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Homework 3: Bias and Variance Trade-off

Question 1. Ensemble and Bias-Variance Trade-off As a reminder, the expected generalization error
enjoys the following bias-variance trade-off:
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︸ ︷︷ ︸
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︸ ︷︷ ︸

Irreducible error

,

where x, y represent the sampled test data. D represents the sampled training dataset. h(·; D) is our pre-
diction model learned using this dataset (i.e. h(·; D) is the learnt hypothesis given the training examples).
y∗(x) is the true model we want to learn and E[y|x] = y∗(x). In the following questions, we are interested
in the generalization performance of ensemble.

1.0.1. Weight Average or Prediction Average? Does the ensemble of linear models using weight
average or prediction average give the same expected generalization error? Does the ensemble of (nonlinear)
neural networks using weight average or prediction average give the same expected generalization error?

1.0.2. Bagging - Uncorrelated Models. One way to construct an ensemble is through bootstrap ag-
gregation, or bagging, that takes a dataset D and generates k new datasets, with replacement. In this
question, we assume the generated dataset Di has the same size as D. Then train a model for each dataset,
Di, resulting in k models. The ensemble model is following:

h̄(x; D) = 1
k

k∑
i=1

h(x; Di)

For this part, we will make a very unrealistic assumption that the predictions of the ensemble members
are uncorrelated. That is Cov(h(x; Dj), h(x; Dk)) = 0.

1.0.2.1. Bias with bagging. Show that ensemble does not change the bias term in the generalization error.

Show bias = E
[(
E[h̄(x; D)|x] − y∗(x)

)2
]

= E
[
(E[h(x; D)|x] − y∗(x))2

]
1.0.2.2. Variance with bagging. Assume the variance of a single predictor is σ2, E [(h(x; D) − E[h(x; D)|x])2] =
σ2. Derive the variance of ensemble in terms of σ2 under uncorrelated predictions.

1.0.3. Bagging - General Case. In practice, there will be correlations among the k predictions of the
ensemble members because the sampled training datasets would be very similar to each other. For sim-
plicity, assume a non-zero pairwise correlation between the ensemble members, that is, ρ. The variance of
the predictor for h(x; Dj) is σ2

j .

ρ = Cov(h(x; Dj), h(x; Dk))
σjσk

∀j 6= k

1.0.3.1. Bias under Correlation. Does the correlation change the bias term in the generalization error? If
so, derive the new expression in terms of ρ. Provide your justification.

1.0.3.2. Variance under Correlation. Assume the variance of a single predictor is σ2. Derive the variance
term of ensemble in terms of σ and ρ.

Show variance = E
[(

h̄(x; D) − E[h̄(x; D)|x]
)2

]
=

(
ρ + 1 − ρ

k

)
σ2

1.0.3.3. Intuitions on bagging. Based on the derived variance, what happens to the variance when you
increase the number of ensemble models k? What do ρ = 0, ρ = 1 represent and their consequences for
the variance?
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Question 2. (Central Limit Theorem for Kernel Density Estimator) Let p̂h be the kernel density
estimator (in one dimension) with bandwidth h = hn. Let s2

n(x) = Var(p̂h(x)).
(a) Show that

p̂h(x) − p(x)
sn(x)

d−→ N(0, 1)

where ph(x) = E[p̂h(x)].
Hint: Recall that the Lyapunov central limit theorem says the following: Suppose that Y1, Y2, . . .

are independent. Let µi = E[Yi] and σ2
i = Var(Yi). Let s2

n = ∑n
i=1 σ2

i . If

lim
n→∞

1
s2+δ

n

n∑
i=1

E[|Yi − µi|2+δ] = 0

for some δ > 0, then s−1
n

∑
i(Yi − µi) d−→ N(0, 1).

The we need to show the following two statements
• Let p > 1, we can show E

[∣∣∣ 1
h
K

(
‖x−Xi‖

h

)
− ph(x)

∣∣∣p]
= Θ

(
1

hp−1

)
using 1

2p |a|p − |b|p ≤ |a −
b|p ≤ 2p|a|p + 2p|b|p , E[|Zi|p] = 1

hp−1

∫
|K(‖v‖)|p p(x + hv)dv and |K(‖v‖)|p p(x + hv)dv →

|K(‖v‖)|p p(x + hv)dv.
• s2

n = 1
n
E

[∣∣∣ 1
h
K

(
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h

)
− ph(x)

∣∣∣2]
= Θ

(
1

nh

)
.

(b) Assume that the smoothness is β = 2. Suppose that the bandwidth hn is chosen optimally. Show
that

p̂h(x) − p(x)
sn(x)

d−→ N(b(x), 1)

for some constant b(x) which is, in general, not 0.

Question 3. Estimating the Sobolev Ellipsoid via Spectral Methods Let X1, . . . , Xn ∼ P
where Xi ∈ [0, 1] and P has density p. Let ϕ1, ϕ2, . . . be an orthonormal basis for L2[0, 1]. Hence∫ 1

0 ϕ2
j(x)dx = 1 for all j and

∫ 1
0 ϕj(x)ϕk(x)dx = 0 for j 6= k. Assume that the basis is uniformly bounded,

i.e. supj sup0≤x≤1 |ϕj(x)| ≤ C < ∞. We may expand p as p(x) = ∑∞
j=1 βjϕj(x) where βj =

∫
ϕj(x)p(x)dx.

Define

p̂(x) =
k∑

j=1
β̂jϕj(x)

where β̂j = (1/n) ∑n
i=1 ϕj(Xi).

(a) Show that the risk is bounded by
ck

n
+

∞∑
j=k+1

β2
j

for some constant c > 0.
(b) Define the Sobolev ellipsoid E(m, L) of order m as the set of densities of the form p(x) = ∑∞

j=1 βjϕj(x)
where ∑∞

j=1 β2
j j2m < L2. Show that the risk for any density in E(m, L) is bounded by c[(k/n) +

(1/k)2m]. Using this bound, find the optimal value of k and find the corresponding risk.
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