What is the optimal sample complexity for learning with prior information A(u) = f?
Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound

If Ais at—th order linear differential operator, then any Estimator H using (X;, fi)!_; can’t
do better than

_ _2a—2s
inf sup EHH({Xiafi}i:l,---,n) — u*HW? Z n 2a—2t+d’
H yeco(@)

e Solving a PDE equal to reconstructing a function with gradient information
inf means best estimator and sup means the hardest problem
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mw Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

What is the optimal sample complexity for learning with prior information A(u) = f?
Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound

If Ais at—th order linear differential operator, then any Estimator H using (X;, fi)!_; can’t
do better than

_ _2a—2s
inf sup EHH({Xiafi}i:l,---,n) — u*ng Z n 2o—z+d,
H yeco ()
e Solving a PDE equal to reconstructing a function with gradient information
inf means best estimator and sup means the hardest problem
Take Home Message PINN is Optimal! Not every consistent loss function is optimal! We
need case by case studying!

Lu, Yiping, et al. "Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”

45/85



// «s: A Fourier Basis View
A 4 Theory Behind Physics-Informed Neural Network

Why Deep Ritz Method is sub-optimal?
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// «« A Fourier Basis View

A 4 Theory Behind Physics-Informed Neural Network

Why Deep Ritz Method is sub-optimal? Solving a simple PDE Au = fusing Fourier Basis. Using
Deep Ritz Methods, the objective function is

. 1 2
min | ZIVA0I? - u(xfix)ds

e Estimator 1: First learn f, the god solves the equation computationally intractable

First Estimate fthen solve u, f, = 1 3" f(x;)¢,(x;), thenu = 3° szgbz(x)

e Estimator 2: Deep ritz methods

Plug u = > u,¢,(x) into the Deep Ritz Objecive function

n 2
% Z <Z uZngZ(xi)) ate Z uz¢z(xi)f(xi)
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// «« A Fourier Basis View
A 4 Theory Behind Physics-Informed Neural Network
e Estimator 1: The Fourier coefficient of the solution of Estimator 1 is
. 2\ —1
uy,, = diag (||z/|3) Hanngz. (14)

-

MatrixA

e Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

—1

Uz = <% > Vi (Xi)V¢j(Xi)> fzr (15)
i=1

llill oo <Z[ljll oo <Z

TV
Empirical Gram Matrix A
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A 4 Theory Behind Physics-Informed Neural Network
e Estimator 1: The Fourier coefficient of the solution of Estimator 1 is
. 2\ —1
uy,, = diag (||z/|3) Hanngz. (14)

-

MatrixA

e Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

—1

Uz = <% > Vi (Xi)V¢j(Xi)> fzr (15)
i=1

llill oo <Z[ljll oo <Z

TV
Empirical Gram Matrix A

Suboptimality of Deep Ritz Methods

introduce a new variance Var (|| Vu(x)||> — Au(x)u(x)), but neglectable in high-dimension

Lu, Yiping, et al. "Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality.”
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//‘:\m& Approximation Theory of Physics-Informed Neural

Network
4 Theory Behind Physics-Informed Neural Network

Let’s consider the simplest PDE Au = f. If f can be represented by a NN, can u be
represented by a NN?
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//Am& Approximation Theory of Physics-Informed Neural

Network
4 Theory Behind Physics-Informed Neural Network

Let’s consider the simplest PDE Au = f. If f can be represented by a NN, can u be
represented by a NN?

The answer is YES. This helps us to understand the implicit bias of NN to solve PDEs.

e Parametric Complexity Bounds for Approximating PDEs with Neural Networks Tanya Marwah, Zachary C. Lipton, Andrej Risteski Neural Information
Processing Systems (NeurlPS), 2021

e Neural Network approximations of PDEs Beyond Linearity: A Representational Perspective Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski
International Conference on Machine Learning (ICML), 2023

e Deep Equilibrium Based Neural Operators for Steady-State PDEs Tanya Marwah*, Ashwini Pokle*, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu, Andrej
Risteski Neural Information Processing Systems (NeurlPS), 2023
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4 Theory Behind Physics-Informed Neural Network

Let’s consider the simplest PDE Au = f. If f can be represented by a NN, can u be
represented by a NN?

The answer is YES. This helps us to understand the implicit bias of NN to solve PDEs.

e Parametric Complexity Bounds for Approximating PDEs with Neural Networks Tanya Marwah, Zachary C. Lipton, Andrej Risteski Neural Information
Processing Systems (NeurlPS), 2021

e Neural Network approximations of PDEs Beyond Linearity: A Representational Perspective Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski
International Conference on Machine Learning (ICML), 2023

e Deep Equilibrium Based Neural Operators for Steady-State PDEs Tanya Marwah*, Ashwini Pokle*, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu, Andrej
Risteski Neural Information Processing Systems (NeurlPS), 2023

Reason: Neural Network can perform (preconditioned) gradient flow.

e Similar to the recent line of that transformer can perform gradient descent for
in-context learning.

e Precondition is essential for infinite-dimensional due to infinite condition number!

48/85



/ «s«  Optimization of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

Will different loss function affects optimization speed?

1).Physics-Informed [ (Au(x) — f(x))?dx 2).Deep Ritz [ || Au(x)||* — 2u(x)f(x)dx
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Will different loss function affects optimization speed?

1).Physics-Informed [ (Au(x) — f(x))?dx 2).Deep Ritz [ || Au(x)||* — 2u(x)f(x)dx

Traditional Thoughts 1) is much harder, for it involves condition number of A2 while 2)
only involves A

Machine Learning is a Kernelized gradient flow. Physics equations can precondition
machine learning!

Lu Y, Blanchet J, Ying L. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. Advances in Neural Information Processing

Systems, 2022, 35: 33233-33247.

49/85



/ «s«  Optimization of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

Will different loss function affects optimization speed?

1).Physics-Informed [ (Au(x) — f(x))?dx 2).Deep Ritz [ || Au(x)||* — 2u(x)f(x)dx

Traditional Thoughts 1) is much harder, for it involves condition number of A2 while 2)
only involves A

Machine Learning is a Kernelized gradient flow. Physics equations can precondition
machine learning!

Lu Y, Blanchet J, Ying L. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. Advances in Neural Information Processing
Systems, 2022, 35: 33233-33247.

Using Sobolev norm ([ || V¥(Au(x) — f(x))||?dx) as loss function can further accelerates
training accelerates optimization

® vy, Lul, MengX, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, 2022.

®  Sobolev training for physics-informed neural networks, with J. W. Jang, W. J. Han, and H. J. Hwang, 2023
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//Amé Sobolev Training vs L2 training

4 Theory Behind Physics-Informed Neural Network

sin(x) / Number of Epochs sin(x) / Error Plot sin(x) / Time Plot

-2 loss
Hlloss
= H2 loss

Average training time (seconds)

o

1000

1500 2000 @ 20 o o En ) Hloss
Number of Epochs Number of Epochs Loss functions
ReLU(x) | Number of Epochs ReLU(x) | Error Plot ReLU(x)  Time Plot
— L20ss
— Hlloss
— H2loss
Number of Epochs Number of Epochs Loss functions

Sobolev Training vs L2 training for function fitting.
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Counts.

««  Sobolev Training vs L2 training

4 Theory Behind Physics-Informed Neural Network

‘The heat equation / Number of Epochs

The heat equation / Error Plot

‘The heat equation / Time Plot

00 om0

Number of Epochs
Burgers'equation / Number of Epochs

Number of Epochs
Burgers'equation / Error Plot

Average training time (seconds)

Loss functions

Burgers'equation / Time Plot

Counts.

Number of Epochs

Number of Epochs

Average training time (seconds)

o W2 s
Loss functions

Sobolev Training vs L2 training for solving heat equation.



//Am& Computation of PINN in High Dimension

4 Theory Behind Physics-Informed Neural Network
Computing and even back prop Au = uy,x, + - - - + Uy, is hard when d is high!

d times computation
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/ «s.  Computation of PINN in High Dimension

4 Theory Behind Physics-Informed Neural Network

Computing and even back prop Au = uy,x, + - - - + Uy, is hard when d is high!

d times computation

Idea 1: Stein’s Lemma: u = E;_x(0,,20f(x + 9), then Viu = Es5 nr(0,021) [ S f(x+6)]

e Relates to Feyman-Kac

¢ Finite Difference with random direction!

He D, Li S, Shi W, et al. Learning physics-informed neural networks without stacked back-propagation International Conference on Artificial Intelligence and Statistics.
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/ «s.  Computation of PINN in High Dimension

4 Theory Behind Physics-Informed Neural Network
Computing and even back prop Au = uy,x, + - - - + Uy, is hard when d is high!

d times computation

Idea 1: Stein’s Lemma: u = E;_x(0,,20f(x + 9), then Viu = Es5 nr(0,021) [ S f(x+6)]

e Relates to Feyman-Kac

¢ Finite Difference with random direction!

He D, Li S, Shi W, et al. Learning physics-informed neural networks without stacked back-propagation International Conference on Artificial Intelligence and Statistics.

Idea 2: Sketching: random select dimension to descent

Hu Z, Shukla K, Karniadakis G E, et al. Tackling the curse of dimensionality with physics-informed neural networks. arXiv preprint arXiv:2307.12306, 2023.
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// ««  Failure Modes of PINN

A 4 Theory Behind Physics-Informed Neural Network

Consider solving equation % + 5% = 0 whose solution is u(x, t) = u(x — t, 0) using
PINN

Exact Solution Predicted Solution PDE Residuals Exact Solution Predicted Solution PDE Residuals
8 = 10, 8 =10 8 =10 = 50, =50 = 50
N N =3 ) T O = N 1) (3-50)
05 05 0.5
4 4 4 1 4
8 00 0.0 0.0
- 0 ‘
2 0.5 2 0.5 2 2 / 0.5 2
0 ‘ 10 0 ‘ 10 0 00 1.0 0
0.0 05 10 0.0 0.5 10 0.0 0.5 10 0.0 05 10 0.0 0.5 10
t t t t t

Propagation Failure: some collocation points start converging to trivial solutions before
the correct solution from initial/boundary points is able to reach them
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A 4 Theory Behind Physics-Informed Neural Network

Consider solving equation % + B% = 0 whose solution is u(x, t) = u(x — t, 0) using
PINN

Exact Solution Predicted Solution PDE Residuals Exact Solution Predicted Solution PDE Residuals
8 = 10, 8 =10 8 =10 = 50, =50 = 50
N N =3 ) T O = N 1) (3-50)
05 05 0.5
4 4 4 1 4
8 0.0 0.0 0.0
- 0 ‘
2 0.5 2 0.5 2 2 / 0.5 2
0 ‘ 10 0 ‘ 10 0 00 1.0 0
0.0 05 10 0.0 0.5 10 0.0 0.5 10 0.0 05 10 0.0 0.5 10
t t t t t

Propagation Failure: some collocation points start converging to trivial solutions before
the correct solution from initial/boundary points is able to reach them

® Cu rricu | um training Using easier B Krishnapriyan A, et al. Characterizing possible failure modes in physics-informed neural

networks. Neurips, 2021.
[ ] Respect‘l ng Causa“ty Wang S, et al. Respecting causality is all you need for training physics-informed neural networks. arXiv:2203.07404.

L4 Adaptlve Sampllng Gao Z, Yan L, Zhou T. Failure-informed adaptive sampling for PINNs. SIAM Journal on Scientific Computing, 2023.
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5 Operator Learning

Parametric PDE

We consider PDEs parametrized by coefﬁcent a( )

-V ),x €

D.
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/ ««  Motivation of Operator Learning: Meta-PINN?

5 Operator Learning

Parametric PDE

We consider PDEs parametrized by coefﬁcent a( )'

-V ),x €

Input function space Output function space
a€EA u€U

D.

What if we have a dataset of a(x)

FiA > U

55/85 Khoo, Yuehaw, Jianfeng Lu, and Lexing Ying. "Solving parametric PDE problems with artificial neural networks.” European Journal of Applied Mathematics



// ««  Operator Learning
A 5 Operator Learning
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// ««  Operator Learning
A 5 Operator Learning

0.12

0.1

How can we build a
resolution invariant

Relative Test Error
o
o
[=)]

0.04 machine learning system?
0.02
0 '3
0 100 200 300 400 500 .

Resolution

Idea: Directly learn the mapping between functions.
Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193, 2019.

Kovachki N, Li Z, Liu B, et al. Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481, 2021.
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/A::m‘ Operator Learning: Discretization-Invariant

5 Operator Learning

Idea: Directly learn the mapping between functions.

58/85

&

Continuous function



//Amx Neural Operators: Learning in the Function space

5 Operator Learning

Idea: Learning in the function space

discretization convergence

—— UNet (fixed num. params)

—— FNO
— GNO
UNet {increasing num. params)
0.03 4
s
T
i
2 oz
0.01 4

g5 141 211 421
resolution
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//Amz Operator Learning: Framework

5 Operator Learning

Operator learning aims to build a parametric approximation Gy (6 € RP) to approximate a
(non-linear) operatorG: A — U
<~ ~~

Banach space Banach space

e Banachspace A: {a:D — R%}and i/ : {a: D — R%} are all function space
e Ideat:

(o} s

— Linear Encoding from a function to R% code
— Transform a R% code to a R%2 code
— Linear Decoding from R%2 code to a function
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We need to generalize operations in neural networks to function space
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We need to generalize operations in neural networks to function space

Linear Transform

e Linear Encoding: u — { [, u(x)fi(x)dx},
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// ««  Operator Learning
A 5 Operator Learning
We need to generalize operations in neural networks to function space

e Linear Encoding: u — { [, u(x)fi(x)dx}",

e a vector-input vector-output neural network

e Linear Decoding: {Gx}?_, = SP_ B m

{Btier = 2ken B
function

[¢]

X———Y

Encoding . é N Reconstruction B
u s ) Bler > )+ By, BT )

Ry R

Approximation
(G = (B,

Universal approximation theorem of Chen & Chen (1995) states that DeepONets can
approximate continuous operators

G188 P, Pang G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature machine intelligence.



//Amz Operator Learning: Framework

5 Operator Learning

Operator learning aims to build a parametric approximation Gy (6 € RP) to approximate a
(non-linear) operatorG: A — U
=~ ~

Banach space Banach space

e Banachsapce A: {a:D — R%}andi/ : {a: D — R%} are all function space
e Ideat:

— Linear Encoding from a function to R?! code
— Transform a R% code to a R% code
— Linear Decoding from R% code to a function

e |dea2: Directly feature extraction in the function space!
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// ««  Operator Learning
A 5 Operator Learning
We need to generalize operations in neural networks to function space

Convolution

o vii(s) =0o | Wv(s) + + bis(s)

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar A., “Neural Operator: Learning Maps Between Function

Spaces” , JMLR, 2021. doi:10.48550
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// ««  Operator Learning
A 5 Operator Learning
We need to generalize operations in neural networks to function space

Convolution

o viii1(s) =0 | Wiv(s) + / ki(s,z)vi(z)dz + bys(s)
JD

convolution
Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar A., “Neural Operator: Learning Maps Between Function

Spaces” , JMLR, 2021. doi:10.48550
e Fast implementation: Fourier Neural Operator
FFT->multiplication->iFFT->nonlinear activation

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar A., “Fourier Neural Operator for Parametric Partial Differential

Equations” , ICLR, 2021.
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// ««  Operator Learning
A 5 Operator Learning
We need to generalize operations in neural networks to function space

Original Attention: Fourier Transform [, (&q(xi)¢k(&))v;(§)dé

4 \
1

g 1 @)
\ KT I3 1 O

= 1 O
| ||| = v =
@ gl Y= QKT SV I— |2
1 E | s S S
I = O & |
1 | throw [i-throw]’f S : ithrow QO O
v =

=] )

Computation scales O(n’k): n number of pixels, k number of ”Basis”

Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, 2021, 34: 24924-24940.
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/ ««  Operator Learning

5 Operator Learning

We need to generalize operations in neural networks to function space

Galerkin Attention: z;(x;) = J 1 (o ki(©)vi(€)de) qi(xi)

Z \
1
1
1 RT 1 E
1
¥ 1 =
' I-th row E 3 z s
! e — E — |5
Q | : s\V|=| Q ||Elxv|=|E| z
r g = 1 i .
[ Fhow %8 ) y
1
! : A 0
1
v : / ' ©
. | , '
______ 0 .

Computation scales O(nk?): n number of pixels, k number of "Basis”

Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, 2021, 34: 24924-24940.
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««  Linear Operator Learning
Y/

5 Operator Learning
Convergence Rate

® de Hoop MV, Nelsen N H, et al. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification

® BoulleN, Townsend A. Learning elliptic partial differential equations with randomized linear algebra. Foundations of Computational Mathematics
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«s«  Linear Operator Learning
Y/

5 Operator Learning

Convergence Rate

® de Hoop MV, Nelsen N H, et al. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification

® BoulleN, Townsend A. Learning elliptic partial differential equations with randomized linear algebra. Foundations of Computational Mathematics

Improved Rates by Multi-level Methods

® LinL, LuJ, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.
® BoulléN, Kim S, et al. Learning Green’s functions associated with time-dependent partial differential equations. The Journal of Machine Learning Research.
®  Schifer F, Owhadi H. Sparse recovery of elliptic solvers from matrix-vector products. arXiv preprint arXiv:2110.05351, 2021.

® jinJ, LuY, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. 2022.
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//Amx Why Linear: Koopman Operator

5 Operator Learning

The Koopman operator is a linear but infinite-dimensional operator that describes the
evolution of observables in a finite dimensional dynamical system.

Koopman Operator

Utg(z) =go Fi(z)

observable space

How the distribution of state space evolves through the dynamic!

(Mathematically: adjoint of generator)
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mw Hardness of learning in infinite dimensions: Linear Case

5 Operator Learning

A linear operator is an “infinite-dimensional” matrix,
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//Amz Hardness of learning in infinite dimensions: Linear Case

5 Operator Learning

A linear operator is an “infinite-dimensional” matrix, operator learning equals to
reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix—vector multiplication. Journal of Computational Physics, 2011.

Multilevel algorithms are essential to achieve minimax optimality, which differs from
finite-dimensional matrix reconstruction!

Jin J, LuY, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. 2022.
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5 Operator Learning

A linear operator is an “infinite-dimensional” matrix, operator learning equals to
reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix—vector multiplication. Journal of Computational Physics, 2011.

Optimal regularization differs for each row!
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5 Operator Learning

A linear operator is an “infinite-dimensional” matrix, operator learning equals to
reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix—vector multiplication. Journal of Computational Physics, 2011.

Optimal regularization differs for each row!

<——Evert Row is a Linear Regression

Multilevel algorithms are essential to achieve minimax optimality, which differs from
finite-dimensional matrix reconstruction!

Jin J, LuY, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. 2022.
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//Aw& Hardness of learning in infinite dimensions

5 Operator Learning

Neural operators can approximate any continuous operator. chen s chen 1995, Nikola Kovachki et. al. 2021
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//Aw& Hardness of learning in infinite dimensions

5 Operator Learning

Neural operators can approximate any continuous operator. chen s chen 1995, Nikola Kovachki et. al. 2021

Curse of Dimensionality

The cost to represent a function is exponential to the dimensionality.

00000
00000
v|O0000
00000

00000 00000
—_—
X X

Smoothness only is not enough to break the Curse of dimensionality!
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//Amz Break Curse of Dimensionality: Non-linear Case

5 Operator Learning

Different from finite dimension, Smoothness only is not enough to break the Curse of
Dimensionty! Additional structure is needed, such as

¢ Holomorphic Mappings

Schwab, C. & Zech, J. (2019), Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ,

Analysis and Applications
e PDE Oerators

Lanthaler S, Mishra S, Karniadakis G E. Error estimates for deeponets: A deep learning framework in infinite dimensions. Transactions of Mathematics and

Its Applications, 2022, 6(1): tnacoo1.
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mw Break Curse of Dimensionality: Non-linear Case

5 Operator Learning

Different from finite dimension, Smoothness only is not enough to break the Curse of
Dimensionty! Additional structure is needed, such as
¢ Holomorphic Mappings
Schwab, C. & Zech, J. (2019), Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ,
Analysis and Applications
e PDE Oerators
Lanthaler S, Mishra S, Karniadakis G E. Error estimates for deeponets: A deep learning framework in infinite dimensions. Transactions of Mathematics and

Its Applications, 2022, 6(1): tnacoo1.

Open Question

What is the general structure that makes operator possible in infinite dimension?
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// «s«  Break Curse of Dimensionality: PDE Operators
A 5 Operator Learning
Different structure that is used to break the curse of dimensionality includes
e Darcy Flow, Navier-Stokes via PCA-Net [1]
e Hamilton-Jacobi Equation [2]
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/ «s«.  Break Curse of Dimensionality: PDE Operators
/A 5 Operator Learning
Different structure that is used to break the curse of dimensionality includes
e Darcy Flow, Navier-Stokes via PCA-Net [1]
e Hamilton-Jacobi Equation [2]
° ..
Idea Neural Network can approximate known "algorithms”
e Approximate convergent schemes such as spectral methdos
e Approximate the Method of Characteristics
Similar to approximation theory for PINN

[1] Lanthaler S. Operator learning with PCA-Net: upper and lower complexity bounds. arXiv preprint arXiv:2303.16317, 2023.

[2] Lanthaler S, Stuart A M. The curse of dimensionality in operator learning. arXiv preprint arXiv:2306.15924, 2023.
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mw Break Curse of Dimensionality: PDE Operators

5 Operator Learning

Neural Operator adaptive to certain structure is ensential!
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«s.  PDE-Net
//A 5 Operator Learning

Approximate partial derivative using finite difference can be represent as convolution.
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//A 5 Operator Learning

Approximate partial derivative using finite difference can be represent as convolution.

How to approximate Oy f(x,y)?

x — Ax, Y)f(x + Axly)
(xv)

How can we map convolution kernels with finite difference operators?
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Approximate partial derivative using finite difference can be represent as convolution.

How to approximate Oy f(x,y)?

x — Ax, Y)f(x + Axly)
(XE)

. / \ o~ Jx=Axy)+Hf(x+Ax,y) —2f(x,y)
D (x,y) ~ 1 e Y

How can we map convolution kernels with finite difference operators?



«s.  PDE-Net
//A 5 Operator Learning

Approximate partial derivative using finite difference can be represent as convolution.

How to approximate Oy f(x,y)?

x — Ax, Y)f(x + Axly)
(XE)

. / \ o~ Jx=Axy)+Hf(x+Ax,y) —2f(x,y)
D (x,y) ~ 1 e Y

equivalent to conv kernel [-1,2,1]

How can we map convolution kernels with finite difference operators?
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««.  PDE-Net
A 5 Operator Learning
What'’s the property of a partial derivative?
Differentiation can because low order polynomial to zero!
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«s«  PDE-Net
A 5 Operator Learning
What's the property of a partial derivative?
Differentiation can because low order polynomial to zero!

Orders of sum rules

For a filter q, we say q to have sum rules of order o = (a1, ), where o € 7?2, provided

that
> kPqk] =0 (16)
keZ?

for all 8 € Z2 with |3| < |a| and for all 8 € Z2 with |3| = |a| but 8 # «. If (16) holds for
all 8 € Z2 with | 8] < K except for 3 # 3y with certain 3y € Z2 and |8y| = J < K, then
we say q to have total sum rules of order K\{J + 1}.

Linear constraints on convolutional weights!
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««.  PDE-Net
A 5 Operator Learning
PDE-Net is a neural network but can also represent a PDE with form

Ur = flu, uy, Uxy, - - )

F(x.y, Doot, Dygt... ) = Dou#dt -F(x 3 Doott, Dyoli, .. )

e Linear constrained convolution kernel to approximate spatial derivatives
e 1x1 convolution kernel to approximate function f tinm, chen q, van s. Network in network. arxiv preprint

arXiv:1312.4400
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«s+  Boundary Condition
//A 5 Operator Learning

Dirichlet BCs Neumann/Robin BCs Periodic BCs
ALALAIA[ALA A 7| 8|9 (|10)11]12
(—] I I I I l—) 1|12 (3|4|5]|6
< 5
< —>
< —
< -
f—l | | | | ,—) 7|1 8|9 ]|10|11(12
VIVIVIVIV]YV 1l213lals]eF

D Internal nodes I:l Ghost nodes I:l Edge nodes |:| Conv filter

Rao C, Ren P, Wang Q, et al. Encoding physics to learn reaction—diffusion processes. Nature Machine Intelligence, 2023, 5(7): 765-779.
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««  Sparse ldentification of Nonlinear Dynamics (SIDy)

5 Operator Learning

Build a big dictionary
@(U) - [17U7U27”' ,Sil’l(U),"' 7UX7U)%7”' 7UXX7U)%x7"']

possible dictionary

and then preform sparse regression methods

1a. Data collection 1c. Solve sparse
1b. Build nonlinear > regression
library of data and argmin|©€ — w3+ Mélo
derivatives <
s
=
e = ’
=S 5| — [H3HEEEN- - — O(w,uv
3 5| = [<3==57 220 [¢] e O(w,u,v)E
= d. Identified dynamics
we + 0.9931uw; + 0.9910vw,
0099wz + 0.0099%w,
Compare to tri
__________________ J Navier-Stokes (R
u,+(u‘V)m:ll w
P w = 0w, u.v)E 2b. Compressed library
K] Cin = COw. 1. v)E Iy
5
H Sampling R
g = = |_| 2¢. Solve compressed
& 4 = (=3 sparse regression
E argmin|COE — Cu 3 + Al llo
<

Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan . "Discovering governing equations from data by sparse identification of nonlinear dynamical systems”.
Proceedings of the National Academy of Sciences.

Chen Z, Liu Y, Sun H. Physics-informed learning of governing equations from scarce data. Nature communications.
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//Amz Data-Driven Discovery of New Physics

5 Operator Learning
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// «s«  Data-Driven Discovery of New Physics
A 5 Operator Learning

Intuitively speaking, the balls in our data set (whiffle balls, perhaps, excluded) are similar
enough objects that the equations governing their trajectories should include similar
terms. Group Sparsity!

Ball First drop Second drop

Golf Ball F=-9344+0.05v | £ =—9.44 — 0.03v
Baseball & =—-851+0.14v | &= —7.56 + 0.14v
Tennis Ball F=-9.08-0.13v | # =—-8.64—0.12v
Volleyball £ =—811—-0.08v | #=-9.64 —0.23v
Blue Basketball F=—6.71+0.15v | # =-7.50+0.07v
Green Basketball Z=-7364+0.10v | £ = —8.05 + 0.02v
Whiffle Ball 1 F=-824—0.34v | & =-9.44 — 0.43v
Whiffle Ball 2 iF=-981-0.06v | &= -9.79 — 0.48v
Yellow Whiffle Ball | # = —8.50 — 0.47v | & = —8.45 — 0.46v
Orange Whiffle Ball | & = —7.83 — 0.35v | & = —8.03 — 0.42v

de Silva B M, Higdon D M, Brunton S L, et al. Discovery of physics from data: Universal laws and discrepancies. Frontiers in artificial intelligence, 2020, 3: 25.
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//AM Data-Driven Discovery of New Physics

5 Operator Learning

The Reynolds number for a ball with diameter D and velocity v will then be

Re = 0.6667Dv x 10°

Ball Radius (m) | Mass (kg) | Density (kg/m) | vmer (m/s) | Max Re
Golf Ball 0.021963 0.045359 1022.066427 26.63 1.75 x 10°
Baseball 0.035412 0.141747 762.037525 26.61 2.83 x 10°
Tennis Ball 0.033025 0.056699 375.813253 21.95 2.18 x 10°
Volleyball 0.105* NA NA 22.09 6.96 x 10°
Blue Basketball 0.119366 0.510291 71.628378 24.80 8.88 x 10°
Green Basketball 0.116581 0.453592 68.342914 25.06 8.77 x 10°
Whiffle Ball 1 0.036287 0.028349 141.641937 16.91 1.84 x 10°
Whiffle Ball 2 0.036287 0.028349 141.641937 16.35 1.78 x 10°
Yellow Whiffle Ball | 0.046155 0.042524 103.250857 15.30 2.12 x 10°
Orange Whiffle Ball | 0.046155 0.042524 103.250857 15.77 2.18 x 10°

Complex secondary physical mechanisms, like unsteady fluid drag forces, can obscure the
underlying law of gravitation, leading to an erroneous model.
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««  Latent SINDY
//A 5 Operator Learning
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Bakarji J, Champion K, Nathan Kutz J, et al. Discovering governing equations from partial measurements with deep delay autoencoders. Proceedings of the Royal

Society A, 2023, 479(2276): 20230422.
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//wa Different Levels of Interpretability

5 Operator Learning

Fully white box, limited capacity

Gray box neural network
Physics knowledge as network structure, differentiable physics that integrate

FEM/FDM solvers

Fully black box, universal approximator

82/85
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w4 Summary
A 6 Summary
In this tutorial, we introduced empirical and theoretical challenges to cooperate physical
information Au = fto machine learning systems

[ Physical Equation Au = f ]

Recover parameter the physic Model
A using data pair {(u;, )},

of f: {x, f(x)}

Differential Equation Solving Scientific Discovery

Dictionary Learning
White Box .
st dx { }

[Reconstruct u with observation

Curse of

e dimensionality @
:% Learner-able PDE-Solvers Learnable part
- v -
| ppe-solver >
EEQ)CE Neural Operators »

Black Box
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A

Recent Advances in Physics-Informed
Machine Learning

Thank you for listening!
Any questions?
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