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Abstract

Iterative sketching and sketch-and-precondition are well-established randomized algorithms for solving large-scale over-determined linear least-
squares problems. In this paper, we introduce a new perspective that interpreting Iterative Sketching and Sketching-and-Precondition as forms of
Iterative Refinement. We also examine the numerical stability of two distinct refinement strategies: iterative refinement and recursive refinement,
which progressively improve the accuracy of a sketched linear solver. Building on this insight, we propose a novel algorithm, Sketched Iterative
and Recursive Refinement (SIRR), which combines both refinement methods. SIRR demonstrates a four order of magnitude improvement in
backward error compared to iterative sketching, achieved simply by reorganizing the computational order, ensuring that the computed solution
exactly solves a modified least-squares system where the coefficient matrix deviates only slightly from the original matrix. To the best of our
knowledge, SIRR is the first asymptotically fast, single-stage randomized least-squares solver that achieves both forward and backward stability.
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1. Introduction1

R andomized numerical linear algebra (RNLA) [9], [11]–[13], [17],2

[18], [29] is a rapidly evolving branch of matrix computations,3

driving significant progress in low-rank approximations, iterative4

methods, and projections. This field has demonstrated that random-5

ized algorithms are highly effective tools for developing approximate6

matrix factorizations. These methods are remarkable for their sim-7

plicity and efficiency, often producing surprisingly accurate results.8

In this paper, we consider randomized algorithms to solve the9

overdetermined linear least-squares problem10

𝑥 = argmin
𝑦∈ℝ𝑛

‖𝑏 − 𝐴𝑦‖ (𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚) (1)

11

where ‖⋅‖ denotes the Euclidean norm. This is one of the core prob-12

lems in computational sceience [19], [20], [23], [27], statistics [25],13

[36] and accelerating machine learning [22], [28], [31]. In the past14

two decades, researchers in the field of randomized numerical linear15

algebra [13], [17], [29] have developed least-squares solvers that are16

faster thanHouseholderQR factorization [15], the textbook algorithm17

for least square, which runs in 𝑂(𝑚𝑛2) operations. Randomized al-18

gorithms first sketch 𝐴 to a smaller matrix 𝑆𝐴 with a random sketch19

matrix 𝑆 ∈ ℝ[𝑐𝑛]×𝑚 for some constant 𝑐 > 1. The random embedding20

𝑣 → 𝑆𝑣 satisfies ‖𝑆𝑣‖ ≈ ‖𝑣‖ for all vectors 𝑣 ∈ range([𝐴𝑏]) and21

matrix–vector products 𝑣 → 𝑆𝑣 can be computed efficiently [13],22

[29].23

There are twomain approaches to using the sketchedmatrix 𝑆𝐴 for24

a fast randomized least squares solver: the sketch-and-precondition25

[9] method and iterative Hessian sketching [21], [24], [26]. Most of26

the solvers (e.g. Blendenpik [12]) have a complexity of 𝑂(𝑚𝑛 log𝑚)27

operations. This is significantly better than the 𝑂(𝑚𝑛2) complexity.28

Consequently, for large least-squares (LS) problems, randomized29

solvers can be substantially faster than the LS solver implemented in30

LAPACK [12]. However, recent research [30], [37] surprisingly finds31

that sketch-and-precondition [9], [12] and iteratively Hessian sketch32

[21], [24], [26] are numerically unstable in their standard form, both33

stagnate in terms of residual and backward error, potentially before34

optimal levels are reached. [37] further propose sketch-and-apply,35

which is a provable method that attains backward stable solutions36

under modest conditions. Unfortunately, sketch-and-apply requires 37

𝑂(𝑚𝑛2) operations, the same as Householder QR-based direct solvers. 38

In this paper, we provide a definitive answer to the open question 39

posed by [30], [37]: 40

41

Is there a randomized least-squares algorithm that is both
(asymptotically) faster thanHouseholder QR and numerically
stable?

42

We constructed a solver called Sketched Iterative and Recursive 43

Debiasing, which enjoys both forward and backward stability while 44

requires only 𝑂(𝑚𝑛 + 𝑛3) computation. Our approach is based on 45

a novel, unified perspective on sketch-and-precondition methods 46

and iterative Hessian sketching. Although these two techniques may 47

seem different, we demonstrate that they can be interpreted as itera- 48

tive refinement processes. Iterative refinement (IR) is a well-known 49

method for solving linear systems by progressively improving the ac- 50

curacy of an initial approximation. We show that employing iterative 51

refinement, a sketch-and-solve solver is equivalent to using Jacobi 52

iteration in a sketch-and-precondition framework. We investigated 53

the conditions that a single-step approximate solver needs to satisfy in 54

order for iterative refinement to potentially achieve backward stability. 55

To construct the single-step approximate solver, we studied another 56

way for iterative refinement called Sketched Recursive Refinement. 57

Note that we find, both theoretically and numerically, that only in cer- 58

tain cases where data noise is relatively large, SRR alone can achieve 59

a backward stable solution. Only using SRR as the meta-algorithm of 60

iterative refinement, i.e. Sketched Iterative and Recursive Debiasing, 61

can provide a backward stable algorithm. 62

We would like to highlight a concurrent work [35], which also 63

developed a backward stable solver with a computational complexity 64

of 𝑂(𝑚𝑛 + 𝑛3). However, the FOSSILS solver proposed in their work 65

follows a two-stage approach, where each stage involves an iterative 66

process. In contrast, our algorithm is a single-stage solver that offers 67

the flexibility to stop at any point during the computation, making it 68

more adaptable for scenarios where early termination is necessary or 69

beneficial. 70

Notation Through out this paper, 𝐴 ∈ ℝ𝑚×𝑛, 𝑆 ∈ ℝ𝑠×𝑚, 𝑏 ∈ ℝ𝑚. 71

‖ ⋅ ‖ denotes vector 𝓁2 norm for vectors and operator 𝓁2 norm for 72
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matrices. We use | ⋅ | denotes 𝑙1 norm. 𝜅 = ‖𝐴‖‖𝐴†‖ is the condi-73

tion number of 𝐴 and 𝜎max(⋅),𝜎min(⋅) denotes the largest and smallest74

singular value. 𝑢 denotes the machine epsilon which is used to mea-75

sure the level of roundoff error in the floating-point number system.76

For IEEE standard double precision, 𝑢 is around 2 × 10−16. 𝑎 ≲ 𝑏77

denotes 𝑎 ≤ 𝑐𝑏 for some small constant 𝑐, which is independent of78

𝑚, 𝑛, 𝑠, 𝜅, 𝑢. 𝑎 ≍ 𝑏 indicates that 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎. 𝛾𝑚 is defined as79

𝛾𝑚 = 𝑚𝑢

1−𝑚𝑢
. In numerical analysis, we assume that 𝑢𝜅𝑛

3
2 < 1 and80

𝑢𝑛
3
2 ‖𝑥 ∗ ‖ ≲ ‖𝑏 − 𝐴𝑥∗‖. We also assume that𝑚 has the same order81

with 𝑛 for computational simplicity, which will be restated in the82

following sections. Note that 𝑛
3
2 < 1 is a guarantee for a nonsingular83

𝑅̂ computed in QR factorization according to [7, Theorem 19.3]. With-84

out loss of generality, ‖𝐴‖ = ‖𝑏‖ = 1 is assumed in analysis, except85

in forward stability analysis where we keep ‖𝐴‖ and ‖𝑏‖ unknown to86

align with Wedin’s perturbation theorem. Computed quantities wear87

a hat, e.g. 𝑥̂ denotes the computed approximation of 𝑥.88

1.1. Contribution89

We offer a unified understanding of existing randomized least90

squares solvers, such as iterative sketching and sketch-and-91

precondition, by interpreting them as forms of iterative refinement.92

This new perspective enables the development of novel techniques for93

analyzing the numerical stability of randomized algorithms by explor-94

ing and comparing the stability of iterative and recursive refinement95

strategies for progressively improving the accuracy of sketched linear96

solvers. Based on the analysis, we propose Sketched Iterative and Re-97

cursive Refinement (SIRR), which combines iterative and recursive98

refinement techniques and achieves the first single stage provably99

backward stable and computationally efficient, with asymptotic com-100

plexity 𝑂(𝑚𝑛 + 𝑛3), faster than traditional direct solvers.101

2. Preliminary102

Sketch-and-Precondition There are lots of randomized methods
that obtain a right preconditioner from 𝑆𝐴 for further iterative LS
method, which is known as sketch-and-precondition [9], [12], [16].
The core insight of Sketch-and-Precondition is that sketchingmatrices
can be used to precondition (i.e., reduce the condition number) the
original matrix 𝐴 ∈ ℝ𝑚×𝑛. To be specific, for a matrix 𝐴 ∈ ℝ𝑚×𝑛

and sketching matrix 𝑆 ∈ ℝ𝑠×𝑚 with distortion 0 < 𝜂 < 1 (i.e.
(1 − 𝜂)‖𝐴𝑦‖ ≤ ‖𝑆𝐴𝑦‖ ≤ (1 + 𝜂)‖𝐴𝑦‖ holds for all 𝑦 ∈ ℝ𝑛), the
preconditioner 𝑅 can be obtained from QR factorization of matrix
𝑆𝐴 = 𝑄𝑅 with 𝑄 orthonormal and 𝑅 square. The preconditioner 𝑅
satisfies

1
1 + 𝜂 ≤ 𝜎min(𝐴𝑅−1) ≤ 𝜎max(𝐴𝑅−1) ≤

1
1 − 𝜂 .

To be specific, one can always construct a random sparse embedding103

matrix 𝑆 that satisfies the following Lemma.104

Lemma 1 ([7], [30], [35], [37]). For matrix 𝐴 ∈ ℝ𝑚×𝑛, there exists105

sketching matrix 𝑆 ∈ ℝ𝑠×𝑚. Suppose that 𝑅̂𝑄̂ = 𝑆𝐴 is the QR decom-106

position of matrix 𝑆𝐴, then the following inequalities holds:107

• ‖𝑅̂‖ ≲ ‖𝐴‖, ‖𝑅̂−1‖ ≲ 𝜅

‖𝐴‖
108

• 1 − 𝑢𝜅𝑛
5
2 ≲ 𝜎𝑚𝑖𝑛(𝐴𝑅̂−1) ≲ 𝜎𝑚𝑎𝑥(𝐴𝑅̂−1) ≲ 1 + 𝑢𝜅𝑛

5
2109

One of the most prominent sketch-and-precondition techniques110

is using 𝑅 as the preconditoner for LSQR [5] which is known as111

Blendenpik [12]. In exact arithmetic, Blendenpik has a complexity of112

𝒪(𝑚𝑛 log𝑚) operations, which is better than the 𝒪(𝑚𝑛2) QR-based113

direct solver. Consequently, for large LS problems, Blendenpik can114

be substantially faster than the LS solver implemented in LAPACK, a115

widely used software library for numerical linear algebra.116

Iterative Hessian Sketching [21], [26] Iterative Sketching start from 117

an initial solution 𝑥0 ∈ ℝ𝑛 generate iterates 𝑥1, 𝑥2,⋯ by solving a 118

sequence of the sketched least-squares problems 119

𝑥𝑖+1 = 𝑥𝑖 + argmin𝑦∈ℝ𝑛
1
2‖(𝑆𝐴)𝑦‖

2 − 𝑦⊤𝐴⊤(𝑏 − 𝐴𝑥𝑖), (2)

for 𝑖 = 0, 1, 2,⋯. As with the classical least-squares sketch, the 120

quadratic form is defined by the matrix 𝑆𝐴 ∈ ℝ𝑚×𝑑, which leads 121

to computational savings. The closed form solution of (2) is given 122

via 𝑥𝑖+1 = 𝑥𝑖 + (𝐴⊤𝑆⊤𝑆𝐴)†𝐴⊤(𝑏 − 𝐴𝑥𝑖) which encounter with the 123

iterative refine a sketch-and-apply solver which shown in Algorithm 124

3. In Section 4.1.0.4, we also show that Iterative Hessian Sketching/It- 125

erative Refinement is equivalent to Sketch-and-Precondition using a 126

Jacobi Iteration Solver. 127

Backward-Stability Backward stability refers to the property of a nu- 128

merical algorithm where the computed solution is the exact solution 129

to a slightly perturbed version of the original problem. Specifically, a 130

solver is said to be backward stable if the solver satisfies the following 131

property: 132

Definition (Backward error). In floating point arithmetic, it
produces a numerical solution 𝑥̂ that is the exact solution to
a slightly modified problem:

𝑥̂ = argmin
𝑦∈ℝ𝑛

‖(𝑏 + ∆𝑏) − (𝐴 + ∆𝐴)𝑦‖ (3)

where the (relative) size of the perturbations is at most

‖∆𝐴‖ ≤ 𝑐‖𝐴‖, ‖∆𝑏‖ ≤ 𝑐‖𝑏‖ provided 𝑐 < 1. (4)
133

[35] show that a backward stable solver can achieve accurate esti- 134

mation of each component of the solution and can enforce residual 135

orthogonality, i.e. the KKT condition of the least square problem that 136

𝐴⊤(𝐴𝑥−𝑏) = 0. The classic Householder QR least-squares method is 137

backward stable [7, Ch. 20]. However, recent works [30], [37] showed 138

that randomized sketching solver is not backward stable. 139

To prove a solver is backward stable, we follow 140

[14], [35] which utilize the Karlson-Waldén estimate 141

B̂E𝜃(𝒙̂) ∶= 𝜃√
1+𝜃2‖𝒙̂‖2

‖‖‖‖‖‖‖‖‖
(𝑨⊤𝑨 + 𝜃2‖𝒃−𝑨𝒙̂‖2

1+𝜃2‖𝒙̂‖2
𝐈)

−1∕2

𝑨⊤(𝒃 − 𝑨𝒙̂)
‖‖‖‖‖‖‖‖‖

142

which can estimate the backward error up to a constant, 143

i.e. B̂E𝜃(𝒙̂) ≤ BE𝜃(𝒙̂) ≤
√
2B̂E𝜃(𝒙̂) [14]. Given singular 144

value decomposition 𝐴 =
∑𝑛

𝑖=1 𝜎𝑖𝑢𝑖𝑣
⊤
𝑖 , the Karlson-Waldén 145

estimation indicates that a least square 𝑥̂ is backward sta- 146

ble is equivalent to satisfying a component-wise error bound 147
||||𝐯

⊤
𝑖 (𝐱̂ − 𝐱)|||| ≲ 𝜎−1𝑖 ⋅ (1 + ‖𝐱̂‖)𝑢 + 𝜎−2𝑖 ⋅ ‖𝐛 − 𝐴𝐱̂‖𝑢 for 𝑖 = 1, … , 𝑛.. 148

Definition (𝛼 − 𝛽 Accuracy). We define 𝑥̂ is 𝛼 − 𝛽 accurate if
there exists 𝑒1, 𝑒2 ∈ ℝ𝑛 such that ‖𝑒1‖, ‖𝑒2‖ ≤ 1 and

𝑥̂ − 𝑥∗ = 𝛼(1 + ‖𝑥̂‖)𝑅̂−1𝑒1 + 𝛽‖𝑏 − 𝐴𝑥̂‖(𝐴⊤𝐴)−1𝑒2,

where 𝑅̂ is a preconditioner of 𝐴 such that for any singular value of
𝐴𝑅̂−1 satisfies 𝜎(𝐴𝑅̂−1) ≍ 1.

149

Lemma 2. The computed solution 𝑥̂ of problem𝐴𝑥 = 𝑏 has backward 150

error 𝑏𝑒(𝑥̂) ≲
√
𝑛𝜖 if 151

𝑥̂ − 𝑥∗ = 𝜖(1 + ‖𝑥̂‖)𝑅̂−1𝑒1 + 𝜖‖𝑏 − 𝐴𝑥̂‖(𝐴⊤𝐴)−1𝑒2, (5)

where 𝑒𝑖 ∈ ℝ𝑛 satisfies ‖𝑒𝑖‖ ≲ 1(𝑖 = 1, 2). 152

Numerical Stability We provide several basic facts about numerical 153

errors generated in floating-point arithmetic, most of which can be 154

found in [7]. For error analysis, we denote the numerical error of an 155

expression computed in floating-point arithmetic as err(⋅). Specifi- 156

cally, for a real number 𝑥, let fl(𝑥) denote its floating-point approxima- 157
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tion. The numerical error in 𝑥 is then defined as err(𝑥) = |𝑥 − fl(𝑥)|.158

Recall that 𝑢 denotes the unit roundoff, which is the maximum rela-159

tive error in representing a real number in floating-point arithmetic.160

That is, for any real number 𝑥, we have |fl(𝑥) − 𝑥| ≤ 𝑢|𝑥|. We also161

define 𝛾𝑛 for a positive integer 𝑛 as 𝛾𝑛 =
𝑛𝑢

1−𝑛𝑢
, assuming 𝑛𝑢 ≪ 1, so162

that 𝛾𝑛 ≈ 𝑛𝑢.163

Fact. For vector 𝑥, 𝑦 ∈ ℝ𝑛, matrix 𝐴 ∈ ℝ𝑚×𝑛, upper triangular164

matrix 𝑅 ∈ ℝ𝑛×𝑛, we have165

• ‖err(𝑥 ± 𝑦)‖ ≤ 𝑢
√
𝑛‖𝑥 ± 𝑦‖.166

• ‖err(𝐴𝑥)‖ ≤
√
𝑛𝛾𝑛‖𝐴‖‖𝑥‖.167

• higham2002accuracyFor problem 𝑅𝑥 = 𝑦, the solution by168

Gaussian-elimination satisfies (𝑅 +𝐸)(𝑅−1𝑦 + 𝑒𝑟𝑟𝑜𝑟(𝑅−1𝑦)) = 𝑦169

where |𝐸| ≲ 𝛾𝑛|𝑅|. This result further leads to 𝑒𝑟𝑟(𝑅−1𝑦) =170 √
𝑛𝛾𝑛‖𝑅−1𝑦‖𝑅−1𝑒, where ‖𝑒‖ ≲ 1.171

• For problem 𝐴𝑥 = 𝑏, the solution by QR factorization sat-172

isfies (𝐴 + 𝛿𝐴)(𝐴†𝑏 + err(𝐴†𝑏)) = 𝑏 + 𝛿𝑏, where ‖𝛿𝐴‖ ≲173

𝛾𝑛2‖𝐴‖, ‖𝛿𝑏‖ ≲ 𝛾𝑛2‖𝑏‖ [7, Theorem 19.5].174

3. Randomized Solver As Iterative Refinement175

In this section, we present a novel approach for constructing a fast176

and stable randomized least squares solver by iteratively refining an177

approximate solver which we call a meta-algorithm, e.g. sketch-and-178

apply or early stopped iterative randomized solver. We introduce two179

ways to do the refinement: iterative refinement and recursive refine-180

ment. Both refinement process starts from a meta-algorithm and181

improve the previous solution by correcting it based on the residual182

error. The key difference between iterative and recursive refinement183

processes is that iterative refinement improves the solution by ap-184

plying the meta-algorithm at each step to correct the residual, while185

recursive refinement refines the solution by repeatedly applying the186

same current solver to the residual error.187

SIR: Sketched Iterative Refinement
Input :1
Output :2
if 𝑁 = 0 then

Return SIRmeta
0 (𝑏) Via a meta-algorithm SIRmeta

0 (𝑏) =
ALGmeta(𝐴⊤𝑏);
; /* Initialization via Meta-Algorithm */

end
for 𝑖 ← 1 to𝑁 by 1 do

SIRmeta
𝑖 (𝑏) ∶= SIRmeta

𝑖−1 (𝑏) + ALGmeta(𝐴⊤(𝑏 − 𝐴 ⋅
SIRmeta

𝑖−1 (𝑏))); /* Iterative Refinement via
Meta-Algorithm */

end
Return SIRmeta

𝑁 (𝑏)

Algorithm 1: Sketched Iterative Refinement

3.1. Iterative and Recursive refinement188

Iterative Refinement Iterative refinement [3], [32], [33] is the189

classical approach to improving the quality of a computed solu-190

tion in numerical linear algebra. The idea of iterative refinement191

is simple, to improve the quality of an approximate solution 𝑥𝑖 ,192

solve for the error 𝛿𝑥𝑖 = 𝑥 − 𝑥𝑖 via approximately solving 𝛿𝑥𝑖 ∶=193

argmin𝛿𝑥𝑖 ‖𝑏−𝐴𝑥𝑖−𝐴𝛿𝑥𝑖‖. Classically, the inexact solve used in the194

refinement step is a classical direct solver such as QR factorization195

computed in lower numerical precision (i.e., single precision), and all196

the other steps are performed in higher precision (e.g., double preci-197

sion) [2], [34]. In our paper, we design an iterative algorithm, where198

each step incorporates the concept of iterative refinement, using a199

fast randomized linear solver to approximately solve the system. The 200

algorithm is detailed in Algorithm 3. 201

Recursive Refinement We also introduce a novel way to implement 202

an iterative refinement process which we call it (sketched) recursive 203

refinement approach. Sketched Recursive Refinement process also 204

iteratively refines the solution by incorporating corrections from pre- 205

vious iterations. Different from iterative refinement which updates 206

the current solution by applying a fixed procedure to adjust the solu- 207

tion, recursive refinement refers back to itself to perform the next step 208

and solve the problem in a nested fashion. The algorithm is detailed 209

in Algorithm 4. Later, we demonstrate that recursive refinement is 210

simply a reorganization of the computational steps in iterative refine- 211

ment but the two types of refinement enjoy very different numerical 212

stability behavior. 213

SRR: Sketched Recursive Refinement
Input :1
Output :2
if 𝑁 = 0 then

Return SRR0(𝑏) Viameta-algorithm ALG𝑚𝑒𝑡𝑎(𝐴⊤𝑏);
end
for 𝑖 ← 1 to𝑁 by 1 do

SRR𝑖(𝑏) ∶= SRR𝑖−1(𝑏)+SRR𝑖−1(𝐴⊤𝑏−𝐴⊤𝐴⋅SRR𝑖−1(𝑏));
/* Recursive Refinement */

end
Return SRR𝑁(𝑏)

Algorithm 2: Sketched Recursive Refinement.

Recursive Refinement as Reorganizing Computation We would 214

like to point out that Recursive refinement and Iterative refinement 215

perform the same if one uses exact arithmetic. With a linear meta- 216

algorithm, i.e. 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) can be represented as 𝑇𝐴⊤𝑏 + 𝑞 for 217

some matrix 𝑇 which includes most useful randomized solver such 218

as Sketch-and-Apply, the results of SIR𝑁(𝑏) and SRRlog2 𝑁
(𝑏) are the 219

same and both can be presented in the same form as geometric series 220

as 𝑥 =
∑𝑁

𝑖=0(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 with same amount of compute 𝑂(𝑁𝑚𝑛). 221

This means that Recursive Refinement is just a reorganization of 222

computation order in the Iterative Refinement procedure and would 223

generate the same computational result if one use exact arithmetic. 224

However, in the following discussion, we show that Recursive Refine- 225

ment and Iterative Refinement behave very differently when using a 226

floating point arithmetic. 227

Equivalence between Iterative Refinement and Sketch-and-Precon- 228

dition Iterative Refinement (Iterative Hessian Sketching) and the 229

Sketch-and-Precondition approach are commonly regarded as two dis- 230

tinct methodologies for designing iterative randomized least squares 231

solvers. In this remark, we demonstrate the surprising equivalence be- 232

tween sketched iterative refinement and the sketch-and-precondition 233

method. This insight provides a unified perspective on modern ran- 234

domized linear solvers and suggests new possibilities for design- 235

ing iterative least squares solvers as iterative refinement. Specifi- 236

cally, sketched iterative refinement (or Iterative Hessian Sketching) 237

can be interpreted as a preconditioned Jacobi iteration using the 238

sketched matrix. Assuming the meta-algorithm has a linear form 239

𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) = 𝑇𝐴⊤𝑏 + 𝑞, the sketched iterative refinement per- 240

forms iteration 𝑥𝑖+1 = (𝐼 −𝑇−1𝐴⊤𝐴)𝑥𝑖+𝑇−1𝐴⊤𝑏, which is equivalent 241

to Jacobi iterationwith pre-conditer𝑇. This indicates that the iterative 242

refinement process implicitly acts as a preconditioning mechanism, 243

enjoying the same convergence guarantees as described in [9]. More- 244

over, this new understanding of iterative refinement allows for amore 245

detailed analysis of numerical stability of the solver shown in Section 246

5.2. 247
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Convergence of Iterative and Recursive refinement In this section248

we demonstrate the convergence of ‖𝑥 − 𝑥∗‖.249

Theorem 3 (Convergence of Iterative/Recursive Refinement). Sup-250

pose that the meta-algorithm has a linear form 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) =251

𝑇𝐴⊤𝑏+𝑞, then SIR and SRR are convergent if and only if 𝜌(𝐼−𝑇𝐴) < 1,252

with253

• ‖SIRmeta𝑡 (𝐴⊤𝑏) − 𝑥∗‖ ≤ ‖SIRmeta0 (𝐴⊤𝑏) − 𝑥∗‖𝑒−𝛼𝑡 ,254

• ‖SRRmeta𝑡 (𝐴⊤𝑏) − 𝑥∗‖ ≤ ‖SRRmeta0 (𝐴⊤𝑏) − 𝑥∗‖𝑒−𝛼2𝑡255

where 𝛼 = −𝑙𝑛(𝜌(𝐼 − 𝑇𝐴)) and 𝑥∗ is the true solution which satisfies256

𝑥∗ = argmin𝑥 ‖𝐴𝑥 − 𝑏‖.257

Remark 1 (Selection of Meta-Algorithm). If one use the standard258

sketch-and-solve algorithm as the meta-algorithm, 𝑡-th iteration of259

SIR algorithm convergence at speed ( 1

(1−𝜂)2
−1)𝑡 for a sketchingmatrix260

with distortion 𝜂 where 𝜂 ∈ (0, 1). This means necessary sketching261

dimension depends on the intrinsic complexity of the problem. The262

algorithm would diverge if the “sufficient sketching dimension” con-263

dition is violated [21], [24]. To remove such condition, we consider a 2-264

step Krylov-based sketch-and-solve solver as themeta-algorithm, now265

the 𝑡-th iteration of SIR algorithm convergence at speedmin{𝜂𝑘 , 1

𝜂𝑘
}266

which removes the requirement that 𝜂 < 1 (detailed proof shown in267

Appendix 8.4). We use the 2-step Krylov solver both for the stability268

analysis in Section 5.2 and the implementation in Section 6.269

4. Randomized Solver As Iterative Refinement270

In this section, we present a novel approach for constructing a fast271

and stable randomized least squares solver by iteratively refining an272

approximate solver which we call a meta-algorithm, e.g. sketch-and-273

apply or early stopped iterative randomized solver. We introduce two274

ways to do the refinement: iterative refinement and recursive refine-275

ment. Both refinement process starts from a meta-algorithm and276

improve the previous solution by correcting it based on the residual277

error. The key difference between iterative and recursive refinement278

processes is that iterative refinement improves the solution by ap-279

plying the meta-algorithm at each step to correct the residual, while280

recursive refinement refines the solution by repeatedly applying the281

same current solver to the residual error.282

SIR: Sketched Iterative Refinement
Input :1
Output :2
if 𝑁 = 0 then

Return SIRmeta
0 (𝑏) Via a meta-algorithm SIRmeta

0 (𝑏) =
ALGmeta(𝐴⊤𝑏);
; /* Initialization via Meta-Algorithm */

end
for 𝑖 ← 1 to𝑁 by 1 do

SIRmeta
𝑖 (𝑏) ∶= SIRmeta

𝑖−1 (𝑏) + ALGmeta(𝐴⊤(𝑏 − 𝐴 ⋅
SIRmeta

𝑖−1 (𝑏))); /* Iterative Refinement via
Meta-Algorithm */

end
Return SIRmeta

𝑁 (𝑏)

Algorithm 3: Sketched Iterative Refinement

4.1. Iterative and Recursive refinement283

Iterative Refinement Iterative refinement [3], [32], [33] is the284

classical approach to improving the quality of a computed solu-285

tion in numerical linear algebra. The idea of iterative refinement286

is simple, to improve the quality of an approximate solution 𝑥𝑖 ,287

solve for the error 𝛿𝑥𝑖 = 𝑥 − 𝑥𝑖 via approximately solving 𝛿𝑥𝑖 ∶= 288

argmin𝛿𝑥𝑖 ‖𝑏−𝐴𝑥𝑖−𝐴𝛿𝑥𝑖‖. Classically, the inexact solve used in the 289

refinement step is a classical direct solver such as QR factorization 290

computed in lower numerical precision (i.e., single precision), and all 291

the other steps are performed in higher precision (e.g., double preci- 292

sion) [2], [34]. In our paper, we design an iterative algorithm, where 293

each step incorporates the concept of iterative refinement, using a 294

fast randomized linear solver to approximately solve the system. The 295

algorithm is detailed in Algorithm 3. 296

Recursive Refinement We also introduce a novel way to implement 297

an iterative refinement process which we call it (sketched) recursive 298

refinement approach. Sketched Recursive Refinement process also 299

iteratively refines the solution by incorporating corrections from pre- 300

vious iterations. Different from iterative refinement which updates 301

the current solution by applying a fixed procedure to adjust the solu- 302

tion, recursive refinement refers back to itself to perform the next step 303

and solve the problem in a nested fashion. The algorithm is detailed 304

in Algorithm 4. Later, we demonstrate that recursive refinement is 305

simply a reorganization of the computational steps in iterative refine- 306

ment but the two types of refinement enjoy very different numerical 307

stability behavior. 308

SRR: Sketched Recursive Refinement
Input :1
Output :2
if 𝑁 = 0 then

Return SRR0(𝑏) Viameta-algorithm ALG𝑚𝑒𝑡𝑎(𝐴⊤𝑏);
end
for 𝑖 ← 1 to𝑁 by 1 do

SRR𝑖(𝑏) ∶= SRR𝑖−1(𝑏)+SRR𝑖−1(𝐴⊤𝑏−𝐴⊤𝐴⋅SRR𝑖−1(𝑏));
/* Recursive Refinement */

end
Return SRR𝑁(𝑏)

Algorithm 4: Sketched Recursive Refinement.

Recursive Refinement as Reorganizing Computation We would 309

like to point out that Recursive refinement and Iterative refinement 310

perform the same if one uses exact arithmetic. With a linear meta- 311

algorithm, i.e. 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) can be represented as 𝑇𝐴⊤𝑏 + 𝑞 for 312

some matrix 𝑇 which includes most useful randomized solver such 313

as Sketch-and-Apply, the results of SIR𝑁(𝑏) and SRRlog2 𝑁
(𝑏) are the 314

same and both can be presented in the same form as geometric series 315

as 𝑥 =
∑𝑁

𝑖=0(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 with same amount of compute 𝑂(𝑁𝑚𝑛). 316

This means that Recursive Refinement is just a reorganization of 317

computation order in the Iterative Refinement procedure and would 318

generate the same computational result if one use exact arithmetic. 319

However, in the following discussion, we show that Recursive Refine- 320

ment and Iterative Refinement behave very differently when using a 321

floating point arithmetic. 322

Equivalence between Iterative Refinement and Sketch-and-Precon- 323

dition Iterative Refinement (Iterative Hessian Sketching) and the 324

Sketch-and-Precondition approach are commonly regarded as two dis- 325

tinct methodologies for designing iterative randomized least squares 326

solvers. In this remark, we demonstrate the surprising equivalence be- 327

tween sketched iterative refinement and the sketch-and-precondition 328

method. This insight provides a unified perspective on modern ran- 329

domized linear solvers and suggests new possibilities for design- 330

ing iterative least squares solvers as iterative refinement. Specifi- 331

cally, sketched iterative refinement (or Iterative Hessian Sketching) 332

can be interpreted as a preconditioned Jacobi iteration using the 333

sketched matrix. Assuming the meta-algorithm has a linear form 334

𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) = 𝑇𝐴⊤𝑏 + 𝑞, the sketched iterative refinement per- 335
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forms iteration 𝑥𝑖+1 = (𝐼 −𝑇−1𝐴⊤𝐴)𝑥𝑖+𝑇−1𝐴⊤𝑏, which is equivalent336

to Jacobi iterationwith pre-conditer𝑇. This indicates that the iterative337

refinement process implicitly acts as a preconditioning mechanism,338

enjoying the same convergence guarantees as described in [9]. More-339

over, this new understanding of iterative refinement allows for amore340

detailed analysis of numerical stability of the solver shown in Section341

5.2.342

Convergence of Iterative and Recursive refinement In this section343

we demonstrate the convergence of ‖𝑥 − 𝑥∗‖.344

Theorem 4 (Convergence of Iterative/Recursive Refinement). Sup-345

pose that the meta-algorithm has a linear form 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝐴⊤𝑏) =346

𝑇𝐴⊤𝑏+𝑞, then SIR and SRR are convergent if and only if 𝜌(𝐼−𝑇𝐴) < 1,347

with348

• ‖SIRmeta𝑡 (𝐴⊤𝑏) − 𝑥∗‖ ≤ ‖SIRmeta0 (𝐴⊤𝑏) − 𝑥∗‖𝑒−𝛼𝑡 ,349

• ‖SRRmeta𝑡 (𝐴⊤𝑏) − 𝑥∗‖ ≤ ‖SRRmeta0 (𝐴⊤𝑏) − 𝑥∗‖𝑒−𝛼2𝑡350

where 𝛼 = −𝑙𝑛(𝜌(𝐼 − 𝑇𝐴)) and 𝑥∗ is the true solution which satisfies351

𝑥∗ = argmin𝑥 ‖𝐴𝑥 − 𝑏‖.352

Remark 2 (Selection of Meta-Algorithm). If one use the standard353

sketch-and-solve algorithm as the meta-algorithm, 𝑡-th iteration of354

SIR algorithm convergence at speed ( 1

(1−𝜂)2
−1)𝑡 for a sketchingmatrix355

with distortion 𝜂 where 𝜂 ∈ (0, 1). This means necessary sketching356

dimension depends on the intrinsic complexity of the problem. The357

algorithm would diverge if the “sufficient sketching dimension” con-358

dition is violated [21], [24]. To remove such condition, we consider a 2-359

step Krylov-based sketch-and-solve solver as themeta-algorithm, now360

the 𝑡-th iteration of SIR algorithm convergence at speedmin{𝜂𝑘 , 1

𝜂𝑘
}361

which removes the requirement that 𝜂 < 1 (detailed proof shown in362

Appendix 8.4). We use the 2-step Krylov solver both for the stability363

analysis in Section 5.2 and the implementation in Section 6.364

5. Fast and Stable Solver via Iterative and Recursive re-365

finement366

To construct a fast and stable randomized solver, we use Sketched367

Recursive Refinement as the meta-algorithm for a Sketched Iterative368

Refinement process. We call our algorithm Sketched Iterative and369

Recursive Refinement (SIRR) which is shown as algorithm 6 in the370

appendix. We also theoretically show that both iterative and recursive371

refinement are essential to achieve backward stability. The theoretical372

finding is also verified numerically in Section 6.373

5.1. Sketched Iterative and Recursive Refinement374

SIRR is Fast In this section, we first show that SIRR converges fast375

with a computational complexity at 𝑂(𝑛3 +𝑚𝑛) . Note that SIRR is376

a composite of meta-algorithm, so we examine the computational377

complexity and average convergence rate of meta-algorithm to show378

the whole computational complexity of SIRR.379

Suppose that 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚×1 and upper triangular matrix380

𝑅 ∈ ℝ𝑛×𝑛, the computation of computational complexity follows:381

• matrix and vector multiplication 𝐴⊤𝑏: 𝑂(𝑚𝑛)382

• solving triangular system 𝑅−1𝑧 for 𝑧 ∈ ℝ𝑛×1: 𝑂(𝑛2)383

• conducting QR factorization of 𝑆𝐴: 𝑂(𝑠𝑛2) = 𝑂(𝑛3𝑙𝑜𝑔(𝑛))384

For sketch-and-solve meta solver, the computational complexity385

is 𝑂(𝑛2 + 𝑚𝑛) and the convergence rate is 1

(1−𝜂)2
− 1. To reach386

machine precision, the iteration step is at most 𝑂(𝑙𝑜𝑔( 1
𝑢
)), thus387

the total computational complexity of SIR, SRR and SIRR are all388

𝑂(𝑛3𝑙𝑜𝑔(𝑛) + 𝑙𝑜𝑔( 1
𝑢
)(𝑛2 + 𝑚𝑛)) matches the fast randomzied least389

square solvers such as Blendenpik [12] and FOSSILS [35].390

5.2. SIRR in Floating Point Arithmetic 391

As shown in Section 4.1, SIRR is the same as SIR in exact arithmetic. 392

In this section, we study the stability results for SIR, SRR and SIRR 393

when one implements them in floating point arithmetic. 394

5.2.1. SIRR is forward Stable 395

In this section, we first prove that SIRR solver is forward stable, 396

i.e. both the forward error ‖𝑥̂ − 𝑥∗‖ and the residual error ‖𝐴𝑥̂ − 397

𝐴𝑥∗‖ converge geometrically for SIRR implemented in floating point 398

arithmetic. 399

Definition (Forward Stability). A least-squares solver is forward 400

stable if the computed solution 𝑥̂ satisfies 401

‖𝑥̂ − 𝑥∗‖ ≤ 𝜖(𝜅‖𝑥∗‖ + 𝜅2

‖𝐴‖
‖𝑟∗‖),

and is strongly forward stable if 𝑥̂ satisfies 402

‖𝐴(𝑥̂ − 𝑥∗)‖ ≤ 𝜖(𝜅‖𝑟∗‖ + ‖𝐴‖‖𝑥∗‖),

where 𝑥∗ is the exact solution, 𝑟∗ = 𝑏 − 𝐴𝑥∗ and 𝜖 ≲ 𝑛
3
2 403

Remark 3. This is the best error one can expect to achieve due to 404

Wedin’s theorem [4], where one always solving a perturbed problem 405

argmin𝑦∈ℝ𝑛 ‖(𝑏+𝛿𝑏)−(𝐴+𝛿𝐴)𝑦‖ in floating point arithmetic, where 406

‖𝛿𝐴‖ ≤ 𝜖‖𝐴‖, ‖𝛿𝑏‖ ≤ 𝜖‖𝑏‖. 407

Theorem 5. For SIRR with meta-algorithm ALG𝑚𝑒𝑡𝑎(⋅), which solves 408

problem 𝑥 = argmin𝑦 ‖(𝐴⊤𝐴)𝑦 − 𝑟𝐴‖, satisfying ALG
𝑚𝑒𝑡𝑎(𝑟𝐴) = 409

(𝐴⊤𝐴)−1𝑟𝐴 + 𝑐‖𝑅̂−⊤𝑟𝐴‖𝑅̂−1𝑒 where ‖𝑒‖ ≲ 1 and 𝑐 < 1, the result 𝑥̂ 410

of SIRR is strongly forward stable, which satisfies 411

‖𝑥̂ − 𝑥∗‖ ≲ 𝑛
3
2 (𝑢𝜅‖𝑥∗‖ + 𝑢𝜅2

‖𝐴‖
‖𝑟∗‖),

‖𝐴(𝑥̂ − 𝑥∗)‖ ≲ 𝑛
3
2 (𝑢𝜅‖𝑟∗‖ + 𝑢‖𝐴‖‖𝑥∗‖),

With strongly forward stable, we can expect a non-pathological 412

rounding error ‖𝑥̂‖ ≥ ‖𝑥∗‖ + 𝑛
3
2
𝑢𝜅2

‖𝐴‖
‖𝑟∗‖. 413

5.2.2. SIRR is Backward Stable 414

In this section, we provide the theoretical analysis showing that 415

the Sketched Iterative and Recursive Refinement (SIRR) is provable 416

backward stable when implemented in floating point arithmetic. To 417

do this, we first find the requirement that the meta solver of the 418

sketched iterative refinement needs to satisfy that canmake SIR solver 419

backward stable. Then we prove that Sketched Recursive Refinement 420

can provably meet these requirements. 421

Theorem 6. For simplicity, denote max{𝑢𝜅, 1

𝜅𝑛
3
2
} as 𝜅̃−1. Suppose 422

that 𝑢𝑛
3
2 ‖𝑥∗‖ ≤ ‖𝑏 − 𝐴𝑥∗‖ and the single step meta-solver 𝐴𝐿𝐺(𝑧) 423

is 𝑛
3
2 𝜅̃−1(‖𝐴𝑥∗𝑧‖ + 𝑢𝜅‖𝑧‖) − 𝑢𝑛

3
2 (‖𝐴𝑥∗𝑧‖ + ‖𝑧‖) accurate where 𝑥∗𝑧 is 424

the true solution of the least square problem, i.e. argmin𝑥 ‖𝐴𝑥 − 𝑧‖. 425

Then SIR solver 𝑥𝑖+1 = 𝐴𝐿𝐺(𝑏 −𝐴𝑥𝑖) will converge to a (𝑢𝑛3𝜅𝜅̃−1‖𝑏 − 426

𝐴𝑥∗𝑏‖ + 𝑢𝑛
3
2 ‖𝑥∗‖) − (𝑢𝑛

3
2 ‖𝑏 − 𝐴𝑥∗𝑏‖ + 𝑢2𝑛3‖𝑥∗‖) accurate solution 427

which indicate a backward stable result by Lemma 2. 428

Remark 4. Since SIR/SIRR solver enjoys non-pathological rounding 429

error assumption ‖𝑥∗‖ + 𝑛
3
2 𝜅2𝑢‖𝑏 − 𝐴𝑥∗‖ ≲ ‖𝑥̂‖ (Theorem 5), we 430

have

𝑢𝑛3𝜅𝜅̃−1
⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞

(𝑛
3
2 𝑢 + 𝑛3𝜅2𝑢2)‖𝑏−𝐴𝑥∗‖+𝑢𝑛

3
2 ‖𝑥∗‖ ≲ 𝑢𝑛

3
2 ‖𝑏−𝐴𝑥∗‖+𝑢𝑛

3
2 ‖𝑥̂‖ ≲ 431

𝑢𝑛
3
2 ‖𝑏 − 𝐴𝑥̂‖ + 𝑢𝑛

3
2 ‖𝑥̂‖ ≲ 𝑢𝑛

3
2 + 𝑢𝑛

3
2 ‖𝑥̂‖ and 𝑢𝑛

3
2 ‖𝑏 − 𝐴𝑥∗‖ + 432

𝑢2𝑛3‖𝑥∗‖ ≲ 𝑢𝑛
3
2 ‖𝑏−𝐴𝑥∗‖ ≲ 𝑢𝑛

3
2 ‖𝑏−𝐴𝑥̂‖ based on the assumption 433

that 𝑢𝑛
3
2 ‖𝑥∗‖ ≲ ‖𝑏 − 𝐴𝑥∗‖. By lemma 2, the solution has backward 434
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error 𝐵𝑒(𝑥̂) ≲ 𝑛2𝑢 which indicates a backward stability result and435

aligns the backward error estimation for QR-based solver [7, Theorem436

19.5] which also dependency of matrix size at 𝑛2.437

Then we study the stability result of SRR implemented in floating438

point arithmetic. We show that SRR can be backward stable only439

when ‖𝑏−𝐴𝑥∗‖

‖𝐴𝑥∗‖
= 𝑂(1) and is not backward stable when the residual440

‖𝑏 − 𝐴𝑥∗‖ is small. However, SRR provides an approximate solver441

that satisfies the assumption we require for the meta-algorithm in442

the backward stable result in Theorem 6.443

Theorem 7. For meta-algorithm 𝑆𝑅𝑅0(⋅), which solves problem444

𝑥 = argmin𝑦 ‖(𝐴⊤𝐴)𝑦 − 𝑟𝐴‖, satisfying 𝑆𝑅𝑅0(𝑟𝐴) = 𝑥∗ +445

(𝑎1‖𝑥∗‖ + 𝑎2‖𝐴𝑥∗‖)𝑅̂−1𝑒1 + (𝑏1‖𝑥∗‖ + 𝑏2‖𝐴𝑥∗‖)(𝐴⊤𝐴)−1𝑒2, where446

𝑥∗ = (𝐴⊤𝐴)−1𝑟𝐴 and447

𝜅𝑎1 + 𝑎2 ≍ 𝑐, 𝜅2𝑏1 + 𝜅𝑏2 ≍ 𝑐, ‖𝑒1,2‖ ≲ 1,

and 𝑁 = 𝑂(𝑙𝑜𝑔2(
𝑙𝑜𝑔(𝜅̃−1𝑛

3
2 )

𝑙𝑜𝑔(𝑐)
)), the solution of corresponding SRR𝑁 is448

𝑂(𝑛
3
2 (𝜅̃−1‖𝐴𝑥∗‖ + 𝑢‖𝑥∗‖ + 𝑢𝜅𝜅̃−1‖𝑏‖), 𝑛

3
2 (𝑢‖𝐴𝑥∗‖ + 𝑢2𝑛

3
2 ‖𝑥∗‖ +449

𝑢‖𝑏‖))-accurate. As 𝑁 → ∞, SRR𝑁 converges to a (𝑎, 𝑏)−accurate450

solution SRR∞(𝑏) with451

𝑎̂ ≲ (𝑢2𝜅2𝑛3‖𝐴𝑥∗‖ + 𝑢𝑛
3
2 ‖𝑥∗‖ + 𝑢2𝜅2𝑛3‖𝑏‖),

𝑏̂ ≲ (𝑢𝑛
3
2 ‖𝐴𝑥∗‖ + 𝑢2𝑛3‖𝑥∗‖ + 𝑢𝑛

3
2 ‖𝑏‖).

Remark 5. Theorem 7 indicates that SRR has the same backward452

error level as SIRR when ‖𝑏−𝐴𝑥∗‖

‖𝐴𝑥∗‖
= 𝑂(1). We verified numerically453

that SRR solver only is not backward stable when ‖𝑏 − 𝐴𝑥∗‖ is large.454

The result is presented in Figure 2. This illustrates that our theoretical455

result for SRR is tight.456

Although SRR𝑁(⋅) is not backward stable on its own, it satisfies457

the requirements (for 𝑢‖𝑥∗‖ ≲ 𝜅̃−1‖𝐴𝑥∗‖ and 𝑢𝑛
3
2 ‖𝑥∗‖ ≲ ‖𝐴𝑥∗‖) of458

the meta-algorithm in Theorem 6 to achieve a backward-stable SIR459

solver, as demonstrated in Theorem 7. This implies that by using SRR460

as the meta-algorithm for the SIR solver—i.e., the SIRR solver—it461

can be proven to be backward-stable, provided the meta-algorithm462

satisfies the conditions outlined in Theorem 7. Finally, we show that463

the two-step Krylov-based meta-algorithm, described in Remark 2,464

meets the meta-algorithm criteria specified in Theorem 7.465

Lemma 8. The result of 2-step Krylov-based meta-algorithm (Ap-466

pendix Algorithm 5) for solving 𝑥 = argmin𝑦 ‖(𝐴⊤𝐴)𝑦 − 𝑟𝐴‖ satisfies467

𝑥̂ = 𝑥∗ + 𝑢𝜅𝑛
3
2 ‖𝐴𝑥∗‖𝑅̂−1𝑒1 + 𝑢𝑛

3
2 ‖𝐴𝑥∗‖(𝐴⊤𝐴)−1𝑒2,

where 𝑥∗ = (𝐴⊤𝐴)−1𝑟𝐴 and ‖𝑒1,2‖ ≲ 1. As a result, SIRR with Krylov-468

based meta-algorithm is backward stable.469

6. Numerical Experiments470

In this section, we compare SIR, SRR and SIRR solver to verify471

our theoretical findings. We also compare it with QR-based direct472

solver (mldivide (MATLAB)) and FOSSILS in concurrent work [35] to473

show that SIRR solver can beat the state-of-the-art randomized/direct474

solvers in realistic applications.475

Error metrics Following [30], [35], we test three useful error met-476

rics for all randomized least square solvers:477

1. Forward error. The forward error quantifies how close the478

computed solution 𝑥̂ is to the true solution 𝑥, i.e. FE(𝑥̂) ∶=479
‖𝑥−𝑥̂‖

‖𝑥‖
.480

2. Residual error. The (relative) residual error measures the sub-481

optimality of 𝑥̂ as a solution to the least-squares minimization482

problem, i.e. RE(𝑥̂) ∶= ‖𝑟(𝑥)−𝑟(𝑥̂)‖

‖𝑟(𝑥)‖
.483

‖𝑟(𝑥)‖ = 10−1

‖𝑟(𝑥)‖ = 10−3

Figure 1. Results of SIRR with sketch and solve Initialization are shown as
solid curve lines, with reference accuracy for MATLAB function A∖b shown

as dotted constant lines and IHS-Krylov shown as dotted curve lines

3. Backward error. The (relative) backward error [7, Section 20.7] 484

is BE𝑏(𝑥̂) ∶= min𝑣
‖∆𝐴‖𝐹
‖𝐴‖𝐹

where 𝑥̂ = argmin𝑣 ‖𝑏 − (𝐴 + ∆𝐴)𝑣‖. 485

Experiment Setup We adopt a similar setup to [30], [37] in most 486

of experiments. We set 𝐴 ∈ 𝑅𝑚×𝑛, sketching matrix 𝑆 ∈ 𝑅𝑠×𝑚, and 487

choose parameters 𝜅 ≥ 1 for the condition number of𝐴 and 𝛽 ≥ 0 for 488

the residual norm ‖𝑟(𝑥)‖. To generate 𝐴, 𝑥, and 𝑏, do the following: 489

• Choose Haar random orthogonal matrices𝑈 = [𝑈1 𝑈2] inℝ𝑚×𝑚
490

and 𝑉 in ℝ𝑛×𝑛, and partition 𝑈 so that 𝑈1 ∈ ℝ𝑚×𝑛. 491

• Set 𝐴 ∶= 𝑈1Σ𝑉𝑇 where Σ is a diagonal matrix with logarithmi- 492

cally equispaced entries between 1 and 1

𝜅
. 493

• Form vectors 𝑤 in ℝ𝑛, 𝑧 in ℝ𝑚−𝑛 with independent standard 494

Gaussian entries. 495

• Define the solution 𝑥 ∶= 𝑤

‖𝑤‖
, residual 𝑟(𝑥) = 𝛽 ⋅ 𝑈2𝑧∕‖𝑈2𝑧‖, 496

and right-hand side 𝑏 ∶= 𝐴𝑥 + 𝑟(𝑥). 497

We also experiment on kernel regression task, where we consider 498

least-squares problems for fitting the SUSY dataset using a linear 499

combination of kernel functions. Similar to [30], [35], we generate 500

real-valued least-squares problems of dimension 𝑚 = 106 and 𝑛 ∈ 501

[101, 103]. 502

Both Iterative and Recursive Refinement is Essential In this sec- 503

tion, we conduct numerical experiments to demonstrate that both 504

iterative and recursive refinement are essential for constructing a 505

backward-stable solver. To illustrate this, we compare SIR, SRR, and 506

SIRR, each using a two-step Krylov solver as algorithm 5 in appendix. 507

as the meta-solver, under varying levels of condition numbers and 508

‖𝑏−𝐴𝑥∗‖

‖𝐴𝑥∗‖
to validate theorem 7. Figure 1 shows that the SIR solver is 509

not backward stable, while the SIRR solver achieves near machine- 510

precision backward error. In a second experiment, we compare SIRR 511

and SRR across different levels of residual size. Our theoretical re- 512

sults in theorem 7 indicate that when the magnitude of the residual 513

‖𝑏 − 𝐴𝑥∗‖ exceeds the signal ‖𝐴𝑥∗‖, SRR achieves the same back- 514

ward stability as SIRR. However, SRR cannot achieve the same level 515

of backward stability as SIRR when the residual ‖𝑏 − 𝐴𝑥∗‖ is small. 516

Figure 2 confirms this result, showing that the backward error of 517

SRR converges to that of SIRR in the white region and reaches the 518

same level as SIRR in the grey region. In all experiments, we set 519

𝑚 = 2000, 𝑛 = 50, 𝑠 = 200. 520

SIRR VS FOSSILS We also compare our SIRR solver with FOSSILS
in concurrent work [35]1 by two experiments. In the first experiments,
we adopt the same setting as [35], where a family of problems is
1We use the code from https://github.com/eepperly/Stable-Randomized-Least-Squares for the
FOSSILS algorithm.
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Figure 2. Forward error (left) and backward error (right) under different
‖𝑏 − 𝐴𝑥∗‖∕‖𝐴𝑥∗‖. SRR is not backward stable when ‖𝑏 − 𝐴𝑥∗‖ is small
while SIRR can achieve backward stable estimates for all cases. We also
plotted the result formldivide(MATLAB) solver here for reference.

generated of increasing difficulty, with condition number 𝜅 and error
size ‖𝑏 − 𝐴𝑥∗‖ satisfying

difficulty = 𝜅 =
‖𝑏 − 𝐴𝑥∗‖

𝑢 ∈ [100, 1016].

We set𝑚 = 5000, 𝑛 = 200, 𝑠 = 600 for problem size.Figure 3 shows521

the forward error and backward error of SIRR and FOSSILS in prob-522

lems of different difficulties, where both sketching algorithms have a523

similar forward stability while SIRR exhibits a better backward error524

performance.525

In the second experiment we give further insight into the difference526

between SIRR and FOSSILS. First we test on kernel regression task527

to see the runtime of sketching solver and MATLAB solver (mldivide)528

in different sizes of 𝑛. then we test the dependence of the stability529

of different solvers on sketching dimension by changing sketching530

dimension and counting the times that algorithm fails to converge531

in 100 runs. The left of Figure 6 shows that SIRR and FOSSILS need532

comparable time to reach the same accuracy, faster than MATLAB533

solver when 𝑙𝑜𝑔(𝑛) ≥ 2.4. The right figure illustrates the fail rate of534

SIRR and FOSSILS, which is the ratio of times failing to converge535

to a backward stable result in 100 runs. The fail rate of FOSSILS536

linearly decreases with the growth of sketching dimension, while537

SIRR achieves great stability when sketch dimension 𝑑 ≥ 1.75𝑛.538

Error scale with 𝑛 In this experiment we show that for sketching539

solver and MATLAB direct solver, it is inevitable that the error is540

in scale with 𝑛. We fix 𝑚 = 10000, 𝜅 = 108, ‖𝑏 − 𝐴𝑥∗‖ = 10−3 and541

change 𝑛 ∈ [100, 1600] with sketching dimension 𝑠 = 4 ∗ 𝑛. Figure542

4 shows the dependence of forward error and backward error on 𝑛 of543

different solvers. Note that three solvers actually have comparable544

forward error around 10−6 where MATLAB solver has slight edge.545

The dependence on 𝑛 is significant for backward error, where SIRR546

and FOSSILS appear to have a lower order of dependence.547

Remark 6. Empirically, the growth of backward error as the matrix548

size increases is slower than the theoretical prediction in Remark 4549

as 𝑛2. One possible reason is that the test matrix is random, and its550

randomness may not behave adversarially, leading to better perfor-551

mance.552

Figure 3. Comparing the Forward error (left) and backward error (right) of
SIRR and FOSSILS on problems with different difficulties. SIRR has better
backward stability in most situations and similar forward stability compared

to FOSSILS.

Figure 4. Forward error (left) and backward error (right) of different sizes of
𝑛.

6.1. Comparison with FOSSILS 553

We would like to highlight a concurrent work [35], which also 554

developed a backward stable solver with a computational complexity 555

of 𝑂(𝑚𝑛 + 𝑛3). However, the FOSSILS solver proposed in their work 556

follows a two-stage approach, where each stage involves an iterative 557

process. In contrast, our algorithm is a single-stage solver that offers 558

the flexibility to stop at any point during the computation, making it 559

more adaptable for scenarios where early termination is necessary 560

or beneficial. In this section we also compare our SIRR solver with 561

the FOSSILS solver in both synthetic matrices (Figure 3) and realistic 562

kernel regression datasets (Figure 4). We demonstrate that the SIRR 563

solver consistently achieves better backward stability than the FOS- 564

SILS solver across various difficulty levels, while requiring a similar 565

amount of computing time. Notably, when the sketch dimension is 566

small, SIRR is less prone to failure compared to FOSSILS. 567

SIRR and FOSSILS with Different Embedding Quality We have 568

proved that SIRR solver with 2-step Krylov-based meta-algorithm has 569

a good convergence even in cases where sketching quality is bad and 570

the distortion 𝜂 of sketching matrix is high. In this section, we give ex- 571

periment results of the convergence performance of two solvers, SIRR 572

and FOSSILS, in different embedding quality, which depends on the 573

relative sketch dimensions 𝑠

𝑛
. In the result, the fail rate means the ra- 574

tio of times that the solver fails to converge in 100 parallel experiments. 575

In different experiments,𝑚 = 2000 and 𝑛 = 100, 𝜅 ∈ {104, 108, 1012}, 576

‖𝑏 − 𝐴𝑥∗‖ ∈ {10−1, 10−3}. The results are presented in Figure 5. 577
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Orgization of the Appendix694

The appendix is structured as follows. In section 7.2, we present affiliate algorithms in this paper which are employed in practice. Then we695

give theoretical analysis of our method which guarantees the stability and convergence of our method in section 8.696

7. Details of Algorithms in Practice697

7.1. random matrix698

In many applications, it is crucial to construct a subspace embedding without prior knowledge of the target subspace. Such embeddings699

are known as oblivious subspace embeddings. Typically, the singular values of specific random matrices are bounded with high probability,700

which makes them well-suited for subspace embedding. Various designs of random matrices exist that exhibit both strong computational and701

mathematical properties:702

• Gaussian embedding: 𝑆 = ℝ𝑠×𝑚 with 𝑖.𝑖.𝑑 𝑁(0, 1
𝑠
) entries. The normalization 1

𝑠
ensures that 𝑆 preserves the 2-norm in expectation, e.g.703

𝐸‖𝑆𝑥‖22 = ‖𝑥‖22.704

• Subsampled randomized trigonometric transform (SRTT)[10]: 𝑆 =
√

𝑚

𝑠
𝑅𝐷𝐹 ∈ ℝ𝑠×𝑚, where 𝑅 ∈ ℝ𝑠×𝑚 is an uniformly random set705

of 𝑠 rows drown from the identity matrix 𝐼𝑚, and 𝐷 ∈ ℝ𝑚×𝑚 is a random diagonal matrix with 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(±1) entries, and 𝐹 ∈ ℝ𝑚×𝑚 is a706

𝐷𝐶𝑇2 matrix. SRTT requires less time in matrix/vector multiplication with cost 𝑂(𝑚 log(𝑚)) and has the same embedding property707

when 𝑠 ≈ 𝑛 log(𝑛).708

• Sparse randommatrices[1]: 𝑆 = [𝑠1, 𝑠2,⋯ , 𝑠𝑚] ∈ ℝ𝑠×𝑚, where 𝑠𝑖 are sparse vectors, which means for each 𝑖, 𝑠𝑖 has exactly 𝜁 nonzero709

entries, equally likely to be ±
√

1

𝜁
. The cost of matrix/vector multiplication is 𝑂(𝜁𝑚), and it’s embedding has distortion 𝜂 when 𝑠 ≈ 𝑛 log(𝑛)

𝜂2
710

and 𝜁 ≈ log(𝑛)

𝜂
.711

We use Sparse random matrices in our experiment which requires less operation and storage in computation.712

7.2. Krylov-based meta-algorithm713

A Krylov-based meta-algorithm is employed in our experiment, for it has a better convergence rate and is indifferent to the quality of714

embedding, making our solver more stable and faster even in worst cases. We present Krylov-based meta-algorithm in algorithm 5.

Krylov-based meta-algorithm
Input :1
Output :2
𝑦0 = (𝑅⊤𝑅)−1𝐴⊤𝑏;
𝑌 = 𝑦0 ; /* Initialization via sketch-and-solve */
for 𝑖 ← 1 to 𝐾 by 1 do

𝑦𝑖+1 = (𝑅⊤𝑅)−1𝐴⊤(𝑏 − 𝐴𝑦𝑖);
𝑌 = [𝑌, 𝑦 + 𝑖 + 1]

end
𝑎 = (𝐴𝑌)†𝑏
Return ALGmeta(𝑏) = 𝑌𝑎

Algorithm 5: Krylov-based meta-algorithm

715

7.3. Sketched Iterative and Recursive Refinement716

Sketched Iterative and Recursive Refinement (SIRR) is provably fast and stable and is designed based on Sketched Iterative Refinement717

(SIR) and Sketched Recursive Refinement (SRR). We present SIRR in algorithm 6.

SIRR: Sketched Iterative Recursive Refinement
Input :1
Output :2
if 𝑁 = 0 then

Initialize SIRR0(𝑏) = (𝑆𝐴)†𝑆𝑏 ;
; /* Initialization via sketch-and-solve */

end
for 𝑖 ← 1 to𝑁 by 1 do

SIRR𝑖(𝑏) ∶= SIRR𝑖−1(𝑏) + SRR𝑇(𝐴⊤(𝑏 − 𝐴 ⋅ SIRR𝑖−1(𝑏))); /* Iterative Refinement via Sketched Recursive
Refinement (SRR) */

end
Return SIRR𝑁(𝑏)

Algorithm 6: Sketched Iterative Recursive Refinement.

718

10–19



Xu et al.
Randomized Iterative Solver as Iterative Refinement:

A Simple Fix Towards Backward Stability

8. PROOF OF MAIN RESULTS 719

In this section, we first establish some fundamental numerical results, which serve as the foundation for the subsequent numerical analysis. 720

Then we examine the convergence of the iterative algorithm to show our method is theoretically fast. Finally, we give a rigorous numerical 721

analysis of the algorithm to support that it is stable in both forward and backward sense. 722

8.1. proof of lemma 1 723

In this section, we prove some practical bounds for computed QR factorization 𝑆𝐴 = 𝑄̄𝑅̂. The computation process of QR factorization can 724

be decomposed as 725

𝑆𝐴 = 𝑆𝐴 + 𝐸1, |𝐸1| ≲ 𝛾𝑛|𝑆||𝐴|,

𝑆𝐴 + 𝐸2 = 𝑄̄𝑅̂, ‖𝐸2‖𝐹 ≲ 𝛾𝑚𝑛‖𝑆𝐴‖𝐹 ,

Thus we have 726

‖𝑅̂‖ = ‖𝑄̄𝑅̂‖ = ‖𝑆𝐴 + 𝐸1 + 𝐸2‖ ≤
1

1 − 𝜂 ‖𝐴‖ + 2𝑛𝛾𝑛‖𝐴‖ + 2
√
𝑛𝛾𝑚𝑛‖𝐴‖ ≲ ‖𝐴‖,

‖𝑅̂−1‖ = 𝜎𝑚𝑖𝑛(𝑄̄𝑅̂) = 𝜎𝑚𝑖𝑛(𝑆𝐴 + 𝐸1 + 𝐸2) ≥ (1 − 𝜂)𝜎𝑚𝑖𝑛(𝐴) − (2
√
𝑛𝛾𝑛‖𝐴‖ + 2

√
𝑛𝛾𝑚𝑛‖𝐴‖) ≳

‖𝐴‖
𝜅 .

With similar analysis we have 727

‖𝐴𝑅̂−1‖ ≤ 1
1 − 𝜂 ‖𝑆𝐴𝑅̂‖ ≤ 2‖𝑄̄ − 𝐸1𝑅̂−1 − 𝐸2𝑅̂−1‖ ≲ 1 + 𝑢𝜅𝑛

5
2 ,

𝜎𝑚𝑖𝑛(𝐴𝑅̂−1) ≥ (1 − 𝜂)𝜎𝑚𝑖𝑛(𝑆𝐴𝑅̂) ≥
1
2𝜎𝑚𝑖𝑛(𝑄̄ − 𝐸1𝑅̂−1 − 𝐸2𝑅̂−1) ≳ 1 − 𝑢𝜅𝑛

5
2 .

8.2. proof of lemma 2 728

In this section, we use straightforward computation to verify the relationship between 𝛼−𝛽 accuracy and backward error. In Karlson–Waldén 729

estimate the key evaluating matrix can be expressed as 730

(𝐴⊤𝐴 +
‖𝑏 − 𝐴𝑥‖2

1 + ‖𝑥‖2
𝐼)

−1∕2

=
𝑛∑

𝑖=1
(𝜎2𝑖 +

‖𝑏 − 𝐴𝑥‖2

1 + ‖𝑥‖2
)
−1∕2

𝑣𝑖𝑣⊤𝑖 ,

where 𝐴 =
∑𝑛

𝑖=1 𝜎𝑖𝑢𝑖𝑣
⊤
𝑖 is SVD decomposition of matrix 𝐴. A further calculation shows that B̂E1(𝑥) can be expressed as 731

B̂E1(𝑥)2 =
1

√
1 + ‖𝑥‖2

‖‖‖‖‖‖‖‖‖‖‖
(𝐴⊤𝐴 +

‖𝑏 − 𝐴𝑥‖2

1 + ‖𝑥‖2
𝐼)

−1∕2

𝐴⊤(𝑏 − 𝐴𝑥)
‖‖‖‖‖‖‖‖‖‖‖

=
‖‖‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
(𝜎2𝑖 +

‖𝑏 − 𝐴𝑥‖2

1 + ‖𝑥‖2
)
−1∕2

𝑣𝑖𝑣⊤𝑖 𝐴
⊤𝐴(𝑥 − 𝑥)

‖‖‖‖‖‖‖‖‖‖‖

=
𝑛∑

𝑖=1

𝜎4𝑖(
1 + ‖𝑥‖2

)
𝜎2𝑖 + ‖𝑏 − 𝐴𝑥‖2

(
𝑣⊤𝑖 (𝑥 − 𝑥)

)2
.

Left multiplying (5) by 𝑣⊤𝑖 yields 732

(
𝑣⊤𝑖 (𝑥 − 𝑥)

)2
≤ ((1 + ‖𝑥‖)𝜎−1𝑖 + ‖𝑏 − 𝐴𝑥‖𝜎−2𝑖 )2.

Combining two lines gives B̂E1(𝑥)2 ≤ 𝑛. 733

8.3. the equivalence between 𝑆𝐼𝑅 and 𝑆𝑅𝑅 734

In this section, we show that sketched iterative refinement (SIR) and sketched recursive refinement (SIR) have the same form of results when 735

they have the same linear meta-algorithm, which gives theoretical support to the statement that Recursive Refinement is just a reorganization 736

of computation order in the Iterative Refinement procedure. 737

Set target linear system 𝐴𝑥 = 𝑏 with 𝑏 ∈ 𝑟𝑎𝑛𝑔𝑒(𝐴). Suppose that 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏) = 𝑇𝑏 + 𝑞 for some full rank matrix 𝑇, then we have 738

𝑥𝑖+1 = 𝑥𝑖 + 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏 − 𝐴𝑥) = (𝐼 − 𝑇𝐴)𝑥 + (𝑇𝑏 + 𝑞).

Note that the iteration is invariant when we initialize with true solution 𝑥∗ and 𝐴𝑥∗ = 𝑏, thus 𝑞 = 0. A direct calculation shows that with a 739

zero initial 𝑥0 = 0, we have 740

SIR𝑁(𝑏) = 𝑥𝑁 =
𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏.
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For 𝑥𝑖 = SRR𝑖(𝑏) and 𝑥0 = 0, we claim that741

SRR𝑁(𝑏) = 𝑥𝑁 =
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏,

and we will prove it by induction.742

It is easy to check that the statement holds for 𝑁 = 1 where743

SRR0(𝑏) = 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏) = 𝑇𝑏,
SRR1(𝑏) = 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏) + 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏 − 𝐴 ⋅ 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏))

= 𝑇𝑏 + 𝑇(𝑏 − 𝐴𝑇𝑏)
= (𝐼 − 𝑇𝐴)𝑇𝑏 + 𝑇𝑏.

To apply induction, suppose that the statement holds for 𝑁 and we compute SRR𝑁+1(𝑏) as744

SRR𝑁+1(𝑏) = SRR𝑁(𝑏) + 𝐴𝐿𝐺𝑚𝑒𝑡𝑎(𝑏 − 𝐴 ⋅ SRR𝑁(𝑏))

=
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 +
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇(𝑏 − 𝐴
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏).

Note that 𝐼 − 𝐴
∑2𝑁−1

𝑖=0 (𝐼 − 𝑇𝐴)𝑖𝑇 = 𝐼 − 𝐴𝑇
∑2𝑁−1

𝑖=0 (𝐼 − 𝐴𝑇)𝑖 = (𝐼 − 𝐴𝑇)2𝑁 , thus745

SRR𝑁+1(𝑏) =
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 +
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇(𝑏 − 𝐴
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏)

=
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 +
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇(𝐼 − 𝐴𝑇)2𝑁𝑏

=
2𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏 +
2𝑁+1−1∑

𝑖=2𝑁
(𝐼 − 𝑇𝐴)𝑖𝑇𝑏

=
2𝑁+1−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏.

Thus the statement holds for all 𝑁.746

8.4. proof of theorem 4747

With a geometric series form of result given in the previous paper, one can easily examine the convergence of the iterative algorithm. Recall748

that for solving a well-defined linear system 𝐴𝑥 = 𝑏, the solution of SIR and SRR has the form749

𝑥𝑁 =
𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏,

and the true solution 𝑥∗ satisfies 𝑥∗ = 𝐴−1𝑏. Thus the error ‖𝑥𝑁 − 𝑥∗‖ satisfies750

‖𝑥𝑁 − 𝑥∗‖ = ‖𝐴−1𝑏 −
𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝑏‖

= ‖(𝐼 −
𝑁−1∑

𝑖=0

(𝐼 − 𝑇𝐴)𝑖𝑇𝐴)𝐴−1𝑏‖

= ‖(𝐼 − 𝑇𝐴)𝑁𝐴−1𝑏‖
≤ ‖(𝐼 − 𝑇𝐴)‖𝑁‖𝐴−1𝑏‖.

It implies that SIR has a linear convergence with a convergence rate ‖𝐼 − 𝑇𝐴‖ and SRR has a quadratic convergence. The solver is convergent751

if and only if ‖𝐼 − 𝑇𝐴‖ < 1.752

Then we compute the exact convergence rate for randomized solvers in solving 𝐴⊤𝐴𝑥 = 𝐴⊤𝑏 instead of 𝐴𝑥 = 𝑏, since in general753

cases ‖𝑏 − 𝐴𝑥∗‖ ≠ 0. For iterative refinement with sketch-and-solve method, we have 𝑇 = (𝐴⊤𝑆⊤𝑆𝐴)−1 and thus 𝑥𝑁 =
∑𝑁−1

𝑖=0 (𝐼 −754

(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝐴)𝑖(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝑏.755

Note that756

‖(𝐼 − (𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝐴)𝑖(𝐴⊤𝑆⊤𝑆𝐴)−1‖ = ‖𝐴†(𝐼 − 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤)𝑖𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1‖
≤ ‖𝐴†‖‖(𝐼 − 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤)𝑖‖𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1‖

≲ ( 𝜅
‖𝐴‖

)2( 1
(1 − 𝜂)2

− 1)𝑖 .
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The third inequality comes from the fact that ‖𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1‖ ≍ ‖𝐴†‖ = 𝜅

‖𝐴‖
and ‖(𝐼 − 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤)‖ ≤ max{ 1

(1−𝜂)2
− 1, 1 − 1

(1+𝜂)2
} = 757

1

(1−𝜂)2
− 1. It implies 758

‖𝑥𝑁 − 𝑥∗‖ ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⋅ ( 1
(1 − 𝜂)2

− 1)𝑖 .

Note that to guarantee the convergence of SIR, the embedding distortion 𝜂 should be bounded in (0, 1). However, 𝜂 is usually bad in some 759

difficult least-squares problems due to numerical error and small sketch dimensions. Fortunately, the Krylov subspace method is free from 760

the restriction of 𝜂. We then verify the convergence of k-step Krylov-based iterative refinement. Note that 761

𝐴𝑦𝑖+1 = 𝐴(𝐼 − (𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝐴)𝑦𝑖 + 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝑏
= (𝐼 − 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤)𝐴𝑦𝑖 + 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤𝑏

𝑦0 = 𝑥𝑖
𝑥𝑖+1 = argmin𝑥∈𝑠𝑝𝑎𝑛{𝑦1 ,𝑦2 ,⋯,𝑦𝑘 }

‖𝐴𝑥 − 𝑏‖.

Denote 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤ as 𝑇. Since 𝐴𝑥𝑖+1 ∈ 𝐴𝑥𝑖 +𝒦𝑘(𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤, 𝑏 − 𝐴𝑥𝑖), 𝐴(𝑥𝑖+1 − 𝑥𝑖) can be expressed as

𝐴(𝑥𝑖+1 − 𝑥∗) = 𝑝𝑘(𝑇)𝐴(𝑥𝑖 − 𝑥∗),

where 𝑝𝑘 is a polynomial with order no more than 𝑘. 762

Since 𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤ is normal matrix and can be decomposed as 763

𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤ = 𝑉Λ𝑉⊤, 𝑉⊤𝑉 = 𝐼, Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2,⋯ , 𝜆𝑛),

then 764

𝐴(𝑥𝑖+1 − 𝑥∗) = 𝑉𝑝𝑘(Λ)𝑉⊤𝐴(𝑥𝑖 − 𝑥∗),

where ‖𝑥𝑖+1 − 𝑥∗‖𝐴 is bounded by |𝑝𝑘(𝜆)|‖𝑥𝑖 − 𝑥∗‖. We follow the practical but the worst case upper bound [6], [8] for min-max problem 765

min
𝑝

max
𝑖
𝑝𝑘(𝜆𝑖)

by choosing 𝑝𝑘(⋅) as the 𝑘-order Chebyshev polynomial. It leads to 766

‖𝑥𝑖+1 − 𝑥∗‖𝐴 ≤ (

√
𝜅 − 1

√
𝜅 + 1

)𝑘‖𝑥𝑖 − 𝑥∗‖𝐴, 𝜅 =
𝜆𝑚𝑎𝑥(𝑇)
𝜆𝑚𝑖𝑛(𝑇)

,

which further leads to 767

‖𝑥𝑖+1 − 𝑥∗‖𝐴 ≤ min{𝜂𝑘 , 1
𝜂𝑘
}‖𝑥𝑖 − 𝑥∗‖𝐴

since 𝜅(𝑇) = 𝜅(𝐴(𝐴⊤𝑆⊤𝑆𝐴)−1𝐴⊤) ≤ (1+𝜂)2

(1−𝜂)2
. The result indicates that Krylov-based sketching method works even if the quality of subspace 768

embedding is bad, requiring fewer sketching dimensions, which makes the algorithm faster. 769

8.5. proof of theorem 5 770

In this section, we give a detailed analysis of the forward stability of SIRR, which also serves as a foundation for further discussion about 771

backward stability. 772

We first show the converged result of SRR can be decomposed into the form

SRR𝑁(𝑟𝐴) → 𝑥∗ + 𝑢
√
𝑛‖𝑥∗‖𝑒1 + 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗‖𝑅̂−1𝑒2,

where ‖𝑒1,2‖ ≲ 1. 773

Consider the expression of SRR𝑘(𝑟𝐴) in real computation according to section 8.3, we claim that 774

𝑥̂𝑘 = SRR𝑘(𝑟𝐴) = (𝐴⊤𝐴)−1𝑟𝐴 + 𝑎𝑘(𝑅̂−⊤𝑟𝐴)𝑒1𝑘 + 𝑏𝑘(𝑅̂−⊤𝑟𝐴)𝑅−1𝑒2𝑘 ,

where 𝑎𝑘(𝑅̂−⊤𝑟𝐴), 𝑏𝑘(𝑅̂−⊤𝑟𝐴) are numerical errors, which are supposed to be functions of ‖𝑅̂−⊤𝑟𝐴‖, and ‖𝑒
𝑗
𝑖 ‖ ≲ 1. Then 775

SRR𝑘+1(𝑟𝐴) = 𝑥̂𝑘 + (𝐴⊤𝐴)−1𝑟𝐴𝑘 + 𝑎𝑘(𝑅−⊤𝑟𝐴𝑘 )𝑒
5
𝑘 + 𝑏𝑘(𝑅−⊤𝑟𝐴𝑘 )𝑅

−1𝑒6𝑘 +
√
𝑛‖𝑥̂𝑘+1‖⏟⎴⏟⎴⏟

𝑎𝑑𝑑𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟

= (𝐴⊤𝐴)−1𝑟𝐴 + 𝑎𝑘+1(𝑅̂−⊤𝑟𝐴)𝑒1𝑘+1 + 𝑏𝑘+1(𝑅̂−⊤𝑟𝐴)𝑅−1𝑒2𝑘+1,
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where776

𝑟𝐴𝑘 = 𝑟𝐴 − 𝐴⊤𝐴𝑥̂𝑘 + 𝑢𝑛
3
2 ‖𝐴‖‖𝑥̂𝑘‖𝐴⊤𝑒3𝑘 + 𝑢𝑛

3
2 ‖𝐴‖‖𝐴𝑥̂𝑘‖𝑒4𝑘 .

The first equation is a direct computation of SRR𝑘+1. The iteration of 𝑎𝑘 , 𝑏𝑘 can thus be presented as777

𝑏𝑘+1(𝑅̂−⊤𝑟𝐴) ≲ 𝑏𝑘(𝑅̂−⊤𝑟𝐴𝑘 ) + 𝑢𝑛
3
2 ‖𝐴‖‖𝑥̂𝑘‖ + 𝑢𝑛

3
2 𝜅‖𝐴𝑥̂𝑘‖

𝑎𝑘+1(𝑅̂−⊤𝑟𝐴) ≲ 𝑎𝑘(𝑅̂−⊤𝑟𝐴𝑘 ) + 𝑢
√
𝑛(‖𝑥̂ − 𝑥∗‖ + ‖𝑥∗‖)

Note that778

𝑅−⊤𝑟𝐴𝑘 = −𝑎𝑘‖𝑅̂−⊤𝑟𝐴‖𝑅−⊤(𝐴⊤𝐴)𝑒1𝑘 − 𝑏𝑘‖𝑅̂−⊤𝑟𝐴‖𝑅−⊤(𝐴⊤𝐴)𝑅−1𝑒2𝑘

+ 𝑅−⊤(𝑢𝑛
3
2 ‖𝐴‖‖𝑥̂𝑘‖𝐴⊤𝑒3𝑘 + 𝑢𝑛

3
2 ‖𝐴‖‖𝐴𝑥̂𝑘‖𝑒4𝑘),

‖𝑅−⊤𝑟𝐴𝑘 ‖ ≲ 𝑎𝑘‖𝐴‖‖𝑅̂−⊤𝑟𝐴‖ + 𝑏𝑘‖𝑅̂−⊤𝑟𝐴‖ + 𝑢𝜅𝑛
3
2 ‖𝑅̂−⊤𝑟𝐴‖.

where the last inequality comes from the fact that for 𝐴⊤𝐴𝑥∗𝑟 = 𝑟,

‖𝐴‖
𝜅 ‖𝑥∗𝑟 ‖ ≲ ‖𝐴𝑥∗𝑟 ‖ ≍ ‖𝑅̂−⊤𝑟‖.

For 𝑘 = 0, the meta-algorithm is assumed to be

ALG𝑚𝑒𝑡𝑎(𝑟𝐴) = (𝐴⊤𝐴)−1𝑟𝐴 + 𝑐‖𝑅̂−⊤𝑟𝐴‖𝑅̂−1𝑒

thus 𝑎0 = 0 and 𝑏0 = 𝑐‖𝑅̂−1𝑟𝐴‖. It’s a natural idea to bound 𝑎𝑘(𝑅̂−1𝑟𝐴) and 𝑏𝑘(𝑅̂−1𝑟𝐴) by a linear function with respect to ‖𝑅̂−1𝑟𝐴‖, since we779

can transform terms like ‖𝑥̂‖, ‖𝐴𝑥̂‖ into ‖𝑅̂−1𝑟𝐴‖multiplied by some constant. First we convert terms ‖𝑥̂‖ into ‖𝑥∗‖ + ‖𝑥∗ − 𝑥̂‖ and convert780

terms ‖𝑥∗‖ and ‖𝐴𝑥∗‖ into ‖𝑅̂−⊤𝑟𝐴‖, and then compute 𝑥̂𝑘 − 𝑥∗ by leveraging the fact that 𝑥̂𝑘 − 𝑥∗ = 𝑎𝑘(𝑅̂−⊤𝑟𝐴)𝑒1𝑘 + 𝑏𝑘(𝑅̂−⊤𝑟𝐴)𝑅̂−1𝑒2𝑘 . After781

assuming 𝑎𝑘(𝑅̂−⊤𝑟𝐴) ≲ 𝛼𝑘‖𝑅̂−⊤𝑟𝐴‖ and 𝑏𝑘(𝑅̂−⊤𝑟𝐴) ≲ 𝛽𝑘‖𝑅̂−⊤𝑟𝐴‖, one gets the iteration of 𝛼𝑘 , 𝛽𝑘782

𝛽𝑘+1‖𝑅̂−⊤𝑟𝐴‖ ≲ 𝛽𝑘(𝛼𝑘‖𝐴‖‖𝑅̂−⊤𝑟𝐴‖ + 𝛽𝑘‖𝑅̂−⊤𝑟𝐴‖ + 𝑢𝜅𝑛
3
2 ‖𝑅̂−⊤𝑟𝐴‖) + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥̂𝑘‖ + 𝑢𝑛

3
2 𝜅‖𝐴𝑥̂𝑘‖

≲ 𝛼𝑘𝛽𝑘‖𝐴‖‖𝑅̂−⊤𝑟𝐴‖ + 𝛽2𝑘‖𝑅̂
−⊤𝑟𝐴‖ + 𝑢𝜅𝑛

3
2 𝛽𝑘‖𝑅̂−⊤𝑟𝐴‖ + 𝑢𝑛

3
2 𝜅‖𝑅̂−⊤𝑟𝐴‖,

𝑎𝑘+1‖𝑅̂−⊤𝑟𝐴‖ ≲ 𝛼𝑘(𝛼𝑘‖𝐴‖‖𝑅̂−⊤𝑟𝐴‖ + 𝛽𝑘‖𝑅̂−⊤𝑟𝐴‖ + 𝑢𝜅𝑛
3
2 ‖𝑅̂−⊤𝑟𝐴‖) + 𝑢

√
𝑛(‖𝑥̂ − 𝑥∗‖ + ‖𝑥∗‖)

≲ 𝛼2𝑘‖𝐴‖‖𝑅̂
−⊤𝑟𝐴‖ + 𝛼𝑘𝛽𝑘‖𝑅̂−⊤𝑟𝐴‖ + 𝑢𝜅𝑛

3
2 𝛼𝑘‖𝑅̂−⊤𝑟𝐴‖,

which leads to783

‖𝐴‖𝛼𝑘+1 + 𝛽𝑘+1 ≲ (‖𝐴‖𝛼𝑘 + 𝛽𝑘)2 + 𝑢𝑛
3
2 𝜅(‖𝐴‖𝛼𝑘 + 𝛽𝑘) + 𝑢𝑛

3
2 𝜅.

Since ‖𝐴‖𝛼0 + 𝛽0 = 𝜅𝑛
3
2 𝑢 < 1, ‖𝐴‖𝛼𝑘 + 𝛽𝑘 converges to 𝑢𝜅𝑛

3
2 and thus 𝛼𝑘 and 𝛽𝑘 converge to 𝑢𝜅𝑛

3
2 . Combined with (??) one gets784

𝛼𝑘 ≲ (𝑢𝜅𝑛
3
2 )2‖𝑅̂−⊤𝑟𝐴‖ +

√
𝑛𝑢‖𝑥∗‖ ≲

√
𝑛𝑢‖𝑥∗‖,

𝛽𝑘 ≲ 𝑢𝑛
3
2 ‖𝐴‖‖𝑥∗‖ + 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗‖ ≲ 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗‖.

Thus we have
SRR(𝑟𝐴) → 𝑥∗ + 𝑢

√
𝑛‖𝑥∗‖𝑒1 + 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗‖𝑅̂−1𝑒2.

Now we iterate SRR with SIR to prove that SIRR is strongly forward stable. The real computation of SRR can be expressed as785

𝑟𝑖 = 𝑏 − 𝐴𝑥̂𝑖⏟⎴⏟⎴⏟
𝑟𝑖

+𝑢
√
𝑛‖𝑟𝑖‖𝑒𝑖,1 + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥̂𝑖‖𝑒𝑖,2,

𝑟𝐴𝑖 = 𝐴⊤𝑟𝑖 + 𝑢𝑛
3
2 ‖𝐴‖‖𝑟𝑖‖𝑒𝑖,3,

𝑥̂𝑖+1 = 𝑥̂𝑖 + (𝐴⊤𝐴)−1(𝑟𝐴𝑖 ) + 𝑢
√
𝑛‖𝑥∗𝑟 ‖𝑒𝑖,4 + 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗𝑟 ‖𝑅̂−1𝑒𝑖,5,

= (𝐴⊤𝐴)−1𝐴⊤𝑏 + (𝐴⊤𝐴)−1(𝑢𝑛
3
2 ‖𝐴‖‖𝑟𝑖‖𝑒𝑖,3 + 𝑢

√
𝑛‖𝑟𝑖‖𝐴⊤𝑒𝑖,1 + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥̂𝑖‖𝐴⊤𝑒𝑖,2),

+ 𝑢
√
𝑛‖𝑥∗𝑟 ‖𝑒𝑖,4 + 𝑢𝜅𝑛

3
2 ‖𝐴𝑥∗𝑟 ‖𝑅̂−1𝑒𝑖,5,

𝑥∗𝑟 = (𝐴⊤𝐴)−1𝑟𝐴𝑖 ,

= (𝐴⊤𝐴)−1(𝐴⊤𝑟𝑖 + 𝑢𝑛
3
2 ‖𝐴‖‖𝑟𝑖‖𝑒𝑖,3 + 𝑢

√
𝑛‖𝑟𝑖‖𝐴⊤𝑒𝑖,1 + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥̂𝑖‖𝐴⊤𝑒𝑖,2),
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Denote ‖𝑥̂𝑖 − 𝑥∗‖ as 𝑒𝑟𝑟𝑖 , ‖𝐴𝑥̂𝑖 − 𝐴𝑥∗‖ as 𝑒𝑟𝑟𝑟𝑖 . With decomposition ‖𝑥̂𝑖‖ ≤ ‖𝑥∗‖ + 𝑒𝑟𝑟𝑖 , ‖𝐴𝑥̂𝑖‖ ≤ ‖𝐴𝑥∗‖ + 𝑒𝑟𝑟𝑟𝑖 , one gets 786

‖𝑥∗𝑟 ‖ ≤
𝜅
‖𝐴‖

𝑒𝑟𝑟𝑟𝑖 +
𝑢𝜅2𝑛

3
2

‖𝐴‖
‖𝑟∗‖ + 𝑢𝜅𝑛

3
2 ⋅ 𝑒𝑟𝑟𝑖 + 𝑢𝜅𝑛

3
2 ‖𝑥∗‖,

‖𝐴𝑥∗‖ ≤ 𝑒𝑟𝑟𝑟𝑖 + 𝑢𝜅𝑛
3
2 ‖𝑟∗‖ + 𝑢𝑛

3
2 ‖𝐴‖𝑒𝑟𝑟𝑖 + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥∗‖.

We can then present the iteration of 𝑒𝑟𝑟𝑖 and 𝑒𝑟𝑟𝑟𝑖 as 787

𝑒𝑟𝑟𝑖+1 ≤
𝑢𝜅2

‖𝐴‖
𝑛

3
2 (𝑒𝑟𝑟𝑟𝑖 + ‖𝑟∗‖) + 𝑢𝜅𝑛

3
2 (𝑒𝑟𝑟𝑖 + ‖𝑥∗‖)

+ 𝑢
√
𝑛( 𝜅
‖𝐴‖

𝑒𝑟𝑟𝑟𝑖 +
𝑢𝜅2

‖𝐴‖
‖𝑟∗‖ + 𝑢𝜅 ⋅ 𝑒𝑟𝑟𝑖 + 𝑢𝜅‖𝑥∗‖)

+ 𝑢𝜅2𝑛
3
2

‖𝐴‖
(𝑒𝑟𝑟𝑟𝑖 + 𝑢𝜅‖𝑟∗‖ + 𝑢‖𝐴‖𝑒𝑟𝑟𝑖 + 𝑢‖𝐴‖‖𝑥∗‖)

≤ 𝑢𝜅𝑛
3
2 ⋅ 𝑒𝑟𝑟𝑖 +

𝑢𝜅2𝑛
3
2

‖𝐴‖
𝑒𝑟𝑟𝑟𝑖 +

𝑢𝜅2𝑛
3
2

‖𝐴‖
‖𝑟∗‖ + 𝑢𝜅𝑛

3
2 ‖𝑥∗‖

𝑒𝑟𝑟𝑟𝑖+1 ≤ 𝑢𝜅𝑛
3
2 (‖𝑟∗‖ + 𝑒𝑟𝑟𝑟𝑖 ) + 𝑢𝑛

3
2 ‖𝐴‖(𝑒𝑟𝑟𝑖 + ‖𝑥∗‖)

+ 𝑢
√
𝑛‖𝐴‖( 𝜅

‖𝐴‖
𝑒𝑟𝑟𝑟𝑖 +

𝑢𝜅2

‖𝐴‖
‖𝑟∗‖ + 𝑢𝜅 ⋅ 𝑒𝑟𝑟𝑖 + 𝑢𝜅‖𝑥∗‖)

+ 𝑢𝜅𝑛
3
2 (𝑒𝑟𝑟𝑟𝑖 + 𝑢𝜅‖𝑟∗‖ + 𝑢‖𝐴‖𝑒𝑟𝑟𝑖 + 𝑢‖𝐴‖‖𝑥∗‖)

= 𝑢𝑛
3
2 ‖𝐴‖𝑒𝑟𝑟𝑖 + 𝑢𝜅𝑛

3
2 ⋅ 𝑒𝑟𝑟𝑟𝑖 + 𝑢𝜅𝑛

3
2 ‖𝑟∗‖ + 𝑢𝑛

3
2 ‖𝐴‖‖𝑥∗‖

The iteration can be transformed into: 788

⎛
⎜
⎝

𝑒𝑟𝑟𝑖+1
𝑒𝑟𝑟𝑟𝑖+1
1

⎞
⎟
⎠
≲ 𝑛

3
2

⎛
⎜
⎜
⎝

𝑢𝜅 𝑢𝜅2

‖𝐴‖

𝑢𝜅2

‖𝐴‖
‖𝑟∗‖ + 𝑢𝜅‖𝑥∗‖

𝑢‖𝐴‖ 𝑢𝜅 𝑢‖𝐴‖‖𝑥∗‖ + 𝑢𝜅‖𝑟∗‖
0 0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎝

𝑒𝑟𝑟𝑖
𝑒𝑟𝑟𝑟𝑖
1

⎞
⎟
⎠

Since the transition matrix has the largest eigenvalue 1, the vector series (𝑒𝑟𝑟𝑖+1, 𝑒𝑟𝑟𝑟𝑖+1, 1)⊤ will converge to the eigenvector of 1, which leads to 789

lim
𝑖→∞

⎛
⎜
⎝

𝑒𝑟𝑟𝑖
𝑒𝑟𝑟𝑟𝑖
1

⎞
⎟
⎠
≲ 𝑛

3
2

⎛
⎜
⎜
⎝

𝑢𝜅‖𝑥∗‖ + 𝑢𝜅2

‖𝐴‖
‖𝑟∗‖

𝑢𝜅‖𝑟∗‖ + 𝑢‖𝐴‖‖𝑥∗‖
1

⎞
⎟
⎟
⎠

Thus the result of SIRR is forward stable. 790

8.6. proof of theorem 6 791

In this section, we propose the requirements for single step meta-solver to ensure that the SIR algorithm based on this meta-algorithm is
backward stable. Suppose that in i𝑡ℎ iteration the solution 𝑥𝑖 has 𝑎𝑖 , 𝑏𝑖-accuracy, which can be expressed as

𝑥𝑖 = (𝐴⊤𝐴)−1𝐴⊤𝑏 + 𝑎𝑖𝑅̂−1𝑒1𝑖 + 𝑏𝑖(𝐴⊤𝐴)−1𝑒2𝑖

for some unit random vector 𝑒1𝑖 and 𝑒
2
𝑖 . We aim to get the iteration of 𝑎𝑖 , 𝑏𝑖 . Recall that 𝜅̃−1 = max{𝑢𝜅, 1

𝜅𝑛
3
2
}. Following the computation of SIR 792

we have 793

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 + 𝑓𝑖 , (computed residual in each step)
𝑥𝑖+1 = 𝑥𝑖 + (𝐴⊤𝐴)−1(𝐴⊤𝑟𝑖)

+ 𝑛
3
2 (𝜅̃−1‖𝐴𝑥∗𝑟 ‖ + 𝑢𝜅𝜅̃−1‖𝑟𝑖‖)𝑅̂−1𝑒1

+ 𝑛
3
2 (𝑢‖𝐴𝑥∗𝑟 ‖ + 𝑢‖𝑟𝑖‖)(𝐴⊤𝐴)−1𝑒2 (assumption of single step meta-solver)

= (𝐴⊤𝐴)−1𝐴⊤𝑏
⏟⎴⎴⏟⎴⎴⏟

𝑥∗

+𝑎𝑖+1𝑅̂−1𝑒1𝑖+1 + 𝑏𝑖+1(𝐴⊤𝐴)−1𝑒2𝑖+1,

Here 794

𝑓𝑖 ≲ 𝑢(𝑛
3
2 ‖𝑥𝑖‖ +

√
𝑛‖𝑏 − 𝐴𝑥𝑖‖)𝑒𝑓𝑖 , (error in computed residual)

𝑥∗𝑟 = (𝐴⊤𝐴)−1(𝐴⊤𝑟𝑖)

= −𝑎𝑖(𝐴⊤𝐴)−1𝐴⊤(𝐴𝑅̂−1)𝑒1𝑖 − 𝑏𝑖(𝐴⊤𝐴)−1𝑒2𝑖 + (𝐴⊤𝐴)−1𝐴⊤𝑓𝑖 ,
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𝑏 − 𝐴𝑥𝑖 = 𝑏 − 𝐴(𝐴⊤𝐴)−1𝐴⊤𝑏
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝑟∗

−𝑎𝑖𝐴𝑅̂−1𝑒1𝑖 − 𝑏𝑖𝐴(𝐴⊤𝐴)−1𝑒2𝑖 ,

We omit the adding error when computing 𝑥𝑖+1 = 𝑥𝑖 +𝑑𝑖 where 𝑑𝑖 is the refinement term, since it is already machine-precision. Then we have795

𝑎𝑖+1𝑅̂−1𝑒1𝑖+1 = 𝑛
3
2 (𝜅̃−1‖𝐴𝑥∗𝑟 ‖ + 𝑢𝜅𝜅̃−1‖𝑟𝑖‖)𝑅̂−1𝑒1

+ 𝑢(𝑛
3
2 ‖𝑥𝑖‖ +

√
𝑛‖𝑏 − 𝐴𝑥𝑖‖)𝑅̂−1(𝑅̂(𝐴⊤𝐴)−1𝐴⊤𝑒𝑓𝑖 )⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

(𝐴⊤𝐴)−1𝐴⊤𝑓𝑖

,

𝑏𝑖+1(𝐴⊤𝐴)−1𝑒2𝑖+1 = 𝑛
3
2 (𝑢‖𝐴𝑥∗𝑟 ‖ + 𝑢‖𝑟𝑖‖)(𝐴⊤𝐴)−1𝑒2,

which yields796

𝑎𝑖+1 ≲ 𝑛
3
2 (𝜅̃−1‖𝐴𝑥∗𝑟 ‖ + 𝑢𝜅𝜅̃−1‖𝑟𝑖‖) + ‖𝑓𝑖‖

≲ 𝑛
3
2 𝜅̃−1(𝑎𝑖 + 𝜅𝑏𝑖 + ‖𝑓𝑖‖)

+ 𝑛
3
2 𝑢𝜅𝜅̃−1(‖𝑟∗‖ + 𝑎𝑖 + 𝜅𝑏𝑖 + ‖𝑓𝑖‖)

+ 𝑢(𝑛
3
2 ‖𝑥𝑖‖ +

√
𝑛(‖𝑟∗‖ + 𝑎𝑖 + 𝜅𝑏𝑖))⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
‖𝑓𝑖‖

≍ 𝑛
3
2 𝜅̃−1(𝑎𝑖 + 𝜅𝑏𝑖) + 𝑢𝑛

3
2 ‖𝑥∗‖ + 𝑢𝜅𝑛

3
2 𝜅̃−1‖𝑟∗‖,

𝑏𝑖+1 ≲ 𝑢𝑛
3
2 ‖𝐴𝑥∗𝑟 ‖ + 𝑢𝑛

3
2 ‖𝑟𝑖‖

≲ 𝑢𝑛
3
2 (𝑎𝑖 + 𝜅𝑏𝑖 + ‖𝑓𝑖‖)

+ 𝑢𝑛
3
2 (‖𝑟∗‖ + 𝑎𝑖 + 𝜅𝑏𝑖 + ‖𝑓𝑖‖)

≍ 𝑢𝑛
3
2 (𝑎𝑖 + 𝜅𝑏𝑖) + 𝑢2𝑛3‖𝑥∗‖ + 𝑢𝑛

3
2 ‖𝑟∗‖.

The iteration of 𝑎𝑖 , 𝑏𝑖 can be written in the form797

⎛
⎜
⎝

𝑎𝑖+1
𝑏𝑖+1
1

⎞
⎟
⎠
≲
⎛
⎜
⎜
⎝

𝑛
3
2 𝜅̃−1 𝑛

3
2 𝜅𝜅̃−1 𝑢𝑛

3
2 𝜅𝜅̃−1‖𝑟∗‖ + 𝑢𝑛

3
2 ‖𝑥∗‖

𝑢𝑛
3
2 𝑢𝑛

3
2 𝜅 𝑢𝑛

3
2 ‖𝑟∗‖ + 𝑢2𝑛3‖𝑥∗‖

0 0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎝

𝑎𝑖
𝑏𝑖
1

⎞
⎟
⎠

Since the transition matrix has the largest eigenvalue 1, the vector series (𝑎𝑖 , 𝑏𝑖 , 1)⊤ will converge to the eigenvector of 1, which leads to798

lim
𝑖→∞

⎛
⎜
⎝

𝑎𝑖
𝑏𝑖
1

⎞
⎟
⎠
≲
⎛
⎜
⎜
⎝

𝑢𝑛3𝜅𝜅̃−1‖𝑟∗‖ + 𝑢𝑛
3
2 ‖𝑥∗‖

𝑢𝑛
3
2 ‖𝑟∗‖ + 𝑢2𝑛3‖𝑥∗‖

1

⎞
⎟
⎟
⎠

,

where we use the fact that 𝜅̃−1𝑛
3
2 < 1.799

With 𝑢𝜅𝜅̃−1 = 𝑢𝜅max{𝑢𝜅, 𝜅−1} < 𝑢2𝜅2 + 𝑢, the result lim𝑖→∞ 𝑥𝑖 is backward stable.800

8.7. proof of theorem 7801

In this section, we show that SRR generates a good single step meta-solver for SIR, in other words, SIRR is backward stable. In SRR, the
meta-algorithm SRR0(⋅) solves a full rank linear system (𝐴⊤𝐴)𝑥 = 𝑟𝐴, and from iteration process we find the error of solution only depends
on either ‖𝑅−⊤𝑟𝐴‖, ‖𝑥∗‖ or ‖𝐴𝑥∗‖, where 𝑥∗ = (𝐴⊤𝐴)−1𝑟𝐴 and ‖𝑅𝑡𝑜𝑝𝑟𝐴‖ ≍ ‖𝐴𝑥∗‖. Thus we can assume that

SRR𝑖(𝑟𝐴) = (𝐴⊤𝐴)−1𝑟𝐴 + (𝑎1𝑖 ‖𝑥
∗‖ + 𝑎2𝑖 ‖𝐴𝑥

∗‖)𝑅−1𝑒𝑖1 + (𝑏1𝑖 ‖𝑥
∗‖ + 𝑏2𝑖 ‖𝐴𝑥

∗‖)(𝐴⊤𝐴)−1𝑒𝑖2

, one can get the iteration of 𝑎𝑗𝑖 , 𝑏
𝑗
𝑖 w.r.t 𝑖.802

The iteration of SRR𝑖 then can be written as803

SRR𝑖+1(𝑟𝐴) = SRR𝑖(𝑟𝐴) + SRR𝑖(𝑟𝐴 − 𝐴⊤𝐴𝑥𝑖 + 𝑓𝑖⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑟𝑖

)

= 𝑥𝑖 + (𝐴⊤𝐴)−1(𝑟𝐴 − 𝐴⊤𝐴𝑥𝑖)

+ (𝐴⊤𝐴)−1((𝑢
√
𝑛‖𝑟𝐴 − 𝐴⊤𝐴𝑥𝑖‖ + 𝑢𝑛

3
2 ‖𝐴𝑥𝑖‖)𝑒𝑓1 + 𝑢𝑛

3
2 ‖𝑥𝑖‖𝐴⊤𝑒𝑓2 )⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑓𝑖
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+ (𝑎1𝑖 ‖𝑥
∗
𝑟 ‖ + 𝑎2𝑖 ‖𝐴𝑥

∗
𝑟 ‖)𝑅̂−1𝑒𝑖1 + (𝑏1𝑖 ‖𝑥

∗
𝑟 ‖ + 𝑏2𝑖 ‖𝐴𝑥

∗
𝑟 ‖)(𝐴⊤𝐴)−1𝑒𝑖2

= (𝐴⊤𝐴)−1𝑟𝐴 + (𝑎1𝑖+1‖𝑥
∗
𝑟 ‖ + 𝑎2𝑖+1‖𝐴𝑥

∗
𝑟 ‖)𝑅̂−1𝑒𝑖+11

+ (𝑏1𝑖+1‖𝑥
∗
𝑟 ‖ + 𝑏2𝑖+1‖𝐴𝑥

∗
𝑟 ‖)(𝐴⊤𝐴)−1𝑒𝑖+12 ,

where 804

𝑥∗𝑟 = (𝐴⊤𝐴)−1𝑟𝑖
= (𝐴⊤𝐴)−1(𝑟𝐴 − 𝐴⊤𝐴𝑥𝑖 + 𝑓𝑖)

= −(𝑎1𝑖 ‖𝑥
∗‖ + 𝑎2𝑖 ‖𝐴𝑥

∗‖)𝑅̂−1𝑒𝑖1 − (𝑏1𝑖 ‖𝑥
∗‖ + 𝑏2𝑖 ‖𝐴𝑥

∗‖)(𝐴⊤𝐴)−1𝑒𝑖2 + (𝐴⊤𝐴)−1𝑓𝑖 ,

𝑓𝑖 = 𝑢
√
𝑛‖𝑟𝐴 − 𝐴⊤𝐴𝑥𝑖‖ + 𝑢𝑛

3
2 ‖𝐴𝑥𝑖‖)𝑒𝑓1 + 𝑢𝑛

3
2 ‖𝑥𝑖‖𝐴⊤𝑒𝑓2 .

Denote 1 + 𝑢𝜅𝑛
3
2 as 1̂ for convenience, then the expansion of ‖𝑥∗𝑟 ‖ and ‖𝐴𝑥∗𝑟 ‖ yields 805

‖𝑥∗𝑟 ‖ ≲ (𝜅𝑎1𝑖 + 𝜅2𝑏1𝑖 )‖𝑥
∗‖ + (𝜅𝑎2𝑖 + 𝜅2𝑏2𝑖 )‖𝐴𝑥

∗‖

+ 𝑢𝜅2
√
𝑛((𝑎1𝑖 + 𝑏1𝑖 )‖𝑥

∗‖ + (𝑎2𝑖 + 𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚1

+ 𝑢𝜅2𝑛
3
2 (‖𝐴𝑥∗‖ + (𝑎1𝑖 + 𝜅𝑏1𝑖 )‖𝑥

∗‖ + (𝑎2𝑖 + 𝜅𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚2

+ 𝑢𝜅𝑛
3
2 (‖𝑥∗‖ + 𝜅(𝑎1𝑖 + 𝜅𝑏1𝑖 )‖𝑥

∗‖ + 𝜅(𝑎2𝑖 + 𝜅𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚3

≍ (1̂𝜅𝑎1𝑖 + 1̂𝜅2𝑏1𝑖 + 𝑢𝜅𝑛
3
2 )‖𝑥∗‖ + (1̂𝜅𝑎2𝑖 + 1̂𝜅2𝑏2𝑖 + 𝑢𝜅2𝑛

3
2 )‖𝐴𝑥∗‖,

806

‖𝐴𝑥∗𝑟 ‖ ≲ (𝑎1𝑖 + 𝜅𝑏1𝑖 )‖𝑥
∗‖ + (𝑎2𝑖 + 𝜅𝑏2𝑖 )‖𝐴𝑥

∗‖

+ 𝑢𝜅
√
𝑛((𝑎1𝑖 + 𝑏1𝑖 )‖𝑥

∗‖ + (𝑎2𝑖 + 𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚1

+ 𝑢𝜅𝑛
3
2 (‖𝐴𝑥∗‖ + (𝑎1𝑖 + 𝜅𝑏1𝑖 )‖𝑥

∗‖ + (𝑎2𝑖 + 𝜅𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚2

+ 𝑢𝑛
3
2 (‖𝑥∗‖ + 𝜅(𝑎1𝑖 + 𝜅𝑏1𝑖 )‖𝑥

∗‖ + 𝜅(𝑎2𝑖 + 𝜅𝑏2𝑖 )‖𝐴𝑥
∗‖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑓𝑖 𝑡𝑒𝑟𝑚3

≍ (1̂𝑎1𝑖 + 1̂𝜅𝑏1𝑖 + 𝑢𝑛
3
2 )‖𝑥∗‖ + (1̂𝑎2𝑖 + 1̂𝜅𝑏2𝑖 + 𝑢𝜅𝑛

3
2 )‖𝐴𝑥∗‖,

With assumption 𝑢𝜅𝑛
3
2 < 1, 1̂ ≲ 1, the iteration of 𝑎𝑗𝑖 , 𝑏

𝑗
𝑖 has the form 807

(𝑎
1
𝑖+1
𝑎2𝑖+1

) ≲
⎛
⎜
⎝

𝜅(𝑎1𝑖 + 𝜅𝑏1𝑖 + 𝑢𝑛
3
2 ) (𝑎1𝑖 + 𝜅𝑏1𝑖 + 𝑢𝑛

3
2 )

𝜅(𝑎2𝑖 + 𝜅𝑏2𝑖 + 𝑢𝜅𝑛
3
2 ) (𝑎2𝑖 + 𝜅𝑏2𝑖 + 𝑢𝜅𝑛

3
2 )

⎞
⎟
⎠
(𝑎

1
𝑖
𝑎2𝑖
) + 𝑛

3
2 (𝑢 + 𝑢𝜅𝑎1𝑖 + 𝑢𝜅2𝑏1𝑖

𝑢𝜅𝑎2𝑖 + 𝑢𝜅2𝑏2𝑖
) ,

(𝑏
1
𝑖+1
𝑏2𝑖+1

) ≲
⎛
⎜
⎝

𝜅(𝑎1𝑖 + 𝜅𝑏1𝑖 + 𝑢𝑛
3
2 ) (𝑎1𝑖 + 𝜅𝑏1𝑖 + 𝑢𝑛

3
2 )

𝜅(𝑎2𝑖 + 𝜅𝑏2𝑖 + 𝑢𝜅𝑛
3
2 ) (𝑎2𝑖 + 𝜅𝑏2𝑖 + 𝑢𝜅𝑛

3
2 )

⎞
⎟
⎠
(𝑏

1
𝑖
𝑏2𝑖
) + 𝑛

3
2 ( 𝑢(𝑎1𝑖 + 𝜅𝑏1𝑖 )
𝑢(𝑎2𝑖 + 𝜅𝑏2𝑖 + 1)) .

Let 𝑐𝑗𝑖 = 𝑎𝑗𝑖 + 𝜅𝑏𝑗𝑖 , then 808

𝑐1𝑖+1 ≲ 𝜅(𝑐1𝑖 )
2 + 𝑐1𝑖 𝑐

2
𝑖 + 𝑢𝜅𝑛

3
2 𝑐1𝑖 + 𝑢𝑛

3
2 𝑐2𝑖 + 𝑢𝑛

3
2 ,

𝑐2𝑖+1 ≲ 𝜅𝑐1𝑖 𝑐
2
𝑖 + (𝑐2𝑖 )

2 + 𝑢𝜅2𝑛
3
2 𝑐1𝑖 + 𝑢𝜅𝑛

3
2 𝑐2𝑖 + 𝑢𝜅𝑛

3
2 ,

𝜅𝑐1𝑖+1 + 𝑐2𝑖+1 ≲ (𝜅𝑐1𝑖 + 𝑐2𝑖 )
2 + 𝑢𝜅𝑛

3
2 (𝜅𝑐1𝑖 + 𝑐2𝑖 ) + 𝑢𝜅𝑛

3
2 .
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For general cases, consider the initialization of809

𝜅𝑎10 + 𝑎20 ≍ 𝑐, 𝜅(𝜅𝑏10 + 𝑏20) ≍ 𝑐, 𝑐0 ≍ 𝜅𝑐10 + 𝑐20 ≍ 𝜅(𝑎10 + 𝜅𝑏10) + 𝑎20 + 𝜅𝑏20 ≍ 𝑐.

Then 𝜅𝑐10 + 𝑐20 = 𝑐 ≳ 𝑢𝜅𝑛
3
2 , thus810

𝜅𝑐1𝑖 + 𝑐2𝑖 ≲ 𝑚𝑎𝑥{(𝜅𝑐10 + 𝑐20⏟⎴⏟⎴⏟
𝑐

)2𝑖 , 𝑢𝜅𝑛
3
2 }.

Similar result can be derived for 𝑐1𝑖 , 𝑐
2
𝑖 where811

𝑐1𝑖+1 ≲ (𝜅𝑐1𝑖 + 𝑐2𝑖 )𝑐
1
𝑖 + 𝑢𝑛

3
2 (𝜅𝑐1𝑖 + 𝑐2𝑖 ) + 𝑢𝑛

3
2 ≲ 𝑚𝑎𝑥{(𝜅𝑐1𝑖 + 𝑐2𝑖 )𝑐

1
𝑖 , 𝑢𝑛

3
2 },

𝑐2𝑖+1 ≲ (𝜅𝑐1𝑖 + 𝑐2𝑖 )𝑐
2
𝑖 + 𝑢𝜅𝑛

3
2 (𝜅𝑐1𝑖 + 𝑐2𝑖 ) + 𝑢𝜅𝑛

3
2 ≲ 𝑚𝑎𝑥{(𝜅𝑐1𝑖 + 𝑐2𝑖 )𝑐

2
𝑖 , 𝑢𝜅𝑛

3
2 }

which leads to812

𝑐1𝑖 ≲ 𝑚𝑎𝑥{𝑐10(𝑐0)
2𝑖 , 𝑢𝑛

3
2 },

𝑐2𝑖 ≲ 𝑚𝑎𝑥{𝑐20(𝑐0)
2𝑖 , 𝑢𝜅𝑛

3
2 }.

For 𝑎𝑗𝑖 , we can first calculate the iteration of 𝜅𝑎
1
𝑖 + 𝑎2𝑖 by813

𝜅𝑎1𝑖+1 + 𝑎2𝑖+1 ≲ ( 𝜅𝑐1𝑖 + 𝑐2𝑖⏟⎴⏟⎴⏟
≲𝑚𝑎𝑥{(𝜅𝑐10+𝑐

2
0 )(𝑐)

2𝑖 ,𝑢𝜅𝑛
3
2 }

)(𝜅𝑎1𝑖 + 𝑎2𝑖 ) + 𝑢𝜅𝑛
3
2 (𝜅𝑎1𝑖 + 𝑎2𝑖 )

+ 𝑢𝜅𝑛
3
2 + 𝑢𝜅𝑛

3
2 (𝜅𝑐1𝑖 + 𝑐2𝑖 ) (from transition matrix)

≲ (𝜅𝑐1𝑖 + 𝑐2𝑖 )(𝜅𝑎
1
𝑖 + 𝑎2𝑖 ) + 𝑢𝜅𝑛

3
2 (sup

𝑖
(𝜅𝑐1𝑖 + 𝑐2𝑖 ) > 𝑢𝜅𝑛

3
2 , sup

𝑖
𝜅𝑎1𝑖 + 𝑎2𝑖 > 𝑢𝜅𝑛

3
2 )

≲ 𝑚𝑎𝑥{(𝑐)2𝑖+1 (𝜅𝑎10 + 𝑎20), 𝑢𝜅𝑛
3
2 },

thus814

𝑎1𝑖+1 ≲ (𝜅𝑎1𝑖 + 𝑎2𝑖 )(𝑐
1
𝑖 + 𝑢𝑛

3
2 ) + 𝑢𝑛

3
2 + 𝑢𝜅𝑛

3
2 𝑐1𝑖

≲ 𝑚𝑎𝑥{(𝑐)2𝑖+1 (𝜅𝑎10 + 𝑎20)𝑐
1
0 , 𝑢𝑛

3
2 }.

Similarly815

𝑎2𝑖 ≲ 𝑚𝑎𝑥{(𝑐)2𝑖 (𝜅𝑎10 + 𝑎20)𝑐
2
0 , 𝑢

2𝜅2𝑛3},

𝑏1𝑖 ≲ 𝑚𝑎𝑥{(𝑐)2𝑖 (𝜅𝑏10 + 𝑏20)𝑐
1
0 , 𝑢

2𝑛3},

𝑏2𝑖 ≲ 𝑚𝑎𝑥{(𝑐)2𝑖 (𝜅𝑏10 + 𝑏20)𝑐
2
0 , 𝑢𝑛

3
2 },

which leads to the bound of SRR∞(𝑟𝐴):816

SRR∞(𝑟𝐴) = (𝐴⊤𝐴)−1𝑟𝐴⏟⎴⎴⏟⎴⎴⏟
𝑥∗

+𝑎̂𝑅̂−1𝑒1 + 𝑏̂(𝐴⊤𝐴)−1𝑒2

where
𝑎̂ = 𝑢𝑛

3
2 ‖𝑥∗‖ + 𝑢2𝜅2𝑛3‖𝐴𝑥∗‖, 𝑏̂ = 𝑢2𝑛3‖𝑥∗‖ + 𝑢𝑛

3
2 ‖𝐴𝑥∗‖, ‖𝑒1,2‖ ≲ 1.

In iteration algorithm, we need to compute 𝐴⊤𝑏 as 𝑟𝐴 with 𝑒𝑟𝑟𝑜𝑟(𝑟𝐴) = 𝑢𝑛
3
2 ‖𝑏‖𝑒, so 𝑟𝐴 = 𝐴⊤𝑏 + 𝑢𝑛

3
2 ‖𝑏‖𝑒. Then SRR∞ becomes817

SRR∞(𝑏) = (𝐴⊤𝐴)−1𝐴⊤𝑏 + 𝑎𝑅̂−1𝑒1 + 𝑏(𝐴⊤𝐴)−1𝑒2,

where818

𝑎 ≍ 𝑢𝑛
3
2 ‖𝑥̂∗‖ + 𝑢2𝜅2𝑛3‖𝐴𝑥̂∗‖

= 𝑢𝑛
3
2 ‖𝑥∗ + 𝑢𝑛

3
2 ‖𝑏‖(𝐴⊤𝐴)−1𝑒‖ + 𝑢2𝜅2𝑛3‖𝐴𝑥∗ + 𝑢𝑛

3
2 ‖𝑏‖𝐴(𝐴⊤𝐴)−1𝑒‖

= 𝑢𝑛
3
2 ‖𝑥∗‖ + 𝑢2𝜅2𝑛3‖𝐴𝑥∗‖ + 𝑢2𝜅2𝑛3‖𝑏‖,

𝑏 ≍ 𝑢2𝑛3‖𝑥̂∗‖ + 𝑢𝑛
3
2 ‖𝐴𝑥̂∗‖ + 𝑢𝑛

3
2 ‖𝑏‖
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= 𝑢2𝑛3‖𝑥∗‖ + 𝑢𝑛
3
2 ‖𝐴𝑥∗‖ + 𝑢𝑛

3
2 ‖𝑏‖.

However, for practical use, we can stop the iteration as soon as the algorithm achieves the accuracy needed in theorem 6.For SRR𝑁 with 819

Two-step Krylov-based meta-algorithm, 𝑎10 = 𝑏10 = 0, 𝑎20 ≍ 𝜅𝑏20 ≍ 𝑐, the iteration only refines 𝑎2𝑖 and 𝑏
2
𝑖 . With (𝜅𝑎10 + 𝑎20) ≍ 1, (𝜅𝑏10 + 𝑏20)𝜅 ≍ 1, 820

the steps we actually need in practice is 𝑁 = max{𝑙𝑜𝑔2(
𝑙𝑜𝑔(𝜅̃−1𝑛

3
2 )

𝑙𝑜𝑔(𝑐)
), 𝑙𝑜𝑔2(

𝑙𝑜𝑔(𝑢𝜅𝑛
3
2 )

𝑙𝑜𝑔(𝑐)
)} = 𝑙𝑜𝑔2(

𝑙𝑜𝑔(𝜅̃−1𝑛
3
2 )

𝑙𝑜𝑔(𝑐)
), with 821

SRR𝑁(𝑏) = (𝐴⊤𝐴)−1𝐴⊤𝑏 + 𝑛
3
2 (𝑢‖𝑥∗‖ + 𝜅̃−1‖𝐴𝑥∗‖)𝑅̂−1𝑒1 + (𝑢2𝑛3‖𝑥∗‖ + 𝑢𝑛

3
2 ‖𝐴𝑥∗‖)(𝐴⊤𝐴)−1𝑒2.

A similar discussion further leads to the result of considering the first multiplication 𝑟𝐴 = 𝐴⊤𝑏 822

SRR𝑁(𝑏) = (𝐴⊤𝐴)−1𝐴⊤𝑏

+ 𝑛
3
2 (𝜅̃−1‖𝐴𝑥∗‖ + 𝑢‖𝑥∗‖ + 𝑢𝜅𝜅̃−1‖𝑏‖)𝑅̂−1𝑒1

+ 𝑛
3
2 (𝑢‖𝐴𝑥∗‖ + 𝑢2𝑛

3
2 ‖𝑥∗‖ + 𝑢‖𝑏‖)(𝐴⊤𝐴)−1𝑒2

8.8. Proof of Lemma 8 823

In this section, we verify that the Krylov-based meta solver satisfies the condition of theorem 7, which finally proves that a k-step Krylov-
based SIRR solver is backward stable. In Krylov subspace method, with 𝑦0, 𝑦1,⋯ , 𝑦𝑘 given by using iterative sketching, we solve the least
squares problem in the space spanned by {𝑦𝑖}𝑘𝑖=1

argmin𝑥∈𝑠𝑝𝑎𝑛{𝑦0 ,𝑦1 ,⋯,𝑦𝑘 }
‖𝑟𝐴 − (𝐴⊤𝐴)𝑥‖.

Let 𝑌 ∶= [𝑦0, 𝑦1,⋯ , 𝑦𝑘], then the solution is 𝑥 = 𝑌(𝐴⊤𝐴𝑌)−1𝑟𝐴. 824

Consider the numerical process of computing 𝑌(𝐴⊤𝐴𝑌)−1𝑟𝐴, which is 825

𝐴𝑌 = 𝐴𝑌 + 𝐸1, ‖𝐸1‖ ≲ 𝑢𝑛
3
2 ‖𝐴‖‖𝑌‖,

(𝐴⊤𝐴𝑌 + 𝐸2)𝑎̂ = 𝑟𝐴 + ℎ1, ‖𝐸2‖ ≤ 𝑢𝑛
3
2
√
𝑘‖𝐴‖‖𝐴𝑌‖ + 𝑢𝑘

5
2 ‖𝐴⊤𝐴𝑌‖, ‖ℎ1‖ ≤ 𝑢𝑘2‖𝑟𝐴‖,

𝑥̂ = 𝑌𝑎̂ + ℎ2, ‖ℎ2‖ ≲ 𝑢𝑘
3
2 ‖𝑌‖‖𝑎̂‖.

Note that 𝑦𝑖 can be expressed as 𝑦𝑖 = (𝐴⊤𝐴)−1𝑟𝐴 + 𝑐‖𝑅̂−⊤𝑟𝐴‖𝑅̂−1𝑒 with 𝑐 ≍ 1 and ‖𝑒‖ ≲ 1, and we can assume ‖𝑎̂‖ ≍ 1 since 𝑦𝑖 are good 826

approximation of (𝐴⊤𝐴)−1𝑟𝐴, then 827

𝑥̂ = 𝑌𝑎̂ + ℎ2
= (𝐴⊤𝐴)−1(𝑟𝐴 + ℎ1 − (𝐴⊤𝐸1 + 𝐸2)𝑎̂) + ℎ2
= (𝐴⊤𝐴)−1𝑟𝐴 + (𝐴⊤𝐴)−1(ℎ1 − 𝐸2𝑎̂) + 𝑅̂−1(𝑅̂ℎ2 + 𝑅̂(𝐴⊤𝐴)−1𝐴⊤𝐸1𝑎̂).

With ‖𝑟𝐴‖ = ‖𝐴⊤𝐴𝑥∗‖ ≤ ‖𝐴𝑥∗‖ ≍ ‖𝑅̂−⊤𝑟𝐴‖, ‖𝑌‖ ≤
√
𝑘max𝑖 ‖𝑦𝑖‖ ≲

√
𝑘(‖𝑥∗‖ + 𝑐𝜅‖𝑅̂−⊤𝑟𝐴‖) ≲

√
𝑘𝜅‖𝐴𝑥∗‖ and ‖𝐴𝑌‖ ≤

√
𝑘(‖𝐴𝑥∗‖ + 828

𝑐‖𝑅̂−⊤𝑟𝐴‖) we have following bounds 829

‖ℎ1‖ ≲ 𝑢𝑘2‖𝐴𝑥∗‖,

‖𝐸2𝑎̂‖ ≤ 𝑢𝑛
3
2 𝑘‖𝐴𝑥∗‖,

‖ℎ2‖ ≲ 𝑢𝜅𝑘2‖𝐴𝑥∗‖,

‖𝑅̂(𝐴⊤𝐴)−1𝐴⊤𝐸1𝑎̂‖ ≲ ‖𝐸1‖ ≲ 𝑢𝑛
3
2 𝜅
√
𝑘‖𝐴𝑥∗‖.

Since 𝑘 is small, the result has the form 830

𝑥 = (𝐴⊤𝐴)−1𝑟𝐴 + 𝑢𝜅𝑛
3
2 ‖𝐴𝑥∗‖𝑅̂−1𝑒1 + 𝑢𝑛

3
2 ‖𝐴𝑥∗‖(𝐴⊤𝐴)−1𝑒2, ‖𝑒1,2‖ ≲ 1.

The result consequently satisfies the condition of theorem 7 as 𝑢𝜅𝑛
3
2 ≲ 𝑐, thus the k-step Krylov-based SIRR solver is backward stable. 831
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