Prof. Yiping Lu IEMS 402 Statistical Learning November 3, 2024

Homework 1: Review of Probability Statistics and Optimization

Question 1. (Design of Loss Function) Let $X = (X(1), \ldots, X(d)) \in \mathbb{R}^d$ and $Y \in \mathbb{R}$. In the questions below, make any reasonable assumptions that you need but state your assumptions.

- (a) Prove that $\mathbb{E}(Y m(X))^2$ is minimized by choosing $m(x) = \mathbb{E}(Y | X = x)$.
- (b) Find the function $m(x)$ that minimizes $\mathbb{E}|Y m(X)|$. (You can assume that the conditional cdf $F(y \mid X = x)$ is continuous and strictly increasing, for every *x*.)
- (c) Prove that $E(Y \beta^T X)^2$ is minimized by choosing $\beta_* = B^{-1} \alpha$ where $B = E(XX^T)$ and $\alpha =$ $(\alpha_1, \ldots, \alpha_d)$ and $\alpha_j = \mathbb{E}(YX(j)).$
- (d) (*pinball loss*) Prove that the *α*-th conditional quantile function $q_\alpha(x) := \inf\{y \in \mathbb{R} : F(y \mid X =$ $x \geq \alpha$ minimizes $\min_{m(x)} \mathbb{E}[\rho_{\alpha}(y, m(x))]$ where

$$
\rho_{\alpha}(y,\hat{y}) := \begin{cases} \alpha(y-\hat{y}) & \text{if } y-\hat{y} > 0, \\ (1-\alpha)(\hat{y}-y) & \text{otherwise} \end{cases}
$$

Question 2. (Central Limit Theorem) Let $X_1, \ldots, X_n \sim P$, i.i.d., with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}[X_i]$. Define

$$
\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad s_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.
$$

(i) Prove that s_n^2 $\stackrel{P}{\rightarrow} \sigma^2$.

(ii) Prove that $\sqrt{n}(\bar{X}_n - \mu)/s_n \xrightarrow{d} N(0, 1)$.

(*hint*: using Slutsky's Theorem https://en.wikipedia.org/wiki/Slutsky%27s_theorem)

Question 3. (Curse of Dimensionality: Asymptotic scaling of nearest neighbor distances)

(a) Let x_0, x_1, \ldots, x_n be i.i.d. from a distribution *P* supported on $[-R, R]^d$. Let $i(x_0)$ be the index of the closest point (in ℓ_2 distance) among $x_{1:n} = \{x_1, \ldots, x_n\}$ to x_0 . Prove that for any $\delta > 0$,

$$
\mathbb{P}(\|x_{i(x_0)} - x_0\|_2 > \delta) = \int (1 - P(B_d(x, \delta)))^n \ dP(x),
$$

where $B_d(x, \delta)$ denotes the ℓ_2 ball of radius δ centered at *x*. To be clear, the probability on the left-hand side above is over x_0 and $x_{1:n}$.

(b) Prove that for any δ , there exists a rectangular partition $U_1, \ldots, U_{N(\delta)}$ of $[-R, R]^d$ with diameter at most δ , and

$$
N(\delta) \le \frac{c}{\delta^d},
$$

where $c > 0$ is a constant depending only on R and d. (c) Using parts (a) and (b), prove that

$$
\mathbb{P}(\|x_{i(x_0)} - x_0\|_2 > \delta) \le \frac{c}{en\delta^d}.
$$

Hint: first show that

$$
\mathbb{P}(\|x_{i(x_0)}-x_0\|_2 > \delta) \leq \sum_{j=1}^{N(\delta)} \int_{U_j} (1-P(U_j))^n \ dP(x) = \sum_{j=1}^{N(\delta)} P(U_j) (1-P(U_j))^n.
$$

Then show that each summand above is bounded by 1*/*(*en*)*.* (d) Argue that the last part translates to

$$
||x_{i(x_0)} - x_0||_2 \lesssim \left(\frac{1}{n}\right)^{1/d}
$$
 in probability.

2

Question 4. (Duality of Support Vector Machine) Consider a training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots\}$ We distinguish between two types of supervised learning problems depending on the targets $y^{(i)}$. Let's consider the Binary Classification problem where the target variable y is discrete and takes on one of $K = 2$ possible values. (we assume $\mathcal{Y} = \{-1, +1\}$.) We will also work with linear models of the form:

$$
f_{\theta}(x) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \ldots + \theta_d \cdot x_d
$$

where $x \in \mathbb{R}^d$ is a vector of features and $y \in \{-1, 1\}$ is the target. The θ_j are the parameters of the model. We can represent the model in a vectorized form $f_{\theta}(x) = \theta^{\top} x + \theta_0$. Next we define the *geometric margin* $\gamma^{(i)}$ with respect to a training example $(x^{(i)}, y^{(i)})$ as

$$
\gamma^{(i)} = y^{(i)} \left(\frac{\theta^{\top} x^{(i)} + \theta_0}{\|\theta\|} \right).
$$

(a) Show that this corresponds to the distance from $x^{(i)}$ to the hyperplane.

(b) We saw that maximizing the margin of a linear model amounts to solving the following optimization problem.

$$
\min_{\theta,\theta_0} \frac{1}{2} \|\theta\|^2
$$

subject to

 $y^{(i)}((x^{(i)})^\top \theta + \theta_0) \geq 1$ for all *i*

write down the Lagrangian of the max-margin optimization problem.

Hint: convex duality theory: <https://web.stanford.edu/class/ee364a/lectures/duality.pdf> **(c)** An interesting question arises when we need to decide which optimization problem to solve: the dual or the primal.

Northwestern University