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ODE As Infinite Depth Neural Network

First-order ODE | | — Numer,lcal solver: — | ResNet |

[He et al. 2015]
ﬂ = F(x,1), X1 = X+ 7F(xp1), X1 = X+ F(xp1),
di [E. 2017] [Haber et al. 2017]
x(0) = xp, xo = x(0),x, = x(r1), ..y = step size [y et al. 2017] [Sho et al

2017] [Chen et al. 2018]

Figure: ResNet can be seen as the Euler discretization of a time evolving ODE
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Numerical Scheme As Architecture

First-order ODE
dx Fxt)
— = rXx,1),
dt
x(0) = X0s

X4 = X+ }’F(xb ’1)’

Xo = x(0),x, = x(yl), ...y — step size

x

Coertione ]
Fx) N
Coewtionr | ] igeniy

T +x m\u

| = Elremetod == fest

[He et al. 2015]
Xip1 =X +F(x1, r,),
[E. 2017] [Haber et al. 2017]

[Lu et al. 2017] [Sho et al
2017] [Chen et al. 2018]

Numerical

Scheme

Deep Architecture
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Numerical Scheme: Skip Connection
Observation:

m ResNe(X)t = Euler Scheme

m PolyNet = An Approximation Of Implicit Scheme

m FractalNet=Runge-Kutta Schmeme ....

\ Numerical scheme can be used to desgin principled skip connection

All exisisting scheme are single step scheme.
Our paper[1] introduced a linear multi-step scheme to ResNet, and
explained why it works.

[17 Yiping Lu, Aoxiao Zhong, Quanzheng Li, Bin Dong. "Beyond Finite Layer
Neural Network:Bridging Deep Architects and Numerical Differential Equations”

Thirty-fifth International Conference on Machine Learning (ICML), 2018
® Stanford
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Dropout: Stochastic Differential Equation
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dX; = p(t)f(X)dt + v/ p(t)(1 — p(t))f(Xi) © [Lox1, Oox1]dB
| Convergence Requirement] meets [parameter selection.| § Stanford
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Modeling Seq2Seq: Transformer
Understand Transformer as a multi-particle system.
dx;(t
40— Fpq( b0, xa0) 1) + Go(t). 1),
Attentigg Layer FFNTayer
xi(th) =w;, i=1,...,n.(Every words in a sentence)

Transformer is a splitting scheme, splitting F and G.
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Modeling Seq2Seq: Transformer
Understand Transformer as a multi-particle system.
dx;(t)
dt

= F(q(1), D (1), -+, xa(1)], 1) + G(x(1), 1),
Attention Layer FFNTayer
xi(th) =w;, i=1,...,n.(Every words in a sentence) (1)

Transformer is a splitting scheme, splitting F and G.
Applying an higher order splitting scheme?

Contextual
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Results

Table: Translation performance (BLEU) on IWSLT14 De-En and WMT14 En-De
testsets.

IWSLT14 De-En WMT14 En-De

Method small base Dbig
Transformer 34.4 27.3 28.4
Weighted Transformer / 28.4 28.9
Relative Transformer / 26.8 29.2
Universal Transformer / 28.9 /

Scaling NMT / / 29.3
Dynamic Conv 35.2 / 29.7
Macaron Net 35.4 28.9 30.2

8 Stanford
University
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Results

Table: Test results on the GLUE benchmark (except WNLI).

Method CoLA  SST2 MRPC STS-B [elel MNLI-M/MM  QNLI RTE  GLUE

Existing systems

ELMo 336 90.4 84.4/78.0  74.2[72.3  63.1/84.3 7417745 798 589 70.0

OpenAl GPT 47.2 93.1 87.7/83.7  85.3/84.8  70.1/88.1 80.7/80.6 872  69.1 76.9

BERT base 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3

Our systems

BERT base (ours) 52.8 92.8 87.3/830 81.2/80.0 70.2/88.4 84.4/83.7 904 649 774

Macaron Netbase  57.6 94.0 88.4/84.4  87.5/86.3  70.8/89.0 85.4/84.5 916 705 79.7

Stanford
University
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Neural ODE: Enforcing Constraint

m Implicit Scheme: Stability. @etrmann ., etal invertivie residual networks. 1cmL2019,)

m Symplectic Scheme: Energy Conservation. cnenz et a. sympiectic Recurrent
Neural Networks. ICLR2020)

m Approximation To Optimal Transport map: rinay ¢ Jacobsen J H, Nurbekyan L,
et al. How to train your neural ODE. arXiv preprint arXiv:2002.02798, 2020.)

m Adversarial Examples: (Zhang J, Han B, Wynter L, et al. Towards robust resnet: A small step but a
giant leap. IJCAI2019.)

ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations: http://iclr2020deepdiffeq.rice.edu/

( Invited Talk 3: Subtleties of Neural ODEs: Learning with Constraints By Ricky Chen.)

A Stanford
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Our Example: DURR
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Traditional i
Method Vs Deep Learning

How can we encode the physic of task?
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Our Example: DURR

10dB J 30dB J 50dB
Nois | Nois § Nois
e e e

70dB Noise

DnCNN

Vs Deep Learning

input

)i 2
%:m\ (ellVuf®) Vu) in Qx(0,7T)
E

du

20 on 00
T3 =0 o 02 (0.1)
u(0,2) = uo(x) in
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Our Example: DURR
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Our Example: DURR

2prime

Damaged
Input

Restoration
Unit

Intermediate
Result

Policy
Unit

Final
Output

| BM3D WNNM DnCNN-B  UNLNet; DURR
o=25| 2855 28.73 29.16 28.96 29.16
o=35| 27.07 27.28 27.66 27.50 27.72
o=45| 2599 26.26 26.62 26.48 26.71
o=255| 25.26 25.49 25.80 25.64 2591
o =65 | 24.69 24.51 23.40* - 25.26*
o="T5| 22.63 22.71 18.73* - 24.71*

ODE as Continuous Depth Nueral Networks

04/2020

13/43
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Modling The Physics

Tycho Brahe Johannes Kepler Isaac Newton

phenomenon discipline Law

A Stanford
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PDE-Net: Modeling The Physics
Consider a finite difference scheme for PDE:
3 K 5

LSRN 4 h
Uir1 = |u =+ hoxu + ?axu + Eéxu + —oyu+

5 )
24 120°xY + }

i
Thus
| Yitt = 2U; + U1
2

1
— U] = | PP(u); + O(h)

Au=uy, +uy,

e University
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Convolution Operator As Differential
Operator

Definition (Order of Sum Rules)

For a filter g, we say g to have sum rules of order a = (a1, ap), where a € 72, provided that
1, a2

S KPqik =0 @

kez?

forall B € Z2 with |B| <|a| and forall B € Z2 with |B| = |a| but B # a. If (2) holds for all B € Z2 with |B| < K except for
B # Bo with certain By € Zi and |By| = J <K, then we say g to have total sum rules of order K\ {J + 1}.

Theorem

Let q be a filter with sum rules of order a Zi. Then for a smooth function F(x) on R2, we have

1 &
ST alkIF(x + £k) = caaX—GF(x) +O(¢),ase — 0, ©)

elel kez2 |

where Cq is the constant defined byCa = 2y 3y 72 k¥ qlK].
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PDE-Net: Recovering Coefficients
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PDE-Net: Recovering Coefficients
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Figure 15: First row: the true coefficients { fij:1<i+j < 2} of the equation. Second row: the
learned coefficients {c;; : 1 < i+ j < 2} by the PDE-Net with 3 dt-blocks and 7 x 7 filters.
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Outline Of The Talk
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An Optimal Control View of Deep
Learning

Deep learning:

T—1
min J(8) = £(x7) + > Ri(xt; 61)
=

S.t. Xt+1:ft(thet)]t:1;2;'..,T_1
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An Optimal Control View of Deep
Learning

Deep learning:

T—1
min J(8) = £(x7) + Z (x; 6¢) @
S.t. Xt+1:ft(Xt,et),T=1,2,---,T—1
Optimal Control:
mm J[6(+) x(T)) / R(x ))at
[6(-)] (7)) (1) )
ot X(t) = f(x(t), 6(1))
6(-) is called a control
S[tjqnfqrd
l'llVEl'Slty
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An Optimal Control View of Deep
Learning

m|n J[@( x(T)) / R(x (t))at

(6)

s.t. x( ) = f(x(1), 6(t))
@ Stanford
- ) University
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An Optimal Control View of Deep
Learning

m|n J[6(+) x(T)) / R(x ))dt
6()] = £(x(T)) (1) o
s.t. )'(( ) = f(x(1), 6(1))
Gradient Based Training: Adjoint Equation
p(t) = —VxH(x(t), p(t), 6(1))
A New method?
Stanford
University
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An Optimal Control View of Deep
Learning

m|n J[6(+) x(T)) / R(x ))dt
6()] = £(x(T)) (1) o
s.t. )'(( ) = f(x(1), 6(1))
Gradient Based Training: Adjoint Equation
p(t) = —VxH(x(1), p(t). 8(1))
A New method? NO!.
Adjoint Equation = Back Propagation! |
Stanford
University
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An Optimal Control View of Deep
Learning

m|n J[@( x(T)) / R(x (t))dt
(6)
s.t. )'(( ) = f(x(1), 6(1))
Gradient Based Training: Adjoint Equation
p(t) = =VxH(x(t), p(t), 6(1))
A New method? NO!.
| Adjoint Equation = Back Propagation! |
Benefit:
m Invertible: Neural Ordinary Differential Equation Neruips2018.
i !
m Find out structure! | (Our work) s Stanford
University
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Adversarial Training

Robust Optimization

mingE(, wp max £(8; x +n,v),
o (xy)~p max ( n.y)

@ Stanford

Yar ) University
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Adversarial Training

. :F
o

Schoolbus Perturbation Ostrich

s;e;:(;; et a; 2013) Xt+1 = nx+$ (Xt + asign (Vxé))

Robust Optimization

m Gradient Descent On 6.

PGD Method

m Gradient ascent on x.

mingIE(X,y)ND max £(6; x +n,y), 8=0-Vyt

lInll<e

@ Stanford

Yar ) University

2prime ODE as Continuous Depth Nueral Networks 04/2020 22/43



Our Intuition: Spilitting The Gradient
YOPO(You Only Propogate Once)
1: initialize perturbation n

2: for do

3 p Ved(x+n)

4 for do
Focus on first layer.

5: n<n+ap-Vh(x+n) splitting
6: end for
7:  accumulate gradient U + U + Vgé(x + 1)
use intermediate adversarial examples

m times full backprop.

8: end for
9: Use U tp perform SGD / momentum SGD

Stanford

University
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A Differential Game View of Adversarial
Training

Adversarial Training:

T—1
J(B,n) =L(xT)+ Ri(xt; 6
meln”r:;l‘aé(6 (8,n) = £(xT) tzg t(Xt; B¢, nt) )

st x1=fh(xo+n60) Xt11 = (X, 60¢),t=1,2,---, T —1

Differential Game:

inmax 00 ()] = 4x(T) + [ AGx(0, 00, n(B)ot

(8)
s.t. x(t) = f(x(1), 8(t), n(t))
Differential game is optimal control with 2 controls, each having
opposite target. Stanford
University
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YOPO: An Optimal Control View

m Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem (Stronger than KKT.)

m We'll show that YOPO is actually a discretion of PMP

Stanford

University
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YOPO: An Optimal Control View

m Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem (Stronger than KKT.)

m We'll show that YOPO is actually a discretion of PMP
Define Hamiltonian

H(x,p,6,n) :=p-1(x,6,n) +r(x,6,n)

PMP for differential game tells us there exists an adjoint dynamic p(-)
satisfying :

X*(t) = VpH (x*(2), p*(1), 67 (). n"(1))
pr(t) = —Vx (x*(1), p*(1), (1), n"(1))
H(x*(1), p* (1), 87(),m) = H (x*(1), p" (1), 87 (1), n*(1))
> H(x*(1),p*(1).6,n°(1)), Wé gtanford
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YOPO: An Optimal Control View

m Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem

m We'll show that YOPO is actually a discretization of PMP
X (1) = VpH (x*(1), p* (1), 6" (1), 0" (1))
The same as the forward equation x(t) = f(x(t), 8(t), n(t))-
p*(t) = —VxH (x*(1),p"(1). 6" (1). n" (1))
Known as \ Adjoint Equation \ the same as back propagation on
feature map x(t). i.e. p(t) = 62—{”

H(x*(t),p*(t),6°(1).n) = H (x*(t), p*(1). 6" (1), n" (1))
> HQ (), p(1).8.n°(1), vtno

Parameter 8,1 should optimize the Hamiltonian. n(0) only co@%myd
the first layer. Y
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Decoupled Training
Back propagation is a sequential process, how can we parallelize it?

m ADMM: Taylor G, Burmeister R, Xu Z, et al. Training neural networks
without gradients: A scalable admm approach ICML2016.

m Coordinate Descent:Zeng J, Lau T TK, Lin S, et al. Global convergence
of block coordinate descent in deep learning ICML2018.

m Liffed machines:Li J, Fang C, Lin Z. Lifted proximal operator machines
AAAI 2019.

m ODE Based Methods:Gunther S, Ruthotto L, Schroder J B, et al.
Layer-parallel training of deep residual neural networks. SIMDOS

A Stanford

University

2prime ODE as Continuous Depth Nueral Networks 04/2020 27/43



CIFAR10 WideResNet34 Results

Training Methods | Clean Data PGD-20 Attack | Training Time (mins)

Naturaltrain | 95.03% 0.00% \ 233
PGD-3 90.07% 39.18% 1134
PGD-5 89.65% 43.85% 1574

PGD-10 87.30% 47.04% 2713
Free-8 ' 86.29% 47.00% 667
YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPOQO-5-3 (Ours) 86.70% 47 .98% 476

Table: Results of Wide ResNet34 for CIFAR10.

A Stanford

University
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m Adversrial Training
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Take Hompe Message \
& ridging

m Adversrial Training
m Differential Game.
IFOPO(You Only Propogate Once)

Split the network
Assuming p unchanged in inner iteratiod},
YOPO increase update iteration numbe
with slightly more computation

® Stanford
Univefsity
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Take Hoge Message 1
y ridging

m Adversrial Training

m Differential Game.

IFOPO(You Only Propogate Once)

Split the network
Assuming p unchanged in inner iteratiod},
YOPO increase update iteration numbe
with slightly more computation

Use intermediate perturbation to updatg
weights 8
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Take Home Message \
& ridging

m Adversrial Training
m Differential Game.
IFOPO(You Only Propogate Once)

Split the network
Assuming p unchanged in inner iteration,
YOPO increase update iteration numbe
with slightly more computation

Use intermediate perturbation to updatg
weights 8

IYOPO can be understood as

| discretization way solving PMP |

: Stanjord

Univefsity
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Global Convergence Proof Of NN

m Neural Tangent Kernel([Jacot et al.2019]):Linearize the model
N(8) = N (Binit) + <Von(Binit), @ — Oinit >

@ Stanford

: University
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Global Convergence Proof Of NN

m Neural Tangent Kernel([Jacot et al.2019]):Linearize the model
AN(E) = NN (Binit) + < Voiun(Binit), & — Ginit >
m Pro: can provide proof of convergence for any structure of NN. ([Li et

al. 2019))
m Con: Feature is lazy learned, i.e. not data dependent. ([Chizat and
Bach 2019.][Ghorbani et al.2019])

Stanford
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Global Convergence Proof Of NN

m Neural Tangent Kernel([Jacot et al.2019]):Linearize the model
AN(E) = NN (Binit) + < Voiun(Binit), & — Ginit >
m Pro: can provide proof of convergence for any structure of NN. ([Li et

al. 2019))
m Con: Feature is lazy learned, i.e. not data dependent. ([Chizat and

Bach 2019.][Ghorbani et al.2019])

m Mean Field Regime([Bengio et al.2006][Bach et al.2014][Suzuki et
al.2015]): We consider properties of the loss landscape with
respect to the distribution of weights L(p) = [|E.,9(8, x) — f(X)|3,
the objective is a convex function
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Global Convergence Proof Of NN

m Neural Tangent Kernel([Jacot et al.2019]):Linearize the model
AN(E) = NN (Binit) + < Voiun(Binit), & — Ginit >
m Pro: can provide proof of convergence for any structure of NN. ([Li et

al. 2019))
m Con: Feature is lazy learned, i.e. not data dependent. ([Chizat and

Bach 2019.][Ghorbani et al.2019])

m Mean Field Regime([Bengio et al.2006][Bach et al.2014][Suzuki et
al.2015]): We consider properties of the loss landscape with
respect to the distribution of weights L(p) = ||Eg..,9(8, X) — f(x)||3,
the objective is a convex function

m Pro: SGD = Wasserstein Gradient Flow ([Mei et al.2018][Chizat et
al.2018][Rotskoff et al.2018])
m Con: Hard to generalize beyond two layer

A Stanford

University

2prime ODE as Continuous Depth Nueral Networks 04/2020 31/43



Mean Field ResNet

Naive ODE analogy does not directly provide guarantees of global
convergence even in the continum limit.
Our Aim: Provide a new continuous limit for ResNet with good limiting

landscape.
Idea:We consider properties of the loss landscape with respect to the
distribution of weights.

Stanford

University
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Mean Field ResNet

Naive ODE analogy does not directly provide guarantees of global
convergence even in the continum limit.
Our Aim: Provide a new continuous limit for ResNet with good limiting

landscape.
Idea:We consider properties of the loss landscape with respect to the
distribution of weights.

X,(x,1) = J fX,(x. 1), 0)p(6, )0
0

Here:
m Input data is the initial condition X,(x,0) = (w», x)
m X is the feature, t represents the depth. 8 Stanford
m Loss function:E(p) = EXN,,[% ((wy, Xo(x, 1)) — y(x))z] University
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Adjoint Equation
To optimize the Mean Field model, we calculate the gradient % via the adjoint
sensitivity method.

The loss function can be written as
1
ExuE(X;p) == EXNM§\<W1 Xo(x,1)) — x)] 9)

where X, satisfies the equat/onX x,t) = [ {(X:(x, t),0)p(8, t)db,

@ Stanford

N University
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Adjoint Equation
To optimize the Mean Field model, we calculate the gradient % via the adjoint
sensitivity method.

The loss function can be written as
ExuE(X;p) == EXN“Z‘ wi, Xo(x, 1)) — x)] 9)

where X, satisfies the equat/onX (x.t) = [o (X ,p(8, 1)do,

Adjoint Equation. The gradient can be represented as a second
backwards-in-time augmented ODE.

Po(X, 1) = =8xHo(Pp. X, 1)

— (1) / Vxf(Xo(x, 1), 0)p(6, 1),
Stanford

University

Here the Hamiltonian is defined as H,(p, x, t) = p(x, t) - [ f(x,8)p(8, t)db.
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Adjoint Equation

Theorem

8))po(x, t), where p, is the solution

FOfp € P? /et (6 t) = ]EXN/J ( ( )
— —po(x. 1) [ Vxf(Xo(x, 1), 6)p(6, )d6.

to the backward equation p(x, t)
Then for everyv € P2, we have

E(p+ Av —p)) = E(0) + A <55—’j v —p)> o)

for the convex combination (1 — A)p + Av € P? with A € [0,1].

Adjoint equation is equivalent to the back propagation

Li Q, Chen L, Tai C, et al. Maximum principle based algorithms for deep
learning. JMLR 2019

Zhang D, Zhang T, Lu Y, et al. You only propagate once: Painless adversarial
training using maximal principle Neurips2019

Stanford
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Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

)
x'=x0+ 7/ a(6°%%)0°(6°)d6°.
L Jg0
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Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

)
x'=x0+ 7/ a(6°%%)0°(6°)d6°.
L Jg0

1 1
X2 =x0 4+ i /0 o(8°%%)e°(6°)a6° + /1 o' (X0 + i /0 o(8°%%)0°(6°)d6°))0" (6" )d6"
%) 6 o)

1 1 1
X0+ 7/ o(68°X°)e® (6%) 6P + 7/ o(6'X%)0" (6")d6" + 7/ vU(e‘xo)e‘(/ o(8°X°)e°(6%)d6%)p" (67) a6
L Jg0 L Jet L2 Jo, 60
+ h.o.t.

@ Stanford
@9 University
2prime ODE as Continuous Depth Nueral Networks

04/2020 35/43



Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

1,
x'=x0+ 7/ a(6°%%)0°(6°)d6°.
L Jg0

1 1
X2 =x0 4+ i /0 o(8°%%)e°(6°)a6° + /1 o' (X0 + i /0 o(8°%%)0°(6°)d6°))0" (6" )d6"
%) 6 o)

1 1 1
— X0 7/ o(68°X°)e® (6%) 6P + 7/ o(6'X%)0" (6")d6" + 7/ vU(e‘xo)e‘(/ o(8°X°)e°(6%)d6%)p" (67) a6
L Jg0 L Jet L2 Jo, 60

+ h.o.t.

ferafing this expansion gives rise fo

1 L] 1
Xt~ x0 4 n > /U(GXO)pa(S)dG 5> / / Vo (6°X%)6°0 (67 X°)0? (6°)0%(6%)d6°67 + h.o.t.
a=0" >a

2
L b
S

Veit A, Wilber M J, Belongie S. Residual networks behave like

4 ensembles of relatively shallow networks. Advances in neural
information processing systems. 2016: 550-558.

Stanford

University

RosNet Two-layer Neural Net

2prime ODE as Continuous Depth Nueral Networks 04/2020 35/43



Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

Difference of back propagation process of two-layer net and
ResNet.
Two-layer Network ResNet

8E 6E
5 00 = a0, )X =y () 55(8,1) = Exel (Xo(x, 1), 0))Po (X, 1)
We aim to show that the two gradient are similar.
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Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

Difference of back propagation process of two-layer net and
ResNet.

Two-layer Network ResNet
SE y=
55 80 = Bl (. 0)06 —Y(0) 5 (6.1) = Exef(Xp(x, 1) 0))po(x. 1

We aim to show that the two gradient are similar.

The norm of the solution to the adjoint equation can be bounded by

the loss
1P, 1) > e~ (CHCNE(p), vt € [0,1]
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Local = Global

Theorem

If E(p) > 0 for distribution p € P? that is supported on one of the
nested sets Q;, we can always construct a descend directionv € P?,

ie. SE
l/len;z <$ (v— p)> <0
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Local = Global

If E(p) > 0 for distribution p € P? that is supported on one of the
nested sets Q;, we can always construct a descend directionv € P?,

ie. SE
l/len;z <$ (v— p)> <0

Corollary

Consider a stationary solution to the Wasserstein gradient flow which
is full support(informal), then it's a global minimizer.
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Numerical Scheme

We may consider using a parametrization of p with n particles as

256 ]1[7'1 /](t

The characteristic function L7, - can be viewed as a relaxation of the
Dirac delta mass &.,(1).

Given: A collection of residual blocks (8, T;),

while training do
Sort (8;,7;) based on T; to be (¢, 7') where 70 < ... < 7",
Define the ResNet as X*+' = X + (1t — ¢ "o (*X?) for0 < £ <n.
Use gradient descent to update both 6/ and T'.

end while
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Numerical Results

| Vanilla | mean-field | Dataset

ResNet20 8.75 8.19 CIFAR10
ResNet32 7.51 715 CIFAR10
ResNet44 717 6.91 CIFAR10
ResNet56 6.97 6.72 CIFAR10
ResNet110 6.37 6.10 CIFAR10
ResNet164 5.46 5.19 CIFAR10
ResNeXt29(864d) 17.92 17.53 CIFAR100
ResNeXt29(1664d) || 17.65 16.81 CIFAR100

Table: Comparison of the stochastic gradient descent and mean-field training
(Algorithm 1.) of ResNet On CIFAR Dataset. Results indicate that our method

our performs the Vanilla SGD consistently.
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Take Home Mess29g - zrewaommmomsTmr—

d for deep resnet

X,(x, t) = /0 f(Xo(x, t), 8)p(8, 1)d8,

with initial X,(x,0) = (wz, x)
m Local minimizer is global in £, space.

m A potential scheme to approximate.
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Take Home Mess29 - arewwmmmsmstmr—

2prime

for deep resnet

X,(x, t) = /0 f(Xo(x, t), 8)p(8, 1)d8,

with initial X,(x,0) = (wz, x)
m Local minimizer is global in £, space.
m A potential scheme to approximate.
TO DO List.

m Analysis of Wasserstein gradient
flow. (Global Existence)

m Refined analysis of numerical scheme

m h.o.tin the expansion from ResNet to

ensemble of small networks.
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Outline Of The Talk

El Inferencing
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Inference

On Going
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Thanks

Reference: Based on papers published at ICML2018, ICLR209, Neurips 2019
and ICML 2020. [m] y1*=[x]

Contact:yplu@stanford.edu
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