Prof. Yiping Lu
IEMS 402 Statistical Learning
November 5, 2024
Homework 6: Generalization Error

(You only need to complete one question from Question 1 or Question 2.)

Question 1. (Fast Rate Generalization Error in the Realizable Setting) Let H be a hypothesis
class, where each hypothesis h € H maps some X to Y. ¢ be the zero-one loss: ¢((x,y),h) = [y # h(z)].
p* be any distribution over X x ).

Let f}(h) be the empirical risk (training error) of a hypothesis h € H as the average loss over the training
examples:

gl o
L(h) = =3~ U@,y 9), ).
ni3
Define an empirical risk minimizer (ERM) be any hypothesis that minimizes the empirical risk:
h € arg min L(h).

Now we assume

e Hypothesis class H is finite.
e Assume there exists a hypothesis h* € H that obtains zero expected risk, that is:

L(h*) = E(x,y)Np* [5((337 y)7 h*)] = 0.
Prove that with probability at least 1 — ¢,
L(h) < log |H| —|—log(1/5)_

n

Question 2. (Generalization Error near Interpolate) In the realizable setting with binary classi-
fication (where the expected risk minimizer h* satisfies L(h*) = 0 for the 0-1 error), we obtained excess

risk bounds of O(1/n), but in the unrealizable setting, we had O(1/1/n). What if the learning problem
is almost realizable, in that L(h*) is small? This problem explores ways to interpolate between 1/n and

1/4/n rates, showing that (roughly) /L(h*)/n+1/n rates are possible by developing generalization bounds
that depend on the variance of losses (recall Question 12).

(a) Assume that the loss function ¢(y,t) takes values in [0, 1], where L(h) = E[{(Y,h(X))], and let
Lo(h) = 152" (Y, h(X;)). Show that for all € > 0 we have

P (La(h) — L(h) > €) < exp <—2<L<h7;5+€/3>> .

(Note that if L(h) = 0, this bound scales as e "¢ < e~ for & ~ 0.)
(b) We now show that bad hypotheses usually look pretty bad. Fix any €(h),e > 0, and assume

L(h) > e(h) +e.
Show that

P (La(h) < e(h)) < exp (—Q(Mﬁ 45/3)> .

(c) Assume card(H) < oo and let h* satisfy L(h*) = minpeq L(h). Using the preceding parts, conclude
that if h,, € argmingey L, (h), then

P (f/n(h) — L(h") > 25) < card(H) exp <_2(L(h*7;€+ 78/3)> :
1



2

Show that this implies (for appropriate numerical constants c;,cy) that with probability at least
1 — 9, we have

L(h*) 1 card(H) 1 card(H)
(h)log =75 | loa ™5~

L(ha) < L(h") + CIJ

(d) How does this bound compare with a more naive strategy based on applying Hoeffding’s inequality
and a union bound?

n

Question 3. (Random Matrix) (Random matrix) Let A be an m X n matrix of iid N (0, 1) entries.
Denote its operator norm by

Allop = Avl|,

14llop = max [ Av]

which is also the largest singular value of A.

(a) Show that
[Alp = max__ (Aut).

ueSm—1 pecsn-1
(b) Let U = {uy,...,up} and V = {vy,..., vy} be an e-net for the spheres S™ ! and S"~! respectively.
Show that

1
< — .
[Allop = 757 s, (4w 0)

(c) Use (a) and (b) to conclude that
E[l|Al] £ vn+ v/m.

(hint: You can also Rademacher Complexity for the Uniform Bound.)
(d) By choosing u and v in (5) smartly, show a matching lower bound and conclude that

E[llAl] ~ V7 + vim.

Question 4. (Rademacher Complexity Leads to Suboptimal Bounds) Suppose we aim to estimate

a parameter 6 based on i.i.d. samples X; ~ N(6,1) fori =1,2,...,n. We use the estimator 6=1 T X

1) Derive the asymptotic distribution of 9 using the Central Limit Theorem. Additionally, compute
IE||9 0 ||2 and dlSCU_SS how this expectatmn behaves as n grows

, Where E 5 denotes the
empirical expectation based on the sample. Use Rademacher complex1ty to derlve an upper bound
for the error of € in estimating 6, and assess whether this bound is optimal.

2)

Question 5. (Curse of Dimensionality) Let F denote all p-Lipschitz functions from [—R, +R]¢
[— B, +B] (where Lipschitz is measured with respect to || - ||oo). Then the covering number N satisfies

IA(F, ¢, | - [loe) < max {0, [‘”’(Rmrln 2] } |

€ €
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