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Homework 8: Reproducing Kernel Hilbert Space/Robust Learning

Question 1. (Hilbert Embedding of Probability) Let k : X × X → R be a kernel with associated
RKHS H. Assume that X is compact. We call k universal if it is dense in C(X ), the space of continuous
functions on X . That is, for any ε > 0 and any continuous function f : X → R, there exists a function
h ∈ H such that supx∈X |f(x) − h(x)| < ε.

Define ϕ(x) = k(·, x). (Thus k(x, z) = 〈ϕ(x), ϕ(z)〉, and ϕ(x) is the representer of evaluation at x, i.e.,
〈h, ϕ(x)〉 = h(x) for all h ∈ H.) Let P be the collection of distributions on X for which EP [

√
k(X, X)] < ∞.

(a) Using the Riesz representation theorem for Hilbert spaces, argue that the mean mapping µ(P ) :=
EP [ϕ(X)] exists and is a vector in H. Hint: Letting ‖ · ‖ denote the norm on H, the Riesz represen-
tation theorem for Hilbert spaces says that if L : H → R is a bounded linear functional, meaning
that L(f) ≤ C · ‖f‖ for some constant C, then there exists some hL ∈ H such that L(f) = 〈hL, f〉
for all f ∈ H.

(b) Assume that X is compact and that k is universal. Show that the mean embedding

P 7→ EP [ϕ(X)] =
∫

X
ϕ(x)dP (x)

is one-to-one, that is, if P 6= Q then EP [ϕ(X)] 6= EQ[ϕ(X)].
(c) For distributions P and Q, show that

sup
f∈H,‖f‖≤1

{EP [f(X)] − EQ[f(X)]} =
√
E[k(X, X ′)] + E[k(Z, Z ′)] − 2E[k(X, Z)],

where X, X ′ i.i.d∼ P and Z, Z ′ i.i.d∼ Q.

Question 2. (Example of Kernel)
• Let k : X × X → R be a valid kernel function. Define

knorm(x, z) := k(x, z)√
k(x, x)

√
k(z, z)

.

Is knorm a valid kernel? Justify your answer.
• Consider the class of functions

H := {f : f(0) = 0, f ′ ∈ L2([0, 1])},

that is, functions f : [0, 1] → R with f(0) = 0 that are almost everywhere differentiable, where∫ 1

0
(f ′(x))2dx < ∞.

On this space of functions, we define the inner product by

〈f, g〉 =
∫ 1

0
f ′(x)g′(x)dx.

Show that k(x, z) = min{x, z} is the reproducing kernel for H, so that it is (i) positive semidefinite
and (ii) a valid kernel.

(My understanding: By integral by parts, we have 〈f, g〉H = 〈f, ∆g〉L2
and ∆k(·, z) = δz.)

• Consider the Sobolev space Fk, which is defined as the set of functions that are (k − 1)-times
differentiable and have kth derivative almost everywhere on [0, 1], where the kth derivative is square-
integrable. That is, we define

Fk :=
{
f : [0, 1] | f (k)(x) ∈ L2([0, 1])

}
.
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We define the inner product on Fk by

〈f, g〉 =
k−1∑
i=0

f (i)(x)g(i)(x) +
∫ 1

0
f (k)(x)g(k)(x) dx.

(a) Find the representer of evaluation for this Hilbert space, that is, find a function rx : [0, 1] → R
(defined for each x ∈ [0, 1]) such that rx ∈ Fk and

〈rx, f〉 = f(x)
for all x.

(b) What is the reproducing kernel k(x, z) associated with this space? (Recall that k(x, z) = 〈rx, rz〉
for an RKHS.)

Question 3. (ϕ-divergence DRO and Variance Regularization) Let ϕ : R+ → R be a convex
function with ϕ(1) = 0. Then the ϕ-divergence between distributions P and Q defined on a space X is

Dϕ(P‖Q) =
∫

ϕ

(
dP

dQ

)
dQ =

∫
X

ϕ

(
p(x)
q(x)

)
q(x)dµ(x),

where µ is any measure for which P, Q � µ, and p = dP
dµ

, q = dQ
dµ

. Throughout this paper, we use
ϕ(t) = 1

2(t − 1)2, which gives the χ2-divergence [45]. Given ϕ and a sample X1, . . . , Xn, we define the local
neighborhood of the empirical distribution with radius ρ by

Pn :=
{

distributions P such that Dϕ

(
P‖P̂n

)
≤ ρ

n

}
,

where P̂n denotes the empirical distribution of the sample, and our choice of ϕ(t) = 1
2(t−1)2 means that Pn

consists of discrete distributions supported on the sample {Xi}n
i=1. We then define the robustly regularized

risk
Rn(θ, Pn) := sup

P ∈Pn

EP [`(θ, X)] = sup
P

{
EP [`(θ, X)] : Dϕ(P‖P̂n) ≤ ρ

n

}
.

Using convex duality please show that

Rn(θ, Pn) = EP̂n
[`(θ, X)] +

√
2ρ

n
EP̂n

[`(θ, X)2].

You can assume strong duality holds.
Further Reading: Connection between adversarial training and Wasserstein DRO https://arxiv.org/

abs/1710.10571

Question 4. (Derive the dual formulation of the Sinkhorn distance.) Given two probability
vectors a, b ∈ Rn and a cost matrix C ∈ Rn×n, the Sinkhorn distance introduces an entropy regularization
to the optimal transport problem, i.e. the sinkhorn distance is defined as

min
γ∈Rn×n

〈γ, C〉 − εH(γ)

subject to γ1 = a, γ>1 = b,

γ ≥ 0.

(a) Starting from the primal formulation of the entropy-regularized optimal transport problem (Sinkhorn
distance), derive its dual form

max
u,v∈Rn

u>a + v>b − ε
∑
i,j

exp
(

ui + vj − Ci,j

ε

)
.

(b) Once you know the optimal u∗, can you write down the closed-form solution of v∗ in terms of u∗?
(What is the computational cost? [0pt bouns])

(hint: https://arxiv.org/abs/1306.0895)
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