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ODE As Infinite Depth Neural Network

Figure: ResNet can be seen as the Euler discretization of a time evolving ODE
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Outline
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Numerical Scheme As Architecture
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Numerical Scheme: Skip Connection
Observation:

ResNe(X)t = Euler Scheme
PolyNet = An Approximation Of Implicit Scheme
FractalNet=Runge-Kutta Schmeme ....

Numerical scheme can be used to desgin principled skip connection

All exisisting scheme are single step scheme.
Our paper[1] introduced a linear multi-step scheme to ResNet, and
explained why it works.

[1] Yiping Lu, Aoxiao Zhong, Quanzheng Li, Bin Dong. "Beyond Finite Layer
Neural Network:Bridging Deep Architects and Numerical Differential Equations"
Thirty-fifth International Conference on Machine Learning (ICML), 2018
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Dropout: Stochastic Differential Equation

Figure: Stochastic Depth

Convergeto SDE

dXt = p(t)f (X )dt +
√

p(t)(1− p(t))f (Xt )� [10×1,00×1]dBt

Convergence Requirement meets parameter selection.
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Modeling Seq2Seq: Transformer
Understand Transformer as a multi-particle system.

dxi(t)
dt

= F (xi(t), [x1(t), · · · , xn(t)], t)︸ ︷︷ ︸
Attention Layer

+ G(xi(t), t)︸ ︷︷ ︸
FFN Layer

,

xi(t0) = wi , i = 1, . . . , n.(Every words in a sentence) (1)

Transformer is a splitting scheme, splitting F and G.

Applying an higher order splitting scheme?

Multi-Head
Self Attention

Contextual 
Representation

Embedding

Inputs

Position-wise
Feed Forward

×N
+

+

+

Positional
Encoding

Diffusion
Step

Convection
Step Multi-Head

Self Attention

Contextual 
Representation

Embedding

Inputs

Position-wise
Feed Forward

×N

+

+

Positional
Encoding

Diffusion
Step

Convection
Step

Position-wise
Feed Forward

+

+

× 1
2

× 1
2

Convection
Step

2prime ODE as Continuous Depth Nueral Networks: 04/2020 8 / 43



Modeling Seq2Seq: Transformer
Understand Transformer as a multi-particle system.

dxi(t)
dt

= F (xi(t), [x1(t), · · · , xn(t)], t)︸ ︷︷ ︸
Attention Layer

+ G(xi(t), t)︸ ︷︷ ︸
FFN Layer

,

xi(t0) = wi , i = 1, . . . , n.(Every words in a sentence) (1)

Transformer is a splitting scheme, splitting F and G.
Applying an higher order splitting scheme?

Multi-Head
Self Attention

Contextual 
Representation

Embedding

Inputs

Position-wise
Feed Forward

×N
+

+

+

Positional
Encoding

Diffusion
Step

Convection
Step Multi-Head

Self Attention

Contextual 
Representation

Embedding

Inputs

Position-wise
Feed Forward

×N

+

+

Positional
Encoding

Diffusion
Step

Convection
Step

Position-wise
Feed Forward

+

+

× 1
2

× 1
2

Convection
Step

2prime ODE as Continuous Depth Nueral Networks: 04/2020 8 / 43



Results

Table: Translation performance (BLEU) on IWSLT14 De-En and WMT14 En-De
testsets.

IWSLT14 De-En WMT14 En-De
Method small base big
Transformer 34.4 27.3 28.4
Weighted Transformer / 28.4 28.9
Relative Transformer / 26.8 29.2
Universal Transformer / 28.9 /
Scaling NMT / / 29.3
Dynamic Conv 35.2 / 29.7
Macaron Net 35.4 28.9 30.2
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Results

Table: Test results on the GLUE benchmark (except WNLI).

Method CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE
Existing systems
ELMo 33.6 90.4 84.4/78.0 74.2/72.3 63.1/84.3 74.1/74.5 79.8 58.9 70.0
OpenAI GPT 47.2 93.1 87.7/83.7 85.3/84.8 70.1/88.1 80.7/80.6 87.2 69.1 76.9
BERT base 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3
Our systems

BERT base (ours) 52.8 92.8 87.3/83.0 81.2/80.0 70.2/88.4 84.4/83.7 90.4 64.9 77.4
Macaron Net base 57.6 94.0 88.4/84.4 87.5/86.3 70.8/89.0 85.4/84.5 91.6 70.5 79.7
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Neural ODE: Enforcing Constraint
Implicit Scheme: Stability. (Behrmann J, et al. Invertible residual networks. ICML2019.)

Symplectic Scheme: Energy Conservation.(Chen Z, et al. Symplectic Recurrent

Neural Networks. ICLR2020)

Approximation To Optimal Transport map:(Finlay C, Jacobsen J H, Nurbekyan L,

et al. How to train your neural ODE. arXiv preprint arXiv:2002.02798, 2020.)

Adversarial Examples: ( Zhang J, Han B, Wynter L, et al. Towards robust resnet: A small step but a

giant leap. IJCAI2019.)

ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations: http://iclr2020deepdiffeq.rice.edu/
( Invited Talk 3: Subtleties of Neural ODEs: Learning with Constraints By Ricky Chen.)
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Our Example: DURR

How can we encode the physic of task?
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Modling The Physics
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PDE-Net: Modeling The Physics
Consider a finite difference scheme for PDE:

ui±1 =

[
u ± h∂xu +

h2

2
∂2

xu ± h3

6
∂3

xu +
h4

24
∂4

xu ± h5

120
∂5

xu + · · ·
]

i

Thus
|ui+1 − 2ui + ui−1

2
− u′′| = | 1

12
h2(∂4

xu)i + O(h4)|
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Convolution Operator As Differential
Operator
Definition (Order of Sum Rules)
For a filter q, we say q to have sum rules of order α = (α1 , α2), where α ∈ Z2

+, provided that

∑
k∈Z2

kβq[k ] = 0 (2)

for all β ∈ Z2
+ with |β| < |α| and for all β ∈ Z2

+ with |β| = |α| but β 6= α. If (2) holds for all β ∈ Z2
+ with |β| <K except for

β 6= β0 with certain β0 ∈ Z2
+ and |β0| = J <K , then we say q to have total sum rules of order K\{J + 1}.

Theorem
Let q be a filter with sum rules of order α ∈ Z2

+. Then for a smooth function F (x) on R2, we have

1

ε|α|
∑

k∈Z2

q[k ]F (x + εk) = Cα
∂α

∂xα
F (x) + O(ε), as ε→ 0, (3)

where Cα is the constant defined byCα = 1
α!

∑
k∈Z2 kαq[k ].
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PDE-Net: Recovering Coefficients
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An Optimal Control View of Deep
Learning
Deep learning:

min
θ

J(θ) = `(xT ) +
T−1∑
t=0

Rt (xt ; θt )

s.t. xt+1 = ft (xt , θt ), t = 1,2, · · · ,T − 1

(4)

Optimal Control:

min
θ(·)

J[θ(·)] = `(x(T )) +

∫ T

0
R(x(t), θ(t))dt

s.t. ẋ(t) = f(x(t), θ(t))

(5)

θ(·) is called a control
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An Optimal Control View of Deep
Learning

min
θ(·)

J[θ(·)] = `(x(T )) +

∫ T

0
R(x(t), θ(t))dt

s.t. ẋ(t) = f(x(t), θ(t))

(6)

Gradient Based Training: Adjoint Equation

ṗ(t) = −∇xH(x(t),p(t), θ(t))

A New method? NO!.
Adjoint Equation = Back Propagation!

Benefit:
Invertible: Neural Ordinary Differential Equation Neruips2018.

Find out structure! (Our work)
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Adversarial Training

Robust Optimization

minθE(x ,y)∼D max
‖η‖≤ε

`(θ; x + η, y),

PGD Method

Gradient ascent on x .

x t+1 = Πx+S
(
x t + α sign (∇x`)

)
for r times.

Gradient Descent On θ.

θ = θ−∇θ`

for 1 times.
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Our Intuition: Spilitting The Gradient
YOPO(You Only Propogate Once)

1: initialize perturbation η
2: for k = 1 to m do

m times full backprop.
3: p ← ∇f0`(x + η)

4: for i = 1 to n do
Focus on first layer.

5: η← η+ α·p · ∇x f0(x + η) splitting
6: end for
7: accumulate gradient U ← U +∇θ`(x + η)

use intermediate adversarial examples
8: end for
9: Use U tp perform SGD / momentum SGD
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A Differential Game View of Adversarial
Training
Adversarial Training:

min
θ

max
‖η‖≤ε

J(θ, η) = `(xT ) +
T−1∑
t=0

Rt (xt ; θt , ηt )

s.t. x1 = f0(x0 + η, θ0), xt+1 = ft (xt , θt ), t = 1,2, · · · ,T − 1

(7)

Differential Game:

min
θ(·)

max
η(·)

J[θ(·), η(·)] = `(x(T )) +

∫ T

0
R(x(t), θ(t), η(t))dt

s.t. ẋ(t) = f(x(t), θ(t), η(t))

(8)

Differential game is optimal control with 2 controls, each having
opposite target.
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YOPO: An Optimal Control View
Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem (Stronger than KKT.)
We’ll show that YOPO is actually a discretion of PMP

Define Hamiltonian

H(x ,p, θ, η) := p · f(x , θ, η) + r(x , θ, η)

PMP for differential game tells us there exists an adjoint dynamic p(·)
satisfying :

ẋ∗(t) = ∇pH (x∗(t),p∗(t), θ∗(t), η∗(t))

ṗ∗(t) = −∇xH (x∗(t),p∗(t), θ∗(t), η∗(t))

H (x∗(t),p∗(t), θ∗(t), η) ≥ H (x∗(t),p∗(t), θ∗(t), η∗(t))

≥ H (x∗(t),p∗(t), θ, η∗(t)) , ∀t , η, θ

2prime ODE as Continuous Depth Nueral Networks: 04/2020 25 / 43



YOPO: An Optimal Control View
Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem (Stronger than KKT.)
We’ll show that YOPO is actually a discretion of PMP

Define Hamiltonian

H(x ,p, θ, η) := p · f(x , θ, η) + r(x , θ, η)

PMP for differential game tells us there exists an adjoint dynamic p(·)
satisfying :
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YOPO: An Optimal Control View
Pontryagin’s Maximal Principle (PMP) is a neccesary condition for
optimal control problem
We’ll show that YOPO is actually a discretization of PMP

ẋ∗(t) = ∇pH (x∗(t),p∗(t), θ∗(t), η∗(t))

The same as the forward equation ẋ(t) = f(x(t), θ(t), η(t)).
ṗ∗(t) = −∇xH (x∗(t),p∗(t), θ∗(t), η∗(t))

Known as Adjoint Equation , the same as back propagation on

feature map x(t). i.e. p(t) = ∂J
∂x(t)

H (x∗(t),p∗(t), θ∗(t), η) ≥ H (x∗(t),p∗(t), θ∗(t), η∗(t))

≥ H (x∗(t),p∗(t), θ, η∗(t)) , ∀t , η, θ

Parameter θ, η should optimize the Hamiltonian. η(0) only couupled with
the first layer.
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Decoupled Training
Back propagation is a sequential process, how can we parallelize it?

ADMM: Taylor G, Burmeister R, Xu Z, et al. Training neural networks
without gradients: A scalable admm approach ICML2016.

Coordinate Descent:Zeng J, Lau T T K, Lin S, et al. Global convergence
of block coordinate descent in deep learning ICML2018.

Lifted machines:Li J, Fang C, Lin Z. Lifted proximal operator machines
AAAI 2019.

ODE Based Methods:Gunther S, Ruthotto L, Schroder J B, et al.
Layer-parallel training of deep residual neural networks. SIMDOS
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CIFAR10 WideResNet34 Results

Training Methods Clean Data PGD-20 Attack Training Time (mins)
Natural train 95.03% 0.00% 233

PGD-3 90.07% 39.18% 1134
PGD-5 89.65% 43.85% 1574

PGD-10 87.30% 47.04% 2713
Free-8 1 86.29% 47.00% 667

YOPO-3-5 (Ours) 87.27% 43.04% 299
YOPO-5-3 (Ours) 86.70% 47.98% 476

Table: Results of Wide ResNet34 for CIFAR10.
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Take Home Message
Bridging

Adversrial Training

Differential Game.

YOPO(You Only Propogate Once)

1 Split the network
Assuming p unchanged in inner iteration,
YOPO increase update iteration number
with slightly more computation

2 Use intermediate perturbation to update
weights θ

YOPO can be understood as

discretization way solving PMP
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Global Convergence Proof Of NN

Neural Tangent Kernel([Jacot et al.2019]):Linearize the model
fNN(θ) = fNN(θinit)+ <∇θfNN(θinit), θ− θinit >

Pro: can provide proof of convergence for any structure of NN. ([Li et
al. 2019])
Con: Feature is lazy learned, i.e. not data dependent. ([Chizat and
Bach 2019.][Ghorbani et al.2019])

Mean Field Regime([Bengio et al.2006][Bach et al.2014][Suzuki et
al.2015]): We consider properties of the loss landscape with
respect to the distribution of weights L(ρ) = ‖Eθ∼ρg(θ, x)− f (x)‖22,
the objective is a convex function

Pro: SGD = Wasserstein Gradient Flow ([Mei et al.2018][Chizat et
al.2018][Rotskoff et al.2018])
Con: Hard to generalize beyond two layer
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Mean Field ResNet
Naive ODE analogy does not directly provide guarantees of global
convergence even in the continum limit.
Our Aim: Provide a new continuous limit for ResNet with good limiting
landscape.
Idea:We consider properties of the loss landscape with respect to the
distribution of weights.

Here:
Input data is the initial condition Xρ(x ,0) = 〈w2, x〉
X is the feature, t represents the depth.
Loss function:E(ρ) = Ex∼μ

[
1
2

(〈
w1,Xρ(x ,1)

〉
− y(x)

)2
]
.
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Adjoint Equation
To optimize the Mean Field model, we calculate the gradient δE

δρ via the adjoint
sensitivity method.

Model
The loss function can be written as

Ex∼μE(x ;ρ) := Ex∼μ
1
2
∣∣〈w1,Xρ(x ,1)〉 − y(x)

∣∣2 (9)

where Xρ satisfies the equation Ẋρ(x , t) =
∫
θ f (Xρ(x , t), θ)ρ(θ, t)dθ,

Adjoint Equation. The gradient can be represented as a second
backwards-in-time augmented ODE.

ṗρ(x , t) = −δX Hρ(pρ, x , t)

= −pρ(x , t)
∫
∇X f (Xρ(x , t), θ)ρ(θ, t)dθ,

Here the Hamiltonian is defined as Hρ(p, x , t) = p(x , t) ·
∫

f (x , θ)ρ(θ, t)dθ.
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To optimize the Mean Field model, we calculate the gradient δE

δρ via the adjoint
sensitivity method.

Model
The loss function can be written as

Ex∼μE(x ;ρ) := Ex∼μ
1
2
∣∣〈w1,Xρ(x ,1)〉 − y(x)

∣∣2 (9)

where Xρ satisfies the equation Ẋρ(x , t) =
∫
θ f (Xρ(x , t), θ)ρ(θ, t)dθ,

Adjoint Equation. The gradient can be represented as a second
backwards-in-time augmented ODE.

ṗρ(x , t) = −δX Hρ(pρ, x , t)
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Adjoint Equation
Theorem

For ρ ∈ P2 let δE
δρ (θ, t) = Ex∼μf (Xρ(x , t), θ))pρ(x , t), where pρ is the solution

to the backward equation ṗρ(x , t) = −pρ(x , t)
∫
∇X f (Xρ(x , t), θ)ρ(θ, t)dθ.

Then for every ν ∈ P2, we have

E(ρ+ λ(ν− ρ)) = E(ρ) + λ
〈δE
δρ , (ν− ρ)

〉
+ o(λ)

for the convex combination (1− λ)ρ+ λν ∈ P2 with λ ∈ [0,1].
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Deep Residual Network Behaves Like an
Ensemble Of Shallow Models

X1 = X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0.

X2 = X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0 +

∫
θ1
σ(θ1(X0 +

1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0))ρ1(θ1)dθ1

= X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0 +

1

L

∫
θ1
σ(θ1X0)ρ1(θ1)dθ1 +

1

L2

∫
θ1
∇σ(θ1X0)θ1(

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0)ρ1(θ1)dθ1

+ h.o.t.

Iterating this expansion gives rise to

XL ≈ X0 +
1

L

L−1∑
a=0

∫
σ(θX0)ρa(θ)dθ +

1

L2

∑
b>a

∫ ∫
∇σ(θbX0)θbσ(θaX0)ρb(θb)ρa(θa)dθbθa + h.o.t.

Veit A, Wilber M J, Belongie S. Residual networks behave like
ensembles of relatively shallow networks. Advances in neural
information processing systems. 2016: 550-558.
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Deep Residual Network Behaves Like an
Ensemble Of Shallow Models
Difference of back propagation process of two-layer net and
ResNet.
Two-layer Network

δE
δρ (θ, t) = Ex∼μf (x , θ))(Xρ − y(x))

ResNet

δE
δρ (θ, t) = Ex∼μf (Xρ(x , t), θ))pρ(x , t)

We aim to show that the two gradient are similar.

Lemma

The norm of the solution to the adjoint equation can be bounded by
the loss

‖pρ(·, t)‖μ ≥ e−(C1+C2r)E(ρ),∀t ∈ [0,1]

’
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Local = Global
Theorem

If E(ρ) > 0 for distribution ρ ∈ P2 that is supported on one of the
nested sets Qr , we can always construct a descend direction ν ∈ P2,
i.e.

inf
ν∈P2

〈δE
δρ , (ν− ρ)

〉
<0

Corollary

Consider a stationary solution to the Wasserstein gradient flow which
is full support(informal), then it’s a global minimizer.

2prime ODE as Continuous Depth Nueral Networks: 04/2020 37 / 43



Local = Global
Theorem

If E(ρ) > 0 for distribution ρ ∈ P2 that is supported on one of the
nested sets Qr , we can always construct a descend direction ν ∈ P2,
i.e.

inf
ν∈P2

〈δE
δρ , (ν− ρ)

〉
<0

Corollary

Consider a stationary solution to the Wasserstein gradient flow which
is full support(informal), then it’s a global minimizer.

2prime ODE as Continuous Depth Nueral Networks: 04/2020 37 / 43



Numerical Scheme
We may consider using a parametrization of ρ with n particles as

ρn(θ, t) =
n∑

i=1

δθi
(θ)1[τi ,τ′i ](t).

The characteristic function 1[τi ,τ′i ] can be viewed as a relaxation of the
Dirac delta mass δτi (t).

Given: A collection of residual blocks (θi , τi)
n
i=1

while training do
Sort (θi , τi) based on τi to be (θi , τi) where τ0 ≤ · · · ≤ τn.
Define the ResNet as X `+1 = X ` + (τ` − τ`−1)σ(`X `) for 0 ≤ ` <n.
Use gradient descent to update both θi and τi .

end while
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Numerical Results
Vanilla mean-field Dataset

ResNet20 8.75 8.19 CIFAR10
ResNet32 7.51 7.15 CIFAR10
ResNet44 7.17 6.91 CIFAR10
ResNet56 6.97 6.72 CIFAR10
ResNet110 6.37 6.10 CIFAR10
ResNet164 5.46 5.19 CIFAR10
ResNeXt29(864d) 17.92 17.53 CIFAR100
ResNeXt29(1664d) 17.65 16.81 CIFAR100

Table: Comparison of the stochastic gradient descent and mean-field training
(Algorithm 1.) of ResNet On CIFAR Dataset. Results indicate that our method
our performs the Vanilla SGD consistently.
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Take Home MessageWe propose a new continuous limit
for deep resnet

Ẋρ(x , t) =

∫
θ

f (Xρ(x , t), θ)ρ(θ, t)dθ,

with initial Xρ(x ,0) = 〈w2, x〉
Local minimizer is global in `2 space.

A potential scheme to approximate.

TO DO List.

Analysis of Wasserstein gradient
flow. (Global Existence)

Refined analysis of numerical scheme

h.o.t in the expansion from ResNet to
ensemble of small networks.
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Outline Of The Talk

1 Modeling

2 Optimization
Algorithm Design
Theory

3 Inferencing
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Inference
On Going
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Thanks

Reference: Based on papers published at ICML2018, ICLR209, Neurips 2019
and ICML 2020.

Contact:yplu@stanford.edu

yplu@stanford.edu
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