

Synthetic Principle Component Design

Phase synchronization and Experiment Design

Joint work with Jiajin Li, Lexing Ying, Jose Blanchet

Yiping Lu. Stanford University

Synthetic Control

Causal Inference for Panel Data

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program[J]. Journal of the American statistical Association, 2010, 105(490): 493-505.

outcome!

Synthetic Control

Causal Inference for Panel Data

Synthetic Control

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program[J]. Journal of the American statistical Association, 2010, 105(490): 493-505.

Synthetic Control

Causal Inference for Panel Data

Synthetic Control

California = 0.334* Utah+0.234*Nevada+0.164*Colorado+0.069*Connecticut

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program[J]. Journal of the American statistical Association, 2010, 105(490): 493-505.

Experiment Design

Covariate Balancing

Nonbipartite matching problem

divides a single group of 2n subjects into n pairs to minimize covariate differences within pairs

Processing Systems, 2021, 34.

Matching a weighted average

$$\begin{array}{l} \min_{D_i,w_i\}_{i=1}^N} \quad \frac{1}{T} \sum_{t=1}^T \left(\sum_{i=1}^N w_i D_i Y_{it} - \sum_{i=1}^N w_i (1-D_i) Y_{it} \right)^2 + \lambda \sum_{i=1}^N w_i^2 \\ \text{s.t.} \quad w_i \ge 0, \quad D_i \in \{0,1\} \text{ for } i = 1, \dots, N, \\ \sum_{i=1}^N D_i = K, \quad \sum_{i=1}^N w_i D_i = 1, \quad \sum_{i=1}^N w_i (1-D_i) = 1 \\ \hline \text{Treatment Effect} = \\ \underbrace{\sum_{i: D_i = 1} w_i Y_{i,T+1}}_{i: D_i = 1} - \underbrace{\sum_{i: D_i = 0} w_i Y_{i,T+1}}_{i: D_i = 0} \underbrace{w_i Y_{i,T+1}}_{i: D_i = 0} \\ \hline \text{Weighted mean of treatment group} \\ \end{array}$$

Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls. Advances in Neural Information Processing Systems, 2021, 34.

$$\min_{\substack{D_i, w_i\}_{i=1}^{N} \\ i=1}} \frac{\frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{N} w_i D_i Y_{it} - \sum_{i=1}^{N} w_i (1 - D_i) Y_{it} \right)^2 + \lambda \sum_{i=1}^{T} \frac{1}{T} \sum_{i=1}^{T} \left(\sum_{i=1}^{N} w_i D_i + \sum_{i=1}^{N} w_i (1 - D_i) \right)^2 + \lambda \sum_{i=1}^{T} \frac{1}{T} \sum_{i=1}^{N} D_i = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} D_i = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} D_i = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = 1, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = M, \quad \sum_{i=1}^{N} w_i D_i = M, \quad \sum_{i=1}^{N} w_i D_i = M, \quad \sum_{i=1}^{N} w_i (1 - D_i) = K, \quad \sum_{i=1}^{N} w_i D_i = M, \quad \sum_{i=1}^{N}$$

1

Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls. Advances in Neural Information Processing Systems, 2021, 34.

$$\min_{\substack{D_{i},w_{i}\}_{i=1}^{N}}} \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{N} w_{i} D_{i} Y_{it} - \sum_{i=1}^{N} w_{i} (1 - D_{i}) Y_{it} \right)^{2} + \lambda \sum_{i=1}^{N} v_{i} \sum$$

Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls. Advances in Neural Information Processing Systems, 2021, 34.

Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimiza Processing Systems, 2021, 34.

Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls. Advances in Neural Information Processing Systems, 2021, 34.

Processing Systems, 2021, 34.

Equal to Phase Synchronization Phase Synchronization

 $\max_{\|x\|_{2}=1} \|Ax\|_{1} = \max_{\|x\|_{2}=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} \|A^{\mathsf{T}}y\|_{2}$

Singer A. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 2011, 30(1): 20-36.

Equal to Phase Synchronization Phase Synchronization

Find phase

Singer A. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 2011, 30(1): 20-36.

Equal to Phase Synchronization Phase Synchronization

$$\max_{\|x\|_2=1} \|Ax\|_1 = \max_{\|x\|_2=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{\{$$

Find phase

Still provable NP-hard

Boumal N. Nonconvex phase synchronization. SIAM Journal on Optimization, 2016, 26(4): 2355-2377.

Equal to Phase Synchronization Phase Synchronization

$$\max_{\|x\|_2=1} \|Ax\|_1 = \max_{\|x\|_2=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{\{$$

Still provable NP-hard

Step 1. Relax $y \in \{-1,1\}$ to $||y||_2^2 = n$ and change it to Eigenvalue problem.

Econ intuition: Experiment through Smallest Principle Component

Boumal N. Nonconvex phase synchronization. SIAM Journal on Optimization, 2016, 26(4): 2355-2377.

Find phase

Equal to Phase Synchronization Phase Synchronization

$$\max_{\|x\|_2=1} \|Ax\|_1 = \max_{\|x\|_2=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{\{$$

Still provable NP-hard

Step 1. Relax $y \in \{-1,1\}$ to $||y||_2^2 = n$ and change it to Eigenvalue problem.

Step 2. Local Refinement via Power Method.

$$y^{k} = sgn(AA^{T} + e^{Projection Back})$$

Boumal N. Nonconvex phase synchronization. SIAM Journal on Optimization, 2016, 26(4): 2355-2377.

Find phase

ower Method

Equal to Phase Synchronization Phase Synchronization

$$\max_{\|x\|_{2}=1} \|Ax\|_{1} = \max_{\|x\|_{2}=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} \|A^{\mathsf{T}}y\|_{2}$$

Match covariance

Still provable NP-hard

Algorithm

Step 1. Relax $y \in \{-1,1\}$ to $||y||_2^2 = n$ and change it to Eigenvalue problem.

Step 2. Local Refinement via Power Method.

$$y^{k} = \operatorname{sgn}((AA^{\mathsf{T}} + \alpha I)y^{k-1})$$

Inverse of the covariance matrix

Generalized Inverse Power Method !

Boumal N. Nonconvex phase synchronization. SIAM Journal on Optimization, 2016, 26(4): 2355-2377.

Find phase

The Royal Steedlikh Academy of Sciences has decided to award the 2017 NOBEL PRIZE IN CHEMISTR'

Equal to Phase Synchronization Phase Synchronization

$$\max_{\|x\|_2=1} \|Ax\|_1 = \max_{\|x\|_2=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax = \max_{y \in \{-1, +1\}} y_{\mathsf{T}}Ax = \max_{\{$$

Find phase

Still provable NP-hard

Algorithm

Best experiment: Smallest "Eigen" !

Step 2. Local Refinement via Power Method.

$$y^{k} = \operatorname{sgn}((AA^{\mathsf{T}} + \alpha I)y^{k-1})$$

Inverse of the covariance matrix

Generalized Inverse Power Method !

Boumal N. Nonconvex phase synchronization. SIAM Journal on Optimization, 2016, 26(4): 2355-2377.

The Royal Swedish Academy of Sciences has decided to award the 2017 NOBEL PRIZE IN CHEMISTR'

Designed Experiment

"representative" agents in market

AR(1) Process

Equal to Phase Synchronization

$$\max_{\|x\|_{2}=1} \|Ax\|_{1} = \left[\max_{\|x\|_{2}=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax\right] = \max_{y \in \{-1, x\}} x^{*} = A^{\mathsf{T}}y$$

$\underset{,+1}{\operatorname{ax}} \|A^{\mathsf{T}}y\|_{2}$

Equal to Phase Synchronization

$$\max_{\|x\|_{2}=1} \|Ax\|_{1} = \left[\max_{\|x\|_{2}=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax\right] = \max_{y \in \{-1, y\}} \sup_{x^{*}=A^{\mathsf{T}}y} \left[x^{*}=A^{\mathsf{T}}y\right]$$

Input

Optimal experiment profile *y*

Estimator

Weight $w = \Sigma^{-1} y$

$\begin{array}{c} ax \\ \|A^{\mathsf{T}}y\|_{2} \\ \|,+1\} \end{array}$

Optimality condition leads to sgn(w) = y

Final Estimation $\tau = w \times (\text{post-treamtnet outcome})$

Principle Component Design

Simulated Data

Athey S, Bayati M, Doudchenko N, et al. Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 2021, 116(536): 1716-1730.

Real world dataset

SC	Random	SPCD	A set
7.89	±0.19 3.13	0.98	
Randon	h select treated and c	ontrol group	
Califor	rnia = <mark>0.33</mark>	4* Utah+0	.234*Nev

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American statistical Association, 2010, 105(490): 493-505.

ada+<mark>0.164</mark>*Colorado+<mark>0.069</mark>*Connecticut

Real world dataset

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American statistical Association, 2010, 105(490): 493-505.

California = 0.334* Utah+0.234*Nevada+0.164*Colorado+0.069*Connecticut

Real world dataset

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American statistical Association, 2010, 105(490): 493-505.

California = 0.334* Utah+0.234*Nevada+0.164*Colorado+0.069*Connecticut

Real world dataset

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American statistical Association, 2010, 105(490): 493-505.

Although NP-hard, it's solvable under certain data generating process (DGP)

Examples: Phase Synchronization/Retrieval, Matrix Completion, Random Block Model

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Foundations and Trends® In Machine Learning 14:5

Spectral Methods for Data Science

A Statistical Perspective

Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma

now

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Examples: Phase Synchronization/Retrieval, Matrix Completion, Random Block Model

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Foundations and Trends® in Machine Learning 14:5

Spectral Methods for Data Science

A Statistical Perspective

Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma

> now ssence of knowledge

Although NP-hard, it's solvable under certain data generating process (DGP)

Spectral initialization!

Examples: Phase Synchronization/Retrieval, Matrix Completion, Random Block Model

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Foundations and Trends® in Machine Learning 14:5

Spectral Methods for Data Science

A Statistical Perspective

Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma

now

Although NP-hard, it's solvable under certain data generating process (DGP)

Spectral initialization!

Examples: Phase Synchronization/Retrieval, Matrix Completion, Random Block Model

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Linear converge via local updates !

Foundations and Trends® in Machine Learning 14:5

Spectral Methods for Data Science

A Statistical Perspective

Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma

Global Optimum

Spectral Initialization

now

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Covariance Matrix Rank N-1

Only 1 Realizable Balance Profile!

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Jin J. Fast community detection by SCORE. The Annals of Statistics, 2015, 43(1): 57-89.

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Jin J. Fast community detection by SCORE. The Annals of Statistics, 2015, 43(1): 57-89.

Global Result needs $|z_i| > 1 - \frac{\sqrt{3}}{2}$

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Jin J. Fast community detection by SCORE. The Annals of Statistics, 2015, 43(1): 57-89.

Change the Riemannian Metric

Normalize by the diagonal term of inverse covariance matrix

$$sgn((AA^{\top} + \alpha I)y^{k-1}./d)$$

Can be solved via spectral method!

Jin J. Fast community detection by SCORE. The Annals of Statistics, 2015, 43(1): 57-89.

Normalize by the diagonal term of inverse covariance matrix

$$sgn((AA^T + \alpha I)y^{k-1}./d)$$

Inverse

$\sigma(A + \sigma I)^{-1} \to v v^T$

Drawback of Theory

Connection to Phase synchronization

Stregth of signal = strength of the noise

Number of phases n (log-scale)

Although NP-hard, it's solvable under certain data generating process (DGP)

Can be solved via spectral method!

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Covariance Matrix Rank N-1

Only 1 Realizable Balance Profile!

What if I have multiple realizable balance profile?

> **Select Between Experiments**

The second reformulation Equal to \mathcal{C}_1 PCA **Phase Synchronization** $\max_{\|x\|_2=1} \|Ax\|_1 = \max_{\|x\|_2=1, y \in \{-1, +1\}} y^{\mathsf{T}}Ax =$ $= \max_{y \in \{-1, -1\}}$

 ℓ_1 -PCA

$$\underset{+1}{\mathbf{x}} \|A^{\mathsf{T}}y\|_{2}$$

Markopoulos P P, Karystinos G N, Pados D A. Optimal algorithms for \$ L_ {1} \$-subspace signal processing. IEEE Transactions on Signal Processing, 2014, 62(19): 5046-5058.

Phase Synchronization

$$x_{+1} ||A^{\top}y||_2$$

Low Rank: N^{rank}

Step 2. Using Algorithms for ℓ_1 -PCA

Step 3. Local Refinement via Power Method $y^k = \text{sgn}((AA^\top + \alpha I)y^{k-1})$.

Phase Synchronization

$$x_{+1} ||A^{\top}y||_2$$

Low Rank: N^{rank}

Take Home Message

Fast Covariate Balancing

Take Home Message

Still open questions

Happy to talk

Separate the data into two groups to minimize the <u>optimal transport distance</u> between a weighted version to the two group

Still open questions

Happy to talk

Separate the data into two groups to minimize the <u>optimal transport distance</u> between a weighted version to the two group

Still open questions

Happy to talk

Separate the data into two groups to minimize the <u>optimal transport distance</u> between a weighted version to the two group

$$\begin{split} \min_{\{D_{i},w_{i}\}_{i=1}^{N}} & \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{N} w_{i} D_{i} Y_{it} - \sum_{i=1}^{N} w_{i} (1 - D_{i}) Y_{it} \right)^{2} + \lambda \sum_{i=1}^{N} v_{i} \sum_{i=1}^{N} v_{i}$$

Thank You and Questions?

Contact: <u>yplu@stanford.edu</u>

