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Causal Inference for Panel Data
Synthetic Control
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Aim Estimate the effect of an applied policy

counterfactualWe need to know the                                 outcome!

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program[J]. Journal of the 
American statistical Association, 2010, 105(490): 493-505.
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Causal Inference for Panel Data
Synthetic Control

Synthetic Control

Time

Outcome
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Control

Estimated 
Outcome

Treament

Aim Estimate the effect of an applied policy

counterfactualWe need to know the                                 outcome!

Synthetic Control

Step 1. Find out some control group.
Synthetic

Control

Step 2. Regression on pre-treatment data.

Step 3. Synthetic the counterfactual outcome.

California = 0.334* Utah+0.234*Nevada+0.164*Colorado+0.069*Connecticut

Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program[J]. Journal of the 
American statistical Association, 2010, 105(490): 493-505.



Covariate Balancing
Experiment Design

Once I have dataset, how can I 
design whom to treat?

   Treated data should similar to control data

NP-Hard Nonbipartite matching problem

divides a single group of 2n 
subjects into n pairs to 
minimize covariate differences 
within pairs
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NP-Hard

What if #agent is small?



Matching a weighted average
Weighted Covariate Balancing
Synthetic Design
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Doudchenko N, Khosravi K, Pouget-Abadie J, et al. Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls. Advances in Neural Information 
Processing Systems, 2021, 34.

Treatment  Effect =

Weighted mean of  treatment group Weighted mean of  control group
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Theorem

If  is large enough, the sign of the two solution 
are the same 

λ

If knows the sign, 
it’s convex!



Equal to Phase Synchronization
The second reformulation

max
∥x∥2=1

∥Ax∥1 = max
∥x∥2=1,y∈{−1,+1}

y⊤Ax = max
y∈{−1,+1}

∥A⊤y∥2

er+iθ
Hard to measure

Phase Synchronization

Singer A. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 2011, 30(1): 20-36.
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“representative” agents in market
Designed Experiment

AR(1) Process
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Equal to Phase Synchronization
The second reformulation

max
∥x∥2=1

∥Ax∥1 = max
∥x∥2=1,y∈{−1,+1}

y⊤Ax = max
y∈{−1,+1}
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x* = A⊤y

Input

Estimator

Optimal experiment profile y

Weight w = Σ−1y
Optimality condition leads to sgn(w) = y

Final Estimation τ = w × (post-treamtnet outcome)



Simulated Data
Principle Component Design

YUnit,Time = +

Athey S, Bayati M, Doudchenko N, et al. Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 2021, 116(536): 1716-1730.

Unit Latent Factor

Time Latent Factor

#Factor Large 
#Time Short

#Factor Small 
#Time Long

#Factor Large 
#Time Short

#Factor Small 
#Time Long



Real world dataset
Tobacco Control Dataset

California = 0.334* Utah+0.234*Nevada+0.164*Colorado+0.069*Connecticut
Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. Journal of the 
American statistical Association, 2010, 105(490): 493-505.

SC Random SPCD

7.89 3.13 0.98
±0.19

Random select treated and control group
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Tobacco Control Dataset
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Global for Certain DGP 
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Although NP-hard, it’s solvable under certain data generating process (DGP)
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+
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Examples: Phase Synchronization/Retrieval, Matrix Completion, Random Block Model 

Idea

+

Signal Noise

Spectral initialization!

Global Optimum

Spectral Initialization

Linear converge via local updates !

Although NP-hard, it’s solvable under certain data generating process (DGP)



Spectral Method + Local Improve Meant
Global for Certain DGP 

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Idea

Signal

Can be solved via spectral method!

Although NP-hard, it’s solvable under certain data generating process (DGP)

Covariance Matrix Rank N − 1

Only 1 Realizable Balance Profile!
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Spectral Method + Local Improve Meant
Global for Certain DGP 

Jin J. Fast community detection by SCORE. The Annals of Statistics, 2015, 43(1): 57-89.

Idea

Signal

Can be solved via spectral method!

Although NP-hard, it’s solvable under certain data generating process (DGP)

Theory needs the ground truth 
vector to become{1, − 1}N

Relates to Degree Corrected Block Model

Normalize !

 yk = sgn((AA⊤ + αI)yk−1 . /d)
Normalize by the diagonal term of inverse covariance matrix

Normalization helps!



Difference to Phase synchronization
Closer look at Theory

0 x +  xλiΣi
+ σI

Data Noise

Inverse

Perturbation

σ(A + σI)−1 → vvT



Connection to Phase synchronization
Drawback of Theory

Impossible

[Zhong et al SIOPT]

σ samll enough but O(1)
Constant gap only

Stregth of signal = strength of the noise



Spectral Method + Local Improve Meant
Global for Certain DGP 

Chen Y, Chi Y, Fan J, et al. Spectral methods for data science: A statistical perspective. Foundations and Trends® in Machine Learning, 2021, 14(5): 566-806.

Idea

Signal

Can be solved via spectral method!

Although NP-hard, it’s solvable under certain data generating process (DGP)

Covariance Matrix Rank N − 1

Only 1 Realizable Balance Profile!

What if I have multiple realizable 
balance profile?

Select Between 
Experiments
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Still provable NP-hard

Markopoulos P P, Karystinos G N, Pados D A. Optimal algorithms for $ L_ {1} $-subspace 
signal processing. IEEE Transactions on Signal Processing, 2014, 62(19): 5046-5058.

Low Rank: Nrank

Algorithm Step 1. Low rank approximate to the inverse covariance matrix.

Step 3. Local Refinement via Power Method .yk = sgn((AA⊤ + αI)yk−1)

Step 2. Using Algorithms for -PCAℓ1



Fast Covariate Balancing
Take Home Message

Weighted Covariate Balancing Phase SynChronization

Still provable NP-hard

Data Generating Process

Spectral Method + Power Method

Provable Global Opt

+
Econ 

Intuition
Experiment Design 
from the principle 
component of the 
Inverse Covariance 
Matrix.



Fast Covariate Balancing
Take Home Message

Weighted Covariate Balancing Phase SynChronization

Data Generating Process

Spectral Method + Power Method

+
Econ 

Intuition
Experiment Design 
from the principle 
component of the 
Inverse Covariance 
Matrix.

collect data

SVD+Power Method

Experiment
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Add a prior to the market

Happy to talk
Still open questions

Control Group

Treatment

Group

Separate the data into two groups to minimize 
the optimal transport distance between a 
weighted version to the two group 



Thank You and Questions?
Contact: yplu@stanford.edu
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