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Homework 2: Bias and Variance Trade-off

Question 1. (Adaptive to Anisotropic Smoothness) Consider the data (X1, Y1), . . . , (Xn, Yn) where
Xi ∈ R and Yi ∈ R. Inspired by the fact that E[Y |X = x] =

∫
yp(x, y)dy/p(x), define
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Assume that
∫

K(u)du = 1 and
∫

uK(u)du = 0.
• Show that m̂(x) is exactly the kernel regression estimator that we defined in class.

Remark. If we understand the estimator as estimating p(x) then calculate the expectation, the plug-in
bound would lead to n− s

d+2s . However if one consider the problem as estimating p(x, y) then caculate the
mean of y, the plug-in bound would lead to n− s

d+1+2s . One reason is p(x, y) is very smooth in y but is only
Cs in x-direction. This question showed that kernel smoothing may adapt to the aniostropic smoothness.
Becareful about this problem in your furture research. Reference : https://arxiv.org/abs/1910.12799

Question 2. (Implicit Bias of Overparameterized Linear Regression) Given n pairs of input data
with d features and scalar label (xi, ti) ∈ Rd ×R, we wish to find a linear model f(x) = ŵ>x with ŵ ∈ Rd

that minimizes the squared error of prediction on the training samples defined below. This is known as an
empirical risk minimizer. For concise notation, denote the data matrix X ∈ Rn×d and the corresponding
label vector t ∈ Rn. The training objective is to minimize the following loss:

min
ŵ

1
n

n∑
i=1

(ŵ>xi − ti)2 = min
ŵ

1
n

‖Xŵ − t‖2
2.

We assume X is full rank: X>X is invertible when n > d, and XX> is invertible otherwise. Note that
when d > n, the problem is underdetermined, i.e., there are fewer training samples than parameters to be
learned. This is analogous to learning an overparameterized model, which is common when training deep
neural networks.

• (Underdetermined case) For the underdetermined case, what is the closed-form expression of the
optimal linear predictor ŵ.

• (Overparameterized case) The training objective is to minimize the squared loss:

L(w) = 1
2n

n∑
i=1

(w>xi − ti)2 = 1
2n

‖Xw − t‖2
2,

where X ∈ Rn×d is the data matrix with rows x>
i , and t ∈ Rn is the vector of targets. In gradient

flow, we consider continuous-time dynamics (an approximation to the gradient descent) where the
weight vector w(t) evolves according to the negative gradient of the loss:

dw(t)
dt

= −∇L(w(t)) = − 1
n

X>(Xw(t) − t).

Assuming that the gradient flow starts from the origin, i.e., w(0) = 0, we can solve for w(t) by
integrating this differential equation.

The solution to this differential equation can be expressed as:
w(t) = X>(XX>)+t

(
1 − e− t

n

)
,
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where (XX>)+ denotes the Moore-Penrose pseudoinverse of XX>.
– As t → ∞, where does the solution w(t) converges w∗ = limt→∞ w(t) to?
– Show that the vector w∗ is the minimum norm solution to the interpolation problem Xw = t,

meaning it satisfies the interpolation conditions Xw∗ = t and has the smallest `2-norm among
all such solutions.
(hint: The minimum norm interpolation problem

min ‖w‖ s.t. Xw = t

has a closed form solution, which can be obtained using the lagrangian duality.)
This happens because starting from the origin and following gradient flow imposes an implicit bias
towards minimizing the norm of w while satisfying the interpolation constraint. This is why gradient
flow training converges to the minimum norm interpolator.

• What are some potential benefits of the minimum-norm solution? (Hint: reminds the Support Vector
Machine example in homework 1)

Question 3. (Benefit of Overparameterization, Coding) Visualize and compare under-parameterized
with over-parameterized polynomial regression: https://colab.research.google.com/drive/1NCSHp-gkh1kGhcySImbJo6AqeKoz-HcR.
Include your code snippets for the fit_poly function in the write-up. Does overparameterization (higher
degree poly- nomial) always lead to overfitting, i.e. larger test error?
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