
IEMS 402 - Statistical Learning
Practice Midterm, Spring 2024

Name: NetID:

While you wait, please read and check□✓ the following boxes:

□ Unless I have extra time with the academic accommodations, the time limit is 75 minutes.

□ I am taking this exam because I am a student enrolled in Professor Lu’s section during this time. If this
is not the case, I will leave the room immediately.

□ I wrote my name and NetID (e.g. ab1234) at the top of this page.

□ I will not detach any pages, especially not the scratch pages at the end.

□ Except for multiple choice questions, I will show my work.

□ If I need more space for an exercise, I will make a note and continue on one of the scratch pages.

□ If I am caught in violation of academic integrity, including but not limited to peaking at another student’s
work, allowing another student to copy from my work, or speaking with another student, or using
unauthorized resources, I will be asked to leave the exam and get a zero.

STOP

Do not start the exam until you are permitted to.
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Exercise I [15 points]

In many applications, labeled data is expensive and therefore limited, while unlabeled data is cheap and therefore
abundant. For example, there are tons of images on the web, but getting labeled images is much harder. But what is the
statistical value of having labeled data versus unlabeled data? This problem will explore this formally using asymptotics.

Specifically, suppose we have an exponential family model over a discrete latent variable h and a discrete observed
variable x:

pθ (h, x) = exp{θ ·φ(h, x)− A(θ )},

where A(θ ) =
∑

h,x exp{θ ·φ(h, x)} is the usual log-partition function.
Suppose that n examples (h(1), x (1)), . . . , (h(n), x (n)) are drawn i.i.d. from some true distribution pθ ∗ .
Define the following two estimators:

θ̂sup = arg max
θ∈Rd

1
n

n
∑

i=1

log pθ (h
(i), x (i))

θ̂unsup = arg max
θ∈Rd

1
n

n
∑

i=1

log
∑

h

pθ (h, x (i)).

The supervised estimator θ̂sup uses the variable h(i) and maximizes the joint likelihood, while the unsupervised
estimator θ̂unsup marginalizes out the latent variable h.

One important caveat: our results will hold when we assume that data is actually generated from our model family
and that unsupervised learning is possible. Otherwise, labeled data is worth a lot more.

a. (5 points) (supervised asymptotic variance)

Compute the asymptotic variance of θ̂sup: that is, given that

p
n(θ̂sup − θ ∗)

d
−→N (0, Vsup),

write an expression for Vsup that depends on expectations/variances involving φ.
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b. (5 points) (unsupervised asymptotic variance)

Compute the asymptotic variance of θ̂unsup: that is, given that

p
n(θ̂unsup − θ ∗)

d
−→N (0, Vunsup),

write an expression for Vunsup that depends on expectations/variances involving φ.

c. (5 points) (comparing estimators)

First, prove that θ̂sup has lower (or equal) asymptotic variance compared to θ̂unsup.
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Exercise II [10 points]

The adjacency matrix A of a graph G on n vertices is a symmetric n× n matrix whose entries are defined as Ai j = 1 if
the vertices i and j are connected by an edge and Ai j = 0 otherwise.

Let us label the vertices of G by the integers 1, . . . , n. A partition of the vertices into two sets can be described using
a vector of labels

x = (x i) ∈ {−1,1}n,

the sign of x i indicating which subset the vertex i belongs to. For example, the three black vertices in Figure 3.10 may
have labels x i = 1, and the four white vertices labels x i = −1. The cut of G corresponding to the partition given by x
is simply the number of edges between the vertices with labels of opposite signs, i.e.

CUT(G, x) =
1
2

∑

i, j
x i x j=−1

Ai j =
1
4

n
∑

i, j=1

Ai j(1− x i x j).

(The factor 1
2 prevents double counting of edges (i, j) and ( j, i).) The maximum cut is then obtained by maximizing

CUT(G, x) over all x , that is

MAX-CUT(G) =
1
4

max

(

n
∑

i, j=1

Ai j(1− x i x j) : x i = ±1 for all i

)

.

Let us start with a simple 0.5-approximation algorithm for maximum cut — one which finds a cut with at least half
of the edges of G.

(a) (5 Points) Partition the vertices of G into two sets at random, uniformly over all 2n partitions. Then the
expectation of the resulting cut equals 0.5|E| ≥ 0.5 MAX-CUT(G), where |E| denotes the total number of edges of G.
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(b) (5 Points) For any ε > 0 , give an (0.5− ε)-approximation algorithm for maximum cut, which is always guar-
anteed to give a suitable cut, but may have a random running time.
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Exercise III [20 points]

Let X1, . . . , Xn ∼ P where X i ∈ [0, 1] and P has density p. Let p̂ be the histogram estimator using m bins. Let h = 1/m.
Recall that the L2 error is

∫

(p̂(x)− p(x))2 d x =

∫

p̂2(x) d x − 2

∫

p̂(x)p(x) d x +

∫

p2(x) d x .

As usual, we may ignore the last term so we define the loss to be

L(h) =

∫

p̂2(x) d x − 2

∫

p̂(x)p(x) d x .

(a) (5 Points) Suppose we used the direct estimator of the loss, namely, we replace the integral with the average
to get

L̂(h) =

∫

p̂2(x) d x −
2
n

∑

i

p̂(X i).

Show that this fails in the sense that it is minimized by taking h= 0.
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(b) (5 Points) Recall that the leave-one-out estimator of the risk is

L̂(h) =

∫

p̂2(x) d x −
2
n

∑

i

p̂(−i)(X i),

Show that

L̂(h) =
2

(n− 1)h
−

n+ 1
n2(n− 1)h

∑

j

Z2
j ,

where Z j is the number of observations in bin j.
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(c) (5 Points) Show that L̂(h)− L(h)
P
→ 0.

Exercise IV [5 points]

Explain the concepts: Curse of Dimensionality, Spurious local minima in Non-convex Optimization, Double Descent,
Benigning Overfitting and Tempered Overfitting, Flat minimum

8/10



IEMS 402: Statistical Learning Midterm - Yiping - Spring 2024

Exercise V [20 Points]

For function class

Fq = { fθ (·) = 〈θ , ·〉 : θ ∈ Bd
q (R)} withBd

q (R) :=

(

θ ∈ Rd :
d
∑

j=1

|θ j|q ≤ R

)

,

(Here the dimension d is allowed to be larger than the sample size n.) Consider q = 1 (i.e., ℓ1-constrained linear
regression, or Lasso) and assume that the columns of X are normalized to have ℓ2 norm bounded by

p
n. We’ll try to

show that

log N(s, Bd
1 (R),∥ · ∥2)≲ R2

�

1
s

�2

log d.

We start the process from Bd,+
1 = {x ∈ Rd | ∥x∥1 ≤ 1 and x i ≥ 0∀i}.

(a) For every x ∈ Bd,+
1 Find a probability distribution P(x) over {e1, . . . , ed , 0} such that

Ez∼P(x)[z] = x

hint: z =
∑d

i=1 x iei + (1− ∥x∥1) · 0
(b) We will draw t samples z1, . . . , zt from the distribution where each z is some ei . After drawing the samples, we

can take the average of the samples:

z̄ =
1
t

t
∑

i=1

zi .

How large is E[∥z̄ − x∥22]?
(c) What’s the covering number we can achieve if we create our ε-cover using all the possible value of z̄.
(d) The method we used here is called "empirical method of Maurey". Compared to volumetric estimate, show that

empirical method of Maurey is better for large ε but worse for small ε.
(This question will not included in the midterm. This question needs first understand Question 2 from Homework 7)
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Blank scratch page.
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