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Homework 4: Asymptotic Theory

Question 1. Estimating the Derivatives via Kernel Smoothing Given a scalar β > 1, let p be a
probability density function on R such that p ∈ Σ(β) (i.e., β-th order Hölder class). We are interested in
nonparametric estimation of the derivative p′.

Given a kernel function K : R → R supported on [−1, 1] satisfying the conditions∫
R

ujK(u) du =

1 j = 1,

0 j = 0, 2, · · · , bβc.

Let X1, X2, · · · , Xn
i.i.d.∼ p. Given bandwidth h > 0, consider the kernel-based estimator

d̂n(x) := 1
nh2

n∑
i=1

K
(

Xi − x

h

)
For any x0, and prove the MSE bound

E
[
|d̂n(x0) − p′(x0)|2

]
≤ n− 2(β−1)

1+2β .

Question 2. (An average treatment effect estimator) In the Neyman-Rubin (potential outcomes)
approach to causal estimation, one treats estimation as a missing data problem. Let A ∈ {0, 1} be an
action (often called the treatment or intervention). The potential outcomes are the pair (Y (0), Y (1)) ∈ R,
where Y (0) is the response when action A = 0 is chosen and Y (1) the response when A = 1 is chosen.
Thus, for any individual, we observe a single response: under action A = a, we observe Y (a) but never
Y (1 − a). The average treatment effect is the difference

τ := E[Y (1)] − E[Y (0)],
where the expectation is taken over the population of individuals we might intervene on. Here, A = 1
is the treatment, while A = 0 indicates the control (untreated) action, and we may use the notation
Y 1{A = a} := Y (a)1{A = a}.

The “gold standard” approach is a randomized experiment, where for individuals i = 1, 2, . . . , n, one
chooses Ai ∈ {0, 1} uniformly and observes Yi(Ai) ∈ R. We assume that individuals are i.i.d.

(a) Show that for a ∈ {0, 1}, we have E[Yi(a)1{Ai = a}] = 1
2E[Y (a)] in the randomized experiment

setting, and hence that τ = 2E[Y (1)1{A = 1}] − E[Y (0)1{A = 0}].
We consider two mean-based estimators. For a ∈ {0, 1}, define the sets Sa = {i ∈ [n] | Ai = a} (i.e., the

treatment and control groups). The basic estimator is

τ̂n := 1
n

∑
i∈S1

2Yi − 1
n

∑
i∈S0

2Yi.

(b) Give the asymptotic distribution of τ̂n. (That is, give the limit distribution of
√

n(τ̂n − τ).)
We also consider the slightly more nuanced mean-based estimator, which normalizes by the sample sizes,

τ̂norm
n := 1

|S1|
∑
i∈S1

Yi − 1
|S0|

∑
i∈S0

Yi.

(c) For a ∈ {0, 1}, give the asymptotic distribution of
√

n
(

n
2|Sa| − 1

)
.

(d) Give the asymptotic distribution of the mean-based estimator τ̂norm
n .

Hint:
• It may be useful to split the quantities by considering the means τa = E[Y (a)] for a ∈ {0, 1}

separately.
• Using delta method
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(e) (Extra Credits) In the preceding parts, you have shown that
√

n(τ̂n − τ) d−→ N(0, σ2),
√

n(τ̂norm
n − τ) d−→ N(0, σ2

norm).
Show that if the means τa = E[Y (a)] satisfy τ0 6= τ1, then σ2 > σ2

norm.
Hint: The new estimator rolls out the variance of sampling treatments.

Question 3. (A weighted average treatment effect estimator) We consider the same setting as in
problem 3.5, but take an alternative approach, where we may differentially sample individuals based on
their covariates X. To that end, consider a propensity score (the propensity for being treated)

e(x) := P(A = 1 | X = x).
Now, we assume that given an individual with covariates X = x, we assign treatment A conditionally
according to the propensity score (3.2), that is, P(A = a | X = x) = e(x), so that (Y (0), Y (1)) ⊥ A | X,
that is, the potential responses (Y (0), Y (1)) are independent of A given X.

(a) Show that the average treatment τ = E[Y (1)] − E[Y (0)] also equals

τ = E
[

Y (A)1{A = 1}
e(X)

]
− E

[
Y (A)1{A = 0}

1 − e(X)

]
.

(b) Define the conditional second moments v2(x, a) :=
√
E[Y (a)2 | X = x], and consider the propensity

weighted estimator

τ̂ps
n := 1

n

n∑
i=1

[
Yi1{Ai = 1}

e(Xi)
− Yi1{Ai = 0}

1 − e(Xi)

]
.

Compute the asymptotic variance σ2
ps in

√
n(τ̂ps

n − τ) d−→ N
(
0, σ2

ps

)
as a function (with appropriate expectations) of v2(x, a) and e(x).

(c) Which choice of propensity score e(x) minimizes the asymptotic variance σ2
ps? Give a one-sentence

(heuristic) intuition for this choice. When does this improve over the “gold standard” approach of
the pure randomized experiment in part (b) in Q. 3.5?

Question 4. (Logistic regression) Consider d-dimensional random vectors X1, X2, · · · , Xn
i.i.d.∼ P, with

E [‖X‖2
2] < +∞. Let the binary labels be generated as

Yi|Xi ∼ Bernoulli(πθ∗(Xi)), for i = 1, 2, · · · , n,

where we define
πθ(x) := 1

1 + exp(−x>θ) .

Let Θ be a compact set such that θ∗ lies in the interior of Θ. Consider the maximal likelihood estimator

θ̂n := arg max
θ∈Θ

1
n

n∑
i=1

{Yi log πθ(Xi) + (1 − Yi) log (1 − πθ(Xi))} .

Let n → +∞ with everything else fixed. Assume that the Fisher information is non-singular, derive and
prove the convergence rate and asymptotic distribution for θ̂n.
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