#### ODE as Continuous Depth Nueral Networks:

Modeling, Optimization, and Inferencing

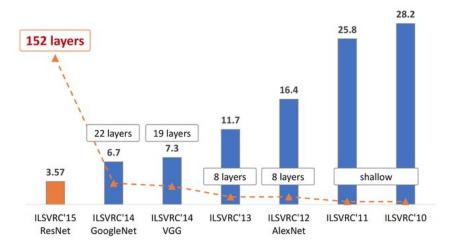
Joint work with Bin Dong, Di He, Liwei Wang, Jianfeng Lu, Lexing Ying and et al.

Presenter: Yiping Lu Contact: yplu@stanford.edu, https://web.stanford.edu/~yplu/





# **Deep Learning Evolution**





#### **ODE As Infinite Depth Neural Network**

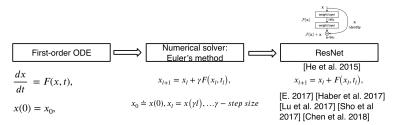


Figure: ResNet can be seen as the Euler discretization of a time evolving ODE



#### **Outline**







# **Outline Of The Talk**

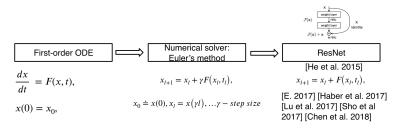
#### 1 Modeling

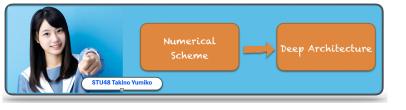
- Optimization
   Algorithm Design
   Theory
  - Theory





#### **Numerical Scheme As Architecture**







# **Numerical Scheme: Skip Connection**

#### Observation:

- ResNe(X)t = Euler Scheme
- PolyNet = An Approximation Of Implicit Scheme
- FractalNet=Runge-Kutta Schmeme ....

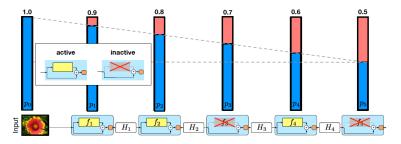
Numerical scheme can be used to desgin principled skip connection

All exisisting scheme are single step scheme.

Our paper[1] introduced a linear multi-step scheme to ResNet, and explained why it works.

[1] **Yiping Lu**, Aoxiao Zhong, Quanzheng Li, Bin Dong. "Beyond Finite Layer Neural Network:Bridging Deep Architects and Numerical Differential Equations" Thirty-fifth International Conference on Machine Learning (ICML), 2018

# **Dropout: Stochastic Differential Equation**



#### Figure: Stochastic Depth

Convergeto SDE

$$dX_t = p(t)f(X)dt + \sqrt{p(t)(1-p(t))}f(X_t) \odot [\mathbb{1}_{0\times 1}, \mathbb{0}_{0\times 1}]dB_t$$

Convergence Requirement meets parameter selection.



7/43

### Modeling Seq2Seq: Transformer

Understand Transformer as a multi-particle system.

$$\frac{\mathrm{d}x_{i}(t)}{\mathrm{d}t} = \underbrace{F(x_{i}(t), [x_{1}(t), \cdots, x_{n}(t)], t)}_{\text{Attention Layer}} + \underbrace{G(x_{i}(t), t)}_{\text{FFN Layer}},$$

$$x_{i}(t_{0}) = w_{i}, \quad i = 1, \dots, n. (\text{Every words in a sentence}) \quad (1)$$

Transformer is a **splitting scheme**, splitting *F* and *G*.



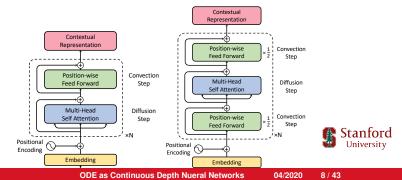
# Modeling Seq2Seq: Transformer

Understand Transformer as a multi-particle system.

$$\frac{\mathrm{d}x_{i}(t)}{\mathrm{d}t} = \underbrace{F(x_{i}(t), [x_{1}(t), \cdots, x_{n}(t)], t)}_{\text{Attention Layer}} + \underbrace{G(x_{i}(t), t)}_{\text{FFN Layer}},$$

$$x_{i}(t_{0}) = w_{i}, \quad i = 1, \dots, n. (\text{Every words in a sentence})$$
(1)

Transformer is a **splitting scheme**, splitting F and G. Applying an higher order splitting scheme?



2prime

#### **Results**

Table: Translation performance (BLEU) on IWSLT14 De-En and WMT14 En-De testsets.

|                       | IWSLT14 De-En | WMT14 En-De |      |  |
|-----------------------|---------------|-------------|------|--|
| Method                | small         | base        | big  |  |
| Transformer           | 34.4          | 27.3        | 28.4 |  |
| Weighted Transformer  | /             | 28.4        | 28.9 |  |
| Relative Transformer  | /             | 26.8        | 29.2 |  |
| Universal Transformer | /             | 28.9        | /    |  |
| Scaling NMT           | /             | /           | 29.3 |  |
| Dynamic Conv          | 35.2          | /           | 29.7 |  |
| Macaron Net           | 35.4          | 28.9        | 30.2 |  |



#### **Results**

#### Table: Test results on the GLUE benchmark (except WNLI).

| Method           | CoLA | SST-2 | MRPC      | STS-B     | QQP       | MNLI-m/mm | QNLI | RTE  | GLUE |
|------------------|------|-------|-----------|-----------|-----------|-----------|------|------|------|
| Existing systems |      |       |           |           |           |           |      |      |      |
| ELMo             | 33.6 | 90.4  | 84.4/78.0 | 74.2/72.3 | 63.1/84.3 | 74.1/74.5 | 79.8 | 58.9 | 70.0 |
| OpenAl GPT       | 47.2 | 93.1  | 87.7/83.7 | 85.3/84.8 | 70.1/88.1 | 80.7/80.6 | 87.2 | 69.1 | 76.9 |
| BERT base        | 52.1 | 93.5  | 88.9/84.8 | 87.1/85.8 | 71.2/89.2 | 84.6/83.4 | 90.5 | 66.4 | 78.3 |
| Our systems      |      |       |           |           |           |           |      |      |      |
| BERT base (ours) | 52.8 | 92.8  | 87.3/83.0 | 81.2/80.0 | 70.2/88.4 | 84.4/83.7 | 90.4 | 64.9 | 77.4 |
| Macaron Net base | 57.6 | 94.0  | 88.4/84.4 | 87.5/86.3 | 70.8/89.0 | 85.4/84.5 | 91.6 | 70.5 | 79.7 |



## **Neural ODE: Enforcing Constraint**

- Implicit Scheme: Stability. (Behrmann J, et al. Invertible residual networks. ICML2019.)
- Symplectic Scheme: Energy Conservation. (Chen Z, et al. Symplectic Recurrent

Neural Networks. ICLR2020)

Approximation To Optimal Transport map: (Finlay C, Jacobsen J H, Nurbekyan L,

et al. How to train your neural ODE. arXiv preprint arXiv:2002.02798, 2020.)

Adversarial Examples: (Zhang J, Han B, Wynter L, et al. Towards robust resnet: A small step but a

giant leap. IJCAI2019.)

# ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations: http://iclr2020deepdiffeq.rice.edu/

(Invited Talk 3: Subtleties of Neural ODEs: Learning with Constraints By Ricky Chen.)





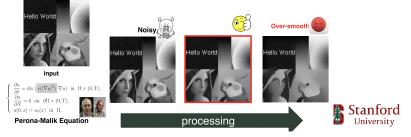
#### How can we encode the physic of task?



2prime



#### How can we encode the physic of task?

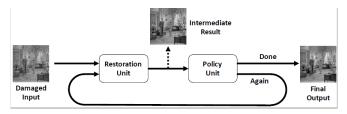


Method

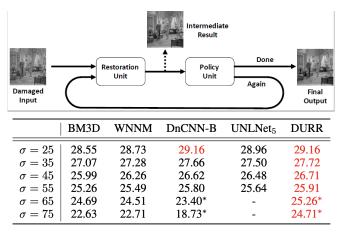
2prime

**ODE as Continuous Depth Nueral Networks** 04/2020

12/43









#### **Modling The Physics**

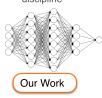


Tycho Brahe phenomenon



Johannes Kepler discipline







Isaac Newton Law



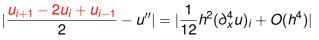


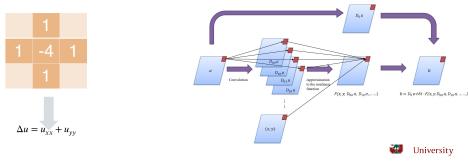
#### **PDE-Net: Modeling The Physics**

Consider a finite difference scheme for PDE:

$$u_{i\pm 1} = \left[u \pm h\partial_x u + \frac{h^2}{2}\partial_x^2 u \pm \frac{h^3}{6}\partial_x^3 u + \frac{h^4}{24}\partial_x^4 u \pm \frac{h^5}{120}\partial_x^5 u + \cdots\right]_{i}$$

Thus





# Convolution Operator As Differential Operator

#### Definition (Order of Sum Rules)

For a filter q, we say q to have sum rules of order  $\alpha = (\alpha_1, \alpha_2)$ , where  $\alpha \in \mathbb{Z}^2_+$ , provided that

$$\sum_{k \in \mathbb{Z}^2} k^\beta q[k] = 0 \tag{2}$$

16 / 43

for all  $\beta \in \mathbb{Z}^2_+$  with  $|\beta| < |\alpha|$  and for all  $\beta \in \mathbb{Z}^2_+$  with  $|\beta| = |\alpha|$  but  $\beta \neq \alpha$ . If (2) holds for all  $\beta \in \mathbb{Z}^2_+$  with  $|\beta| < K$  except for  $\beta \neq \beta_0$  with certain  $\beta_0 \in \mathbb{Z}^2_+$  and  $|\beta_0| = J < K$ , then we say q to have total sum rules of order  $K \setminus \{J+1\}$ .

#### Theorem

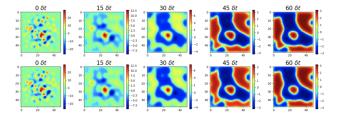
Let q be a filter with sum rules of order  $\alpha \in \mathbb{Z}_+^2$ . Then for a smooth function F(x) on  $\mathbb{R}^2$ , we have

$$\frac{1}{\varepsilon^{|\alpha|}} \sum_{k \in \mathbb{Z}^2} q[k]F(x + \varepsilon k) = C_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}} F(x) + O(\varepsilon), \text{ as } \varepsilon \to 0,$$
(3)

where  $C_{\alpha}$  is the constant defined by  $C_{\alpha} = \frac{1}{\alpha!} \sum_{k \in \mathbb{Z}^2} k^{\alpha} q[k]$ .

ODE as Continuous Depth Nueral Networks 04/2020

#### **PDE-Net: Recovering Coefficients**





#### **PDE-Net: Recovering Coefficients**

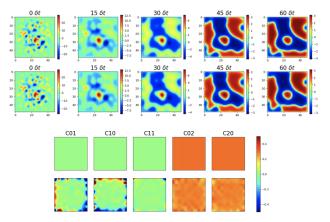
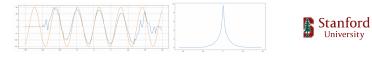


Figure 15: First row: the true coefficients  $\{f_{ij} : 1 \le i + j \le 2\}$  of the equation. Second row: the learned coefficients  $\{c_{ij} : 1 \le i + j \le 2\}$  by the PDE-Net with 3  $\delta t$ -blocks and 7  $\times$  7 filters.



#### 2prime

# **Outline Of The Talk**

#### Modeling



#### 2 Optimization

- Algorithm Design
- Theory





Deep learning:

$$\min_{\theta} J(\theta) = \ell(x_T) + \sum_{t=0}^{T-1} R_t(x_t; \theta_t)$$
s.t.  $x_{t+1} = f_t(x_t, \theta_t), t = 1, 2, \cdots, T-1$ 
(4)



Deep learning:

$$\min_{\theta} J(\theta) = \ell(x_T) + \sum_{t=0}^{T-1} R_t(x_t; \theta_t)$$
s.t.  $x_{t+1} = f_t(x_t, \theta_t), t = 1, 2, \cdots, T-1$ 
(4)

**Optimal Control:** 

$$\min_{\theta(\cdot)} J[\theta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t)) dt$$
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t))$ 
(5)

 $\theta(\cdot)$  is called a **control** 

Stanford University

$$\min_{\theta(\cdot)} J[\theta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t)) dt$$
  
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t))$ 



$$\min_{\theta(\cdot)} J[\theta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t)) dt$$
  
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t))$ 

Gradient Based Training: Adjoint Equation

$$\dot{p}(t) = -\nabla_x H(x(t), p(t), \theta(t))$$

A New method?



$$\min_{\theta(\cdot)} J[\theta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t)) dt$$
  
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t))$ 

Gradient Based Training: Adjoint Equation

$$\dot{p}(t) = -\nabla_x H(x(t), p(t), \theta(t))$$

A New method? NO!.

Adjoint Equation = Back Propagation!



$$\min_{\theta(\cdot)} J[\theta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t)) dt$$
  
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t))$ 

Gradient Based Training: Adjoint Equation

$$\dot{p}(t) = -\nabla_x H(x(t), p(t), \theta(t))$$

A New method? NO!.

Adjoint Equation = Back Propagation!

Benefit:

- **Invertible:** Neural Ordinary Differential Equation Neruips2018.
- Find out structure! (Our work)



# **Outline Of The Talk**

#### Modeling 1



#### 2 Optimization Algorithm Design Theory





# **Adversarial Training**



Schoolbus





Perturbation (rescaled for visualization) (Szegedy et al, 2013)

Ostrich

#### **Robust Optimization**

 $\min_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} \max_{\|\eta\| \leq \epsilon} \ell(\theta; x + \eta, y),$ 



# **Adversarial Training**





Schoolbus

Perturbation (rescaled for visualization) (Szegedy et al, 2013)

Ostrich

#### **PGD** Method

Gradient ascent on x.

$$x^{t+1} = \prod_{x+\mathcal{S}} (x^t + \alpha \operatorname{sign} (\nabla_x \ell))$$

for r times.

Gradient Descent On θ.

$$\theta = heta - 
abla_{ heta} \ell$$

for 1 times.



#### **Robust Optimization**

$$\min_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} \max_{\|\eta\|\leq \epsilon} \ell(\theta; x + \eta, y),$$

# **Our Intuition: Spilitting The Gradient**

#### YOPO(You Only Propogate Once)

- 1: initialize perturbation  $\eta$
- 2: **for** k = 1 to *m* **do**

m times full backprop.

- 3:  $p \leftarrow \nabla_{f_0} \ell(x+\eta)$
- 4: for i = 1 to n do

Focus on first layer. splitting

6: end for

5:

7: accumulate gradient  $U \leftarrow U + \nabla_{\theta} \ell(x + \eta)$ 

 $\eta \leftarrow \eta + \alpha \cdot \rho \cdot \nabla_x f_0(x+\eta)$ 

use intermediate adversarial examples

- 8: end for
- 9: Use U tp perform SGD / momentum SGD



# A Differential Game View of Adversarial Training

Adversarial Training:

$$\min_{\boldsymbol{\theta}} \max_{\|\boldsymbol{\eta}\| \leq \epsilon} J(\boldsymbol{\theta}, \boldsymbol{\eta}) = \ell(\boldsymbol{x}_{T}) + \sum_{t=0}^{T-1} R_{t}(\boldsymbol{x}_{t}; \boldsymbol{\theta}_{t}, \boldsymbol{\eta}_{t})$$
s.t.  $\boldsymbol{x}_{1} = f_{0}(\boldsymbol{x}_{0} + \boldsymbol{\eta}, \boldsymbol{\theta}_{0}), \boldsymbol{x}_{t+1} = f_{t}(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}), t = 1, 2, \cdots, T-1$ 
(7)

Differential Game:

$$\min_{\theta(\cdot)} \max_{\eta(\cdot)} J[\theta(\cdot), \eta(\cdot)] = \ell(\mathbf{x}(T)) + \int_0^T R(\mathbf{x}(t), \theta(t), \eta(t)) dt$$
s.t.  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t), \eta(t))$ 
(8)

Differential game is optimal control with 2 controls, **each having opposite target**.

#### **YOPO: An Optimal Control View**

- Pontryagin's Maximal Principle (PMP) is a neccesary condition for optimal control problem (Stronger than KKT.)
- We'll show that YOPO is actually a discretion of PMP



#### **YOPO: An Optimal Control View**

- Pontryagin's Maximal Principle (PMP) is a neccesary condition for optimal control problem (Stronger than KKT.)
- We'll show that YOPO is actually a discretion of PMP

Define Hamiltonian

$$H(x, p, \theta, \eta) := p \cdot \mathbf{f}(x, \theta, \eta) + r(x, \theta, \eta)$$

PMP for differential game tells us there exists an **adjoint dynamic**  $\mathbf{p}(\cdot)$  satisfying :

$$\dot{\mathbf{x}}^{*}(t) = \nabla_{p} H(\mathbf{x}^{*}(t), \mathbf{p}^{*}(t), \theta^{*}(t), \eta^{*}(t))$$
$$\dot{\mathbf{p}}^{*}(t) = -\nabla_{x} H(\mathbf{x}^{*}(t), \mathbf{p}^{*}(t), \theta^{*}(t), \eta^{*}(t))$$
$$H(\mathbf{x}^{*}(t), \mathbf{p}^{*}(t), \theta^{*}(t), \eta) \geq H(\mathbf{x}^{*}(t), \mathbf{p}^{*}(t), \theta^{*}(t), \eta^{*}(t))$$
$$\geq H(\mathbf{x}^{*}(t), \mathbf{p}^{*}(t), \theta, \eta^{*}(t)), \quad \forall t, \eta, \theta$$
Stanford

University

## **YOPO: An Optimal Control View**

- Pontryagin's Maximal Principle (PMP) is a neccesary condition for optimal control problem
- We'll show that YOPO is actually a discretization of PMP

 $\dot{\mathbf{x}}^*(t) = \nabla_{\boldsymbol{p}} H(\mathbf{x}^*(t), \mathbf{p}^*(t), \theta^*(t), \eta^*(t))$ 

The same as the forward equation  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \theta(t), \eta(t))$ .

$$\dot{\mathbf{p}}^*(t) = -
abla_{\mathsf{X}} \mathcal{H}\left(\mathbf{x}^*(t), \mathbf{p}^*(t), \theta^*(t), \eta^*(t)\right)$$

Known as **Adjoint Equation**, the same as back propagation on feature map  $\mathbf{x}(t)$ . *i.e.*  $\mathbf{p}(t) = \frac{\partial J}{\partial \mathbf{x}(t)}$ 

$$egin{aligned} &\mathcal{H}(\mathbf{x}^{*}(t),\mathbf{p}^{*}(t), heta^{*}(t),\eta) \geq H(\mathbf{x}^{*}(t),\mathbf{p}^{*}(t), heta^{*}(t),\eta^{*}(t)) \ &\geq H(\mathbf{x}^{*}(t),\mathbf{p}^{*}(t), heta,\eta^{*}(t))\,, \quad orall t,\eta, heta \end{aligned}$$

Parameter  $\theta$ ,  $\eta$  should optimize the Hamiltonian.  $\eta(0)$  only coupled inversity the first layer.

2prime

I

#### **Decoupled Training**

Back propagation is a sequential process, how can we parallelize it?

- ADMM: Taylor G, Burmeister R, Xu Z, et al. Training neural networks without gradients: A scalable admm approach ICML2016.
- Coordinate Descent:Zeng J, Lau T T K, Lin S, et al. Global convergence of block coordinate descent in deep learning ICML2018.
- Lifted machines:Li J, Fang C, Lin Z. Lifted proximal operator machines AAAI 2019.
- ODE Based Methods:Gunther S, Ruthotto L, Schroder J B, et al. Layer-parallel training of deep residual neural networks. SIMDOS



### CIFAR10 WideResNet34 Results

| Training Methods    | Clean Data | PGD-20 Attack | Training Time (mins) |
|---------------------|------------|---------------|----------------------|
| Natural train       | 95.03%     | 0.00%         | 233                  |
| PGD-3               | 90.07%     | 39.18%        | 1134                 |
| PGD-5               | 89.65%     | 43.85%        | 1574                 |
| PGD-10              | 87.30%     | 47.04%        | 2713                 |
| Free-8 <sup>1</sup> | 86.29%     | 47.00%        | 667                  |
| YOPO-3-5 (Ours)     | 87.27%     | 43.04%        | 299                  |
| YOPO-5-3 (Ours)     | 86.70%     | 47.98%        | 476                  |

Table: Results of Wide ResNet34 for CIFAR10.





ODE as Continuous Depth Nueral Networks 04/2020 29 / 43

# Take Home Message

- Adversrial Training
- Differential Game.

YOPO(You Only Propogate Once)

Split the network
 Assuming p unchanged in inner iteration,
 YOPO increase update iteration number
 with slightly more computation



# Take Home Message

- Adversrial Training
- Differential Game.

#### YOPO(You Only Propogate Once)

- Split the network Assuming p unchanged in inner iteration, YOPO increase update iteration number with slightly more computation
- Use intermediate perturbation to update weights θ



# Take Home Message

- Adversrial Training
- Differential Game.

YOPO(You Only Propogate Once)

- Split the network Assuming p unchanged in inner iteration, YOPO increase update iteration number with slightly more computation
- Use intermediate perturbation to update weights θ

YOPO can be understood as

discretization way solving PMP



## **Outline Of The Talk**

#### Modeling 1



#### 2 Optimization

#### Algorithm Design

Theory





■ Neural Tangent Kernel([Jacot et al.2019]):Linearize the model  $f_{NN}(\theta) = f_{NN}(\theta_{init}) + \langle \nabla_{\theta} f_{NN}(\theta_{init}), \theta - \theta_{init} \rangle$ 



- Neural Tangent Kernel([Jacot et al.2019]):Linearize the model  $f_{NN}(\theta) = f_{NN}(\theta_{init}) + \langle \nabla_{\theta} f_{NN}(\theta_{init}), \theta \theta_{init} \rangle$ 
  - Pro: can provide proof of convergence for any structure of NN. ([Li et al. 2019])
  - Con: Feature is lazy learned, *i.e.* not data dependent. ([Chizat and Bach 2019.][Ghorbani et al.2019])



- Neural Tangent Kernel([Jacot et al.2019]):Linearize the model  $f_{NN}(\theta) = f_{NN}(\theta_{init}) + \langle \nabla_{\theta} f_{NN}(\theta_{init}), \theta \theta_{init} \rangle$ 
  - Pro: can provide proof of convergence for any structure of NN. ([Li et al. 2019])
  - **Con:** Feature is lazy learned, *i.e.* not data dependent. ([Chizat and Bach 2019.][Ghorbani et al.2019])
- Mean Field Regime([Bengio et al.2006][Bach et al.2014][Suzuki et al.2015]): We consider properties of the loss landscape with respect to the distribution of weights  $L(\rho) = ||\mathbb{E}_{\theta \sim \rho} g(\theta, x) f(x)||_2^2$ , the objective is a convex function



- Neural Tangent Kernel([Jacot et al.2019]):Linearize the model  $f_{NN}(\theta) = f_{NN}(\theta_{init}) + \langle \nabla_{\theta} f_{NN}(\theta_{init}), \theta \theta_{init} \rangle$ 
  - Pro: can provide proof of convergence for any structure of NN. ([Li et al. 2019])
  - **Con:** Feature is lazy learned, *i.e.* not data dependent. ([Chizat and Bach 2019.][Ghorbani et al.2019])
- Mean Field Regime([Bengio et al.2006][Bach et al.2014][Suzuki et al.2015]): We consider properties of the loss landscape with respect to the distribution of weights  $L(\rho) = ||\mathbb{E}_{\theta \sim \rho} g(\theta, x) f(x)||_2^2$ , the objective is a convex function
  - Pro: SGD = Wasserstein Gradient Flow ([Mei et al.2018][Chizat et al.2018][Rotskoff et al.2018])
  - Con: Hard to generalize beyond two layer



#### **Mean Field ResNet**

Naive ODE analogy does not directly provide guarantees of global convergence even in the continum limit.

**Our Aim**: Provide a **new** continuous limit for ResNet with good limiting landscape.

**Idea**:We consider properties of the loss landscape with respect to the distribution of weights.



#### Mean Field ResNet

Naive ODE analogy does not directly provide guarantees of global convergence even in the continum limit.

**Our Aim**: Provide a **new** continuous limit for ResNet with good limiting landscape.

**Idea**:We consider properties of the loss landscape with respect to the distribution of weights.

$$\dot{X}_{\rho}(x,t) = \int_{\theta} f(X_{\rho}(x,t),\theta)\rho(\theta,t)d\theta$$
Residual block sample from  $\rho$ 

Here:

I

- Input data is the initial condition  $X_{\rho}(x,0) = \langle w_2, x \rangle$
- X is the feature, t represents the depth.

Loss function:
$$E(\rho) = \mathbb{E}_{x \sim \mu} \left[ \frac{1}{2} \left( \left\langle w_1, X_{\rho}(x, 1) \right\rangle - y(x) \right)^2 \right]$$



04/2020

## **Adjoint Equation**

To optimize the Mean Field model, we calculate the gradient  $\frac{\delta E}{\delta \rho}$  via the *adjoint* sensitivity method.

#### Model

The loss function can be written as

$$\mathbb{E}_{x \sim \mu} E(x; \rho) := \mathbb{E}_{x \sim \mu} \frac{1}{2} \left| \langle w_1, X_\rho(x, 1) \rangle - y(x) \right|^2 \tag{9}$$

where  $X_{\rho}$  satisfies the equation  $\dot{X}_{\rho}(x, t) = \int_{\theta} f(X_{\rho}(x, t), \theta) \rho(\theta, t) d\theta$ ,



## Adjoint Equation

To optimize the Mean Field model, we calculate the gradient  $\frac{\delta E}{\delta \alpha}$  via the adjoint sensitivity method.

#### Model

The loss function can be written as

$$\mathbb{E}_{x \sim \mu} E(x; \rho) := \mathbb{E}_{x \sim \mu} \frac{1}{2} \left| \langle w_1, X_\rho(x, 1) \rangle - y(x) \right|^2 \tag{9}$$

where  $X_{\rho}$  satisfies the equation  $\dot{X}_{\rho}(x,t) = \int_{\theta} f(X_{\rho}(x,t),\theta)\rho(\theta,t)d\theta$ ,

Adjoint Equation. The gradient can be represented as a second backwards-in-time augmented ODE.

$$\dot{p}_{
ho}(x,t) = -\delta_X H_{
ho}(p_{
ho},x,t) 
onumber \ = -p_{
ho}(x,t) \int \nabla_X f(X_{
ho}(x,t), heta) 
ho( heta,t) d heta,$$

Here the Hamiltonian is defined as  $H_{\rho}(p, x, t) = p(x, t) \cdot \int f(x, \theta)\rho(\theta, t)d\theta$ .

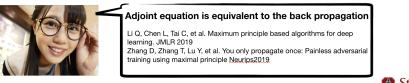
## **Adjoint Equation**

#### Theorem

For  $\rho \in \mathcal{P}^2$  let  $\frac{\delta E}{\delta \rho}(\theta, t) = \mathbb{E}_{x \sim \mu} f(X_{\rho}(x, t), \theta)) p_{\rho}(x, t)$ , where  $p_{\rho}$  is the solution to the backward equation  $\dot{p}_{\rho}(x, t) = -p_{\rho}(x, t) \int \nabla_X f(X_{\rho}(x, t), \theta) \rho(\theta, t) d\theta$ . Then for every  $\nu \in \mathcal{P}^2$ , we have

$$E(
ho+\lambda(
u-
ho))=E(
ho)+\lambda\left\langle rac{\delta E}{\delta 
ho}$$
 ,  $(
u-
ho)
ight
angle +o(\lambda)$ 

for the convex combination  $(1 - \lambda)\rho + \lambda \nu \in \mathcal{P}^2$  with  $\lambda \in [0, 1]$ .





 $X^{1} = X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0}.$ 



$$X^{1} = X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0}.$$

$$\begin{split} X^{2} &= X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0} + \int_{\theta^{1}} \sigma(\theta^{1} (X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0})) \rho^{1}(\theta^{1}) d\theta^{1} \\ &= X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0} + \frac{1}{L} \int_{\theta^{1}} \sigma(\theta^{1} X^{0}) \rho^{1}(\theta^{1}) d\theta^{1} + \frac{1}{L^{2}} \int_{\theta^{1}} \nabla \sigma(\theta^{1} X^{0}) \theta^{1}(\int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0}) \rho^{1}(\theta^{1}) d\theta^{1} \\ &+ h.o.t. \end{split}$$



$$X^{1} = X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0}.$$

$$\begin{aligned} X^{2} &= X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0} + \int_{\theta^{1}} \sigma(\theta^{1} (X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0})) \rho^{1}(\theta^{1}) d\theta^{1} \\ &= X^{0} + \frac{1}{L} \int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0} + \frac{1}{L} \int_{\theta^{1}} \sigma(\theta^{1} X^{0}) \rho^{1}(\theta^{1}) d\theta^{1} + \frac{1}{L^{2}} \int_{\theta^{1}} \nabla \sigma(\theta^{1} X^{0}) \theta^{1}(\int_{\theta^{0}} \sigma(\theta^{0} X^{0}) \rho^{0}(\theta^{0}) d\theta^{0}) \rho^{1}(\theta^{1}) d\theta^{1} \\ &+ h.o.t. \end{aligned}$$

Iterating this expansion gives rise to

 $X^{L} \approx X^{0} + \frac{1}{L} \sum_{a=0}^{L-1} \int \sigma(\theta X^{0}) \rho^{a}(\theta) d\theta + \frac{1}{L^{2}} \sum_{b>a} \int \int \nabla \sigma(\theta^{b} X^{0}) \theta^{b} \sigma(\theta^{a} X^{0}) \rho^{b}(\theta^{b}) \rho^{a}(\theta^{a}) d\theta^{b} \theta^{a} + h.o.t.$ Veit A, Wilber M J, Belongie S. **Residual networks behave like ensembles of relatively shallow networks.** Advances in neural information processing systems. 2016: 550-558.

Difference of back propagation process of two-layer net and ResNet.

**Two-layer Network** 

ResNet

 $\frac{\delta E}{\delta \rho}(\theta, t) = \mathbb{E}_{x \sim \mu} f(x, \theta))(X_{\rho} - y(x)) \quad \frac{\delta E}{\delta \rho}(\theta, t) = \mathbb{E}_{x \sim \mu} f(X_{\rho}(x, t), \theta)) p_{\rho}(x, t)$ We aim to show that the two gradient are similar.



Difference of back propagation process of two-layer net and ResNet.

**Two-layer Network** 

ResNet

 $\frac{\delta E}{\delta \rho}(\theta, t) = \mathbb{E}_{x \sim \mu} f(x, \theta) (X_{\rho} - y(x)) \quad \frac{\delta E}{\delta \rho}(\theta, t) = \mathbb{E}_{x \sim \mu} f(X_{\rho}(x, t), \theta)) p_{\rho}(x, t)$ 

We aim to show that the two gradient are similar.

#### Lemma

,

The norm of the solution to the adjoint equation can be bounded by the loss

$$\|p_{\rho}(\cdot, t)\|_{\mu} \ge e^{-(C_1+C_2r)}E(\rho), \forall t \in [0, 1]$$



#### Local = Global

#### Theorem

If  $E(\rho) > 0$  for distribution  $\rho \in \mathcal{P}^2$  that is supported on one of the nested sets  $Q_r$ , we can always construct a descend direction  $\nu \in \mathcal{P}^2$ , i.e.

$$\inf_{\nu\in\mathcal{P}^2}\left\langle\frac{\delta E}{\delta\rho},(\nu-\rho)\right\rangle<0$$



#### Local = Global

#### Theorem

If  $E(\rho) > 0$  for distribution  $\rho \in \mathcal{P}^2$  that is supported on one of the nested sets  $Q_r$ , we can always construct a descend direction  $\nu \in \mathcal{P}^2$ , i.e.

$$\inf_{\nu\in\mathcal{P}^2}\left\langle\frac{\delta E}{\delta\rho},(\nu-\rho)\right\rangle<0$$

#### Corollary

Consider a stationary solution to the Wasserstein gradient flow which is full support(informal), then it's a global minimizer.



#### **Numerical Scheme**

We may consider using a parametrization of  $\rho$  with *n* particles as

$$\rho_n(\theta,t) = \sum_{i=1}^n \delta_{\theta_i}(\theta) \mathbb{1}_{[\tau_i,\tau'_i]}(t).$$

The characteristic function  $\mathbb{1}_{[\tau_i,\tau'_i]}$  can be viewed as a relaxation of the Dirac delta mass  $\delta_{\tau_i}(t)$ .

**Given**: A collection of residual blocks  $(\theta_i, \tau_i)_{i=1}^n$ **while** training **do** 

Sort  $(\theta_i, \tau_i)$  based on  $\tau_i$  to be  $(\theta^i, \tau^i)$  where  $\tau^0 \leq \cdots \leq \tau^n$ . Define the ResNet as  $X^{\ell+1} = X^{\ell} + (\tau^{\ell} - \tau^{\ell-1})\sigma(^{\ell}X^{\ell})$  for  $0 \leq \ell < n$ . Use gradient descent to update both  $\theta^i$  and  $\tau^i$ . end while



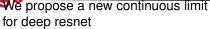
#### **Numerical Results**

|                  | Vanilla | mean-field | Dataset  |
|------------------|---------|------------|----------|
| ResNet20         | 8.75    | 8.19       | CIFAR10  |
| ResNet32         | 7.51    | 7.15       | CIFAR10  |
| ResNet44         | 7.17    | 6.91       | CIFAR10  |
| ResNet56         | 6.97    | 6.72       | CIFAR10  |
| ResNet110        | 6.37    | 6.10       | CIFAR10  |
| ResNet164        | 5.46    | 5.19       | CIFAR10  |
| ResNeXt29(864d)  | 17.92   | 17.53      | CIFAR100 |
| ResNeXt29(1664d) | 17.65   | 16.81      | CIFAR100 |

Table: Comparison of the stochastic gradient descent and mean-field training (Algorithm 1.) of ResNet On CIFAR Dataset. Results indicate that our method our performs the Vanilla SGD consistently.



# Take Home Message propose a new continuous limit



$$\dot{X}_{
ho}(x,t) = \int_{ heta} f(X_{
ho}(x,t), heta)
ho( heta,t)d heta,$$

with initial  $X_{\rho}(x,0) = \langle w_2, x \rangle$ 

- Local minimizer is global in  $\ell_2$  space.
- A potential scheme to approximate.



# Take Home Message propose a new continuous limit



for deep resnet

$$\dot{X}_{
ho}(x,t) = \int_{ heta} f(X_{
ho}(x,t), heta) 
ho( heta,t) d heta,$$

with initial  $X_{\rho}(x,0) = \langle w_2, x \rangle$ 

- Local minimizer is global in  $\ell_2$  space.
- A potential scheme to approximate.

#### TO DO List.

- Analysis of Wasserstein gradient flow. (Global Existence)
- Refined analysis of numerical scheme
- h.o.t in the expansion from ResNet to ensemble of small networks.

# **Outline Of The Talk**

#### 1 Modeling









#### **On Going**



2prime

ODE as Continuous Depth Nueral Networks 04/2020 42 / 43



**Reference:** Based on papers published at ICML2018, ICLR209, Neurips 2019 and ICML 2020.

Contact:yplu@stanford.edu

