
Practice Final - Statistical Learning
Spring 2024 - Yiping

Name: NetID:

Please check□✓ your Professor’s name:

□ Professor Yiping Lu

While you wait, please read and check□✓ the following boxes:

□ Unless I have extra time with the Moses Center, the time limit is 100 minutes.

□ I wrote my name and NetID (e.g. ab1234) at the top of this page.

□ I will not detach any pages, especially not the scratch pages at the end.

□ Except for multiple choice questions, I will show my work.

□ If I need more space for an exercise, I will make a note and continue on one of the scratch pages.

□ If I am caught in violation of academic integrity, including but not limited to peaking at another student’s
work, allowing another student to copy from my work, or speaking with another student, or using
unauthorized resources, I will be asked to leave the exam and get a zero.

STOP

Do not start the exam until you are permitted to.

1/10



IEMS 402 Statistical Learning Final - Yiping - Spring 2024

Exercise I

Recall that the Rademacher complexity of a class of functions F is defined as

Rn(F ) = E

�

sup
f ∈F

1
n

n
∑

i=1

σi f (Zi)

�

,

where Z1, . . . , Zn are drawn i.i.d. from some distribution p∗ and σ1, . . . ,σn are Rademacher variables drawn i.i.d. from
{−1, 1} with equal probability of +1 and −1.

(a) Let f : X → R be a function, and let F := {− f , f } be a function class containing only two functions. Upper
bound Rn(F ) using a function of n and E[ f (X )2].

(b) In applications such as natural language processing, we often have sparse feature vectors. Suppose that x ∈
{0,1}d has only k non-zero entries. For example, in document classification, one feature might be “x17 = 1 iff the
document contains the word cat."

Define the class of linear functions whose coefficients have bounded L∞ norm:

F = {x 7→ w · x : ∥w∥∞ ≤ B}.

Compute an upper bound on the Rademacher complexity Rn(F ). Express your answer as a function of B, k, d, and n.
Note that this allows us to effectively control the complexity of learning using L∞ regularization.

(c) Consider a prediction problem from x ∈ R to y ∈ {0, . . . , k}. For every parameter vector θ ∈ Rk, define the
prediction function hθ (x) =

∑k
i=1 I{x ≥ θi} (monotonically increasing piecewise constant functions). Define the loss

function to be ℓ(y, p) = |y − p|, yielding the following loss class:

A = {(x , y) 7→ ℓ(y, hθ (x)) : θ ∈ Rk}.

Compute an upper bound on the Rademacher complexity ofA .
(d) Let F be the class of all continuous functions f : [0,1]→ [0, 1] with at most k local maxima. Find an upper

bound of the Rademacher complexity of F .
(e) Let X i be independent with support {x ∈ Rd : ∥x∥2 ≤ M}. Let F be functions of the form x 7→ 〈θ , x〉 for

θ ∈ Θ := {θ ∈ Rd : ∥θ∥2 ≤ r}. Give an upper bound on Rn(F ).
(f) Let X i be independent with support {x ∈ Rd : ∥x∥∞ ≤ M}. Let F be functions of the form x 7→ 〈θ , x〉 for

θ ∈ Θ := {θ ∈ Rd : ∥θ∥1 ≤ r}. Give an upper bound on Rn(F ).
(g) Suppose k is a bounded kernel with supx

p

k(x , x) = B <∞ and let F be its RKHS. Let M > 0 be fixed. Then
for any S = (X1, . . . , Xn),

ÒRS(Bk(M))≤
MB
p

n

where Bk(M) = { f ∈ F | ∥ f ∥F ≤ M}.
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Exercise II

(a) For function class
F = { f : [0, 1]→ R : f (0) = 0, f is L-Lipschitz},

show that log N(ε,F ,∥ · ∥∞)≲
L
ε .

(b) Show the covering number estimation for Sobolev Ellipsoid.
(c) Using the Covering Number Bound to show the bound on Rademacher Complexity
(d) How does the results informs bounds for non-parametric least square regression?
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Exercise III

Another view of RKHS’s is in terms of feature maps. Let F be a Hilbert space with inner product 〈·, ·〉F , which we call
the feature space. It is a theorem (known as Mercer’s theorem) that if k is a positive definite kernel, there is a Hilbert
space F and function ϕ :X →F such that

k(x , z) = 〈ϕ(x),ϕ(z)〉F .

Of course, by our construction above, given a PSD function (kernel) k and associated RKHS H , we can always take
ϕ(x) = k(·, x) and F =H directly.

(a) Let ϕ :X →F for a Hilbert (feature) space F . Show that k(x , z) = 〈ϕ(x),ϕ(z)〉F is a valid kernel.

(b) Consider the Gaussian or Radial Basis Function (RBF), defined on Rd ×Rd by

k(x , z) = exp
�

−
1
2
∥x − z∥22

�

.

Exhibit a function ϕ : R→ C and distribution P on Rd such that

k(x , z) = EP

�

ϕ(W⊤x)∗ϕ(W⊤z)
�

for W ∼ P,

where ∗ denotes the complex conjugate. Is k a valid kernel?

(c) Consider the min function, defined on R+ by

k(x , z) =min{x , z}.

Exhibit a function ϕ : R2→ R such that

k(x , z) =

∫ ∞

0

ϕ(x , t)ϕ(z, t) d t.

Is k a valid kernel?
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Exercise IV

The maximum mean discrepancy (MMD) between distributions P and Q is

dMMD(P,Q) := sup
f ∈H :∥ f ∥H ≤1

Ex∼P[ f (x)]−Ex∼Q[ f (x)]. (1)

Show that the MMD DRO Problem supQ:dMMD(Q,P)≤εEx∼Q[ℓ f (x)] is equivalent to Ex∼P[ℓ f (x)] + ε∥ℓ f ∥H .
hint: Page 14 of https://arxiv.org/pdf/1905.10943 and Question 1. (Hilbert Embedding of Probability) in

Homework 8. This is actually a generalization of the χ2 DRO in Homework 8.
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