Prof. Yiping Lu
IEMS 402 Statistical Learning

November 3, 2024
Homework 1: Review of Probability Statistics and Optimization

Question 1. (Design of Loss Function) Let X = (X(1),...,X(d)) € R? and Y € R. In the questions
below, make any reasonable assumptions that you need but state your assumptions.
(a) Prove that E(Y — m(X))? is minimized by choosing m(z) = E(Y | X = z).
(b) Find the function m(z) that minimizes E|Y — m(X)|. (You can assume that the conditional cdf
F(y | X = x) is continuous and strictly increasing, for every x.)
(c) Prove that E(Y — S7X)? is minimized by choosing 3, = B~ la where B = E(XX7) and a =
(aq,...,aq) and a; = E(Y X (j)).
(d) (pinball loss) Prove that the a-th conditional quantile function ¢,(z) :=inf{ly e R: F(y | X =
x) > a} minimizes min,, ) E[pa(y, m(x))] where

. {a(y—ﬁ) if y—9>0,
|«

—a)(g—vy) otherwise

Question 2. (Central Limit Theorem) Let X,..., X,, ~ P, ii.d., with 4 = E[X}] and ¢% = Var[X}].

Define
Ex Ao

=1

§\>—‘

(i) Prove that s2 2 o2,

(i) Prove that /n(X, — i) /sn % N(0,1).

(hint: using Slutsky’s Theorem https://en.wikipedia.org/wiki/Slutsky%27s_theorem)
Question 3. (Curse of Dimensionality: Asymptotic scaling of nearest neighbor distances)

(a) Let zg,1,...,7, be iid. from a distribution P supported on [—R, R]%. Let i(zy) be the index of
the closest point (in ¢y distance) among x1., = {x1,...,%,} to xo. Prove that for any § > 0,

P([|i() — oll2 > 0) = /(1 — P(Ba(z,0)))" dP(x),

where By(xz,0) denotes the ¢y ball of radius 0 centered at x. To be clear, the probability on the

left-hand side above is over xg and ..
(b) Prove that for any 4, there exists a rectangular partition Uy, ..., Uy of [—R, R]* with diameter at

most ¢, and

C

where ¢ > 0 is a constant depending only on R and d.
(c) Using parts (a) and (b), prove that

B([2i(ar) — @oll2 > 6) < ——;.
Hint: first show that
N(3) N(5)
Bl —voll > ) £ 3 [ (1= P(0))" dP() = 32 P(0) (1= P

Then show that each summand above is bounded by 1/(en).
(d) Argue that the last part translates to

v N
Hxi(aco) — Zoll2 S (n> in probability.
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Question 4. (Duality of Support Vector Machine) Consider a training dataset D = { (1), yM) (23 y2) .
We distinguish between two types of supervised learning problems depending on the targets y®. Let’s
consider the Binary Classification problem where the target variable y is discrete and takes on one of K = 2
possible values. (we assume ) = {—1,+1}.) We will also work with linear models of the form:

fg(ﬂ?) :90—|—91'$1+92'x2+...+9d'$d
where z € R? is a vector of features and y € {—1,1} is the target. The 6; are the parameters of the model.

We can represent the model in a vectorized form fy(z) = 72 + 6. Next we define the geometric margin
7@ with respect to a training example (2, y®) as

T,.(¢
) — ) (955(”90> _
16l

(a) Show that this corresponds to the distance from () to the hyperplane.
(b) We saw that maximizing the margin of a linear model amounts to solving the following optimization

problem.

1
Ininf||9||2
0.00 2

subject to
Y ((xm)m + 90) > 1 for all i

write down the Lagrangian of the max-margin optimization problem.

Hint: convex duality theory: https://web.stanford.edu/class/ee364a/lectures/duality.pdf

(c) An interesting question arises when we need to decide which optimization problem to solve: the dual
or the primal.
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