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Exercise I

Recall that the Rademacher complexity of a class of functions F is defined as

Rn(F ) = E

�

sup
f ∈F

1
n

n
∑

i=1

σi f (Zi)

�

,

where Z1, . . . , Zn are drawn i.i.d. from some distribution p∗ and σ1, . . . ,σn are Rademacher variables drawn i.i.d. from
{−1, 1} with equal probability of +1 and −1.

(a) Let f : X → R be a function, and let F := {− f , f } be a function class containing only two functions. Upper
bound Rn(F ) using a function of n and E[ f (X )2].

(b) In applications such as natural language processing, we often have sparse feature vectors. Suppose that x ∈
{0,1}d has only k non-zero entries. For example, in document classification, one feature might be “x17 = 1 iff the
document contains the word cat."

Define the class of linear functions whose coefficients have bounded L∞ norm:

F = {x 7→ w · x : ∥w∥∞ ≤ B}.

Compute an upper bound on the Rademacher complexity Rn(F ). Express your answer as a function of B, k, d, and n.
Note that this allows us to effectively control the complexity of learning using L∞ regularization.

(c) Consider a prediction problem from x ∈ R to y ∈ {0, . . . , k}. For every parameter vector θ ∈ Rk, define the
prediction function hθ (x) =

∑k
i=1 I{x ≥ θi} (monotonically increasing piecewise constant functions). Define the loss

function to be ℓ(y, p) = |y − p|, yielding the following loss class:

A = {(x , y) 7→ ℓ(y, hθ (x)) : θ ∈ Rk}.

Compute an upper bound on the Rademacher complexity ofA .
(d) Let F be the class of all continuous functions f : [0,1]→ [0, 1] with at most k local maxima. Find an upper

bound of the Rademacher complexity of F .
(e) Let X i be independent with support {x ∈ Rd : ∥x∥2 ≤ M}. Let F be functions of the form x 7→ 〈θ , x〉 for

θ ∈ Θ := {θ ∈ Rd : ∥θ∥2 ≤ r}. Give an upper bound on Rn(F ).
(f) Suppose k is a bounded kernel with supx

p

k(x , x) = B <∞ and let F be its RKHS. Let M > 0 be fixed. Then
for any S = (X1, . . . , Xn),

ÒRS(Bk(M))≤
MB
p

n

where Bk(M) = { f ∈ F | ∥ f ∥F ≤ M}.
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Exercise II

(a) For function class
F = { f : [0, 1]→ R : f (0) = 0, f is L-Lipschitz},

show that log N(ε,F ,∥ · ∥∞)≲
L
ε .

(b) Show the covering number estimation for Sobolev Ellipsoid.
(c) Using the Covering Number Bound to show the bound on Rademacher Complexity
(d) How does the results informs bounds for non-parametric least square regression? hint: using localized com-

plexity
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Exercise III (Hilbert Embedding of Probability)

Let k :X ×X → R be a kernel with associated RKHS H . Assume that X is compact. We call k universal if it is dense
in C(X ), the space of continuous functions onX . That is, for any ε > 0 and any continuous function f :X → R, there
exists a function h ∈H such that supx∈X | f (x)− h(x)|< ε.

Define ϕ(x) = k(·, x). (Thus k(x , z) = 〈ϕ(x),ϕ(z)〉, and ϕ(x) is the representer of evaluation at x , i.e., 〈h,ϕ(x)〉=
h(x) for all h ∈H .) Let P be the collection of distributions on X for which EP[

p

k(X , X )]<∞.

(a) Using the Riesz representation theorem for Hilbert spaces, argue that the mean mapping µ(P) := EP[ϕ(X )] exists
and is a vector in H . Hint: Letting ∥ · ∥ denote the norm on H , the Riesz representation theorem for Hilbert
spaces says that if L :H → R is a bounded linear functional, meaning that L( f ) ≤ C · ∥ f ∥ for some constant C ,
then there exists some hL ∈H such that L( f ) = 〈hL , f 〉 for all f ∈H .

(b) Assume that X is compact and that k is universal. Show that the mean embedding

P 7→ EP[ϕ(X )] =

∫

X
ϕ(x)dP(x)

is one-to-one, that is, if P ̸=Q then EP[ϕ(X )] ̸= EQ[ϕ(X )].

(c) For distributions P and Q, show that

sup
f ∈H ,∥ f ∥≤1

�

EP[ f (X )]−EQ[ f (X )]
	

=
Æ

E[k(X , X ′)] +E[k(Z , Z ′)]− 2E[k(X , Z)],

where X , X ′
i.i.d∼ P and Z , Z ′

i.i.d∼ Q.
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Exercise IV (Example of Kernel)

• Let k :X ×X → R be a valid kernel function. Define

knorm(x , z) :=
k(x , z)
p

k(x , x)
p

k(z, z)
.

Is knorm a valid kernel? Justify your answer.

• Consider the class of functions
H := { f : f (0) = 0, f ′ ∈ L2([0,1])},

that is, functions f : [0, 1]→ R with f (0) = 0 that are almost everywhere differentiable, where

∫ 1

0

( f ′(x))2d x <∞.

On this space of functions, we define the inner product by

〈 f , g〉=
∫ 1

0

f ′(x)g ′(x)d x .

Show that k(x , z) = min{x , z} is the reproducing kernel for H , so that it is (i) positive semidefinite and (ii) a
valid kernel.

(My understanding: By integral by parts, we have 〈 f , g〉H = 〈 f ,∆g〉L2
and ∆k(·, z) = δz .)

• Consider the Sobolev space Fk, which is defined as the set of functions that are (k − 1)-times differentiable and
have kth derivative almost everywhere on [0,1], where the kth derivative is square-integrable. That is, we define

Fk :=
�

f : [0, 1] | f (k)(x) ∈ L2([0,1])
	

.

We define the inner product on Fk by

〈 f , g〉=
k−1
∑

i=0

f (i)(x)g(i)(x) +

∫ 1

0

f (k)(x)g(k)(x) d x .

(a) Find the representer of evaluation for this Hilbert space, that is, find a function rx : [0,1]→ R (defined for
each x ∈ [0,1]) such that rx ∈ Fk and

〈rx , f 〉= f (x)

for all x .

(b) What is the reproducing kernel k(x , z) associated with this space? (Recall that k(x , z) = 〈rx , rz〉 for an
RKHS.)
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Exercise V

Explain: Importance weighting, DRO, why localized complexity is better, what is VAE/GAN/Autoregressive Generative
model, duality of optimal transport
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