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Abstract. Here is a Review of probability and Optimization Basics for IEMS 402 Statistical Learning.
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1 Stochastic Convergence
We don’t need rigorous convergence proof. But it would be better to have this in mind. You also don’t
need to take care different kind of convergence.

Guiding question: What does it mean for a sequence of random variables {Xn}n⩾1 to converge to
a random variable X? There will be three versions we will cover. First we give the weakest (also known
as weak convergence, just to really drive the idea home):

Definition 1 (Convergence in Distribution). Xn converges in distribution to X (written Xn
d→ X or

Xn ⇝ X in the book) if for all points c ∈ Rd which are continuity points of x 7→ Pr[X ⩽ x]:

lim
n→∞

Pr[Xn ⩽ c] = Pr[X ⩽ c]

Lemma 1 (Subset of Portmanteau Lemma).

Xn
d−→ X ⇐⇒ E[f(Xn)] → E[f(X)] for any bounded continuous f or any bounded Lipschitz f

Sketch. First the backward direction: Assume E[f(Xn)] → E[f(X)]. Fix some arbitrary u0, u1 and we
can define

g(t) =


1 t ⩽ u0

0 t > u1

1 − t−u0
u1−u0

u0 < t ⩽ u1

(a) Function definition (b) Function drawing

Figure 1: Continuous (Lipschitz) Approximation to the Indicator

Then note that Pr[Xn ⩽ c] = E[IXn⩽c] ≈ E[g(Xn)] → E[g(X)] = Pr[X ⩽ c] and we can make
the approximation arbitrarily good by choice of u0, u1.
For the forward direction: Assume limn→∞ Pr[Xn ∈ [a, b]] = Pr[X ∈ [a, b]] and fix ϵ > 0. Pick a, b
such that Pr[X /∈ [a, b]] < ϵ. Since f is bounded and continuous, on this compact set it is uniformly
continuous. We can then break the expectation up into a finite number of intervals such that f varies
by at most ϵ on the interval. Now define fϵ =

∑m
i=1 f(xi)1[ai,bi] with xi ∈ [ai, bi] arbitrarily chosen.

Then we have:
|E[f(Xn)] − E[f(X)]| = |E[f(Xn)] − E[fϵ(Xn)] + E[fϵ(Xn)] − E[f(X)]|

⩽ |E[f(Xn)] − E[fϵ(Xn)]|+|E[fϵ(Xn)] − E[f(X)]|
⩽ ϵ+ Pr[Xn /∈ [a, b]] + |E[fϵ(Xn)] − E[f(X)]|
⩽ 2ϵ+ |E[fϵ(Xn)] − E[fϵ(X)] + E[fϵ(X)] − E[f(X)]|
⩽ 2ϵ+ |E[fϵ(Xn)] − E[fϵ(X)]|+|E[fϵ(X)] − E[f(X)]|
⩽ 4ϵ+ |E[fϵ(Xn)] − E[fϵ(X)]|

⩽ 4ϵ+
m∑

i=1
|f(xi)||Pr[Xn ∈ [ai, bi]] − Pr[X ∈ [ai, bi]]|

Then taking limits in n and noting ϵ arbitrary we have the result.

1



Definition 2 (Convergence in Probability). We say Xn converges in probability to X (written Xn
p→ X)

if for all ϵ > 0,
lim

n→∞
Pr[∥Xn −X∥> ϵ] = 0

Note that we left the norm unspecified for a reason. You can use any norm for the particular metric
space you want. But remember that both Xn and X need to be defined on the same probability space.

Definition 3 (Convergence almost surely). We say Xn converges almost surely to X (written Xn
a.s.→ X)

if for all ϵ > 0,
Pr[ lim

n→∞
∥Xn −X∥> ϵ] = 0

Example 1. Suppose X1, X2, . . . are iid from a distribution P with E[Xi] = µ and Cov(Xi) = Σ. let
Xn = 1

n

∑n
i=1 Xi.

Theorem 1 (Strong Law of Large Numbers).

Xn
a.s.→ µ

Theorem 2 (Central Limit Theorem).
√
n(Xn − µ) d→ N (0,Σ)

We will use (1) and (2) very often in this course. Know them well.
Note that we covered convergence in order of increasing strength:

Proposition 1.
Xn

a.s.→ X =⇒ Xn
p→ X =⇒ Xn

d→ X

2 Useful tools (CMT, Slutsky, etc.)
The rest of lecture is devoted to some useful tools that we will often use.

Theorem 3 (Continuous Mapping Theorem). If g is continuous on a set B satisfying Pr[X ∈ B] = 1,
then

Xn
∗→ X =⇒ g(Xn) ∗→ g(X)

where ∗ ∈ {d, p, a.s.}

This is super useful! We will apply functions to variables all the time so being able to say things
about convergence of the functions of the variables is powerful.

Sketch for d→. If f is continuous and bounded and g is continuous then h = f ◦ g is also continuous
and bounded. Then

E[h(Xn)] → E[h(X)]

by assumption and (1). Thus we have

E[f(g(Xn))] → E[f(g(X))]

for any f continuous and bounded. Thus, again by (1), we have g(Xn) d→ g(X).
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Application: Suppose we can show that Tn → θ and we have some loss ℓ. Can we say that
ℓ(Tn) → ℓ(θ)? For instance in linear classifier example, if we know that ŵ → w what can we say about
ℓ(ŵ) → ℓ(w)?

The next theorem is useful if we have some convergence to a mean and then other convergence.
What can we say when we combine those two results? There are two things colloquially known as
Slutsky’s. We will give both but only call one real Slutsky’s.

Theorem 4 (Slutsky’s). 1. If c is a constant, Xn
d−→ c =⇒ Xn

p−→ c.

2. If Yn is a sequence of random variables and Zn = ∥Xn −Yn∥ satisfies Zn
p−→ 0 then Xn

d−→ X =⇒
Yn

d−→ X.

3. If Xn
d−→ X and Yn

p−→ c (a constant), then(
Xn

Yn

)
d−→

(
X
c

)
Sketch. We will approach these in order

1. By definition of weak convergence, for all ϵ > 0, limn→∞ Pr[Xn ⩽ c + ϵ1] = Pr[c ⩽ c + ϵ1],
where 1 is the unit all-1 vector. Then note that c is deterministic so Pr[c ⩽ c + ϵ1] = 1. And
similarly: limn→∞ Pr[Xn > c− ϵ1] = Pr[c > c− ϵ1] = 1 so

lim
n→∞

Pr[∥X − c∥< ϵ] = lim
n→∞

Pr[c+ ϵ1 ⩾ Xn ⩾ c− ϵ1] = 1

Thus by law of total probability, limn→∞ Pr[∥Xn − c∥> ϵ] = 0.

2. Now suppose f is bounded by 1 and 1 Lipschitz. Thus

f(Yn) = f(Xn) ± min{∥Xn − Yn∥, 1}

so using monotonicity of the expectation we have

E[f(Yn)] = E[f(Xn)] ± E[min{∥Xn − Yn∥, 1}]

but that second term goes to 0 as n → ∞ so

lim
n→∞

E[f(Yn)] = lim
n→∞

E[f(Xn)] = E[f(X)]

so by (1) we have that Yn
d−→ X.

3. First note that (
Xn

c

)
d−→

(
X
c

)
since for every continuous and bounded f(x, y), the mapping x 7→ f(x, c) is also continuous and
bounded. Similarly, ∥∥∥∥(

Xn

Yn

)
−

(
Xn

c

)∥∥∥∥ = ∥Yn − c∥ p−→ 0

so by (1) and (2) of this theorem, we get the result.
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Corollary 1. If Xn
d−→ X and Yn

p−→ c, then

1. YnXn
d−→ cX

2. Yn +Xn
d−→ c+X

3. for c ̸= 0, Y −1
n Xn

d−→ c−1X

Proof. Use (4) to conclude
(
Xn

Yn

)
d−→

(
X
c

)
then use (3)

Example 2 (t-type statistic). Let X1, X2, . . .
i.i.d.∼ P, EXi = µ, Cov(Xi) = Σ > 0 (i.e. positive definite

so we can apply part (iii) of the Corollary). Let Xn = 1
n

∑n
i=1 Xi, Sn = 1

n

∑n
i=1(Xi −Xn)(Xi −Xn)T ,

and define Tn = S
−1/2
n

√
n(Xn − µ).

Claim: By Slutsky’s, Tn
d−→ N (0, I). Why is this true? First, by the Strong Law of Large Numbers

(Lecture 1, Theorem 2.6), Xn
a.s.−−→ µ and Sn

a.s.−−→ Σ (formally, we can write Sn = 1
n

∑n
i=1(Xi −

Xn)(Xi − Xn)T = 1
n

∑
XiX

T
i − XnX

T

n and apply LLN to each of the two terms separately before
combining). By the Continuous Mapping Theorem (Lecture 1, Theorem 3.1), S1/2

n
a.s.−−→ Σ1/2. Also, by

Central Limit Theorem (Lecture 1, Theorem 2.7),
√
n(Xn − µ) d−→ N (0,Σ). Applying part (iii) of the

Corollary,
Tn = S−1/2

n

√
n(Xn − µ) d−→ Σ−1/2N (0,Σ) d= N (0, I)

Remark: As an aside, we note that while sample covariance is commonly written with a factor of
1/(n−1) to ensure unbiasedness, since we are in an asymptotic regime, it doesn’t really matter whether
we divide by n− 1 or n.

3 Uniform Tightness
not required but good to know

Definition 4. A collection {Xα}α∈A is uniformly tight if for all ε > 0, there exists M < ∞ such that

P (∥Xα∥> M) ⩽ ε for all α ∈ A

Example 3 (Markov’s inequality). If all Xα satisfy E∥Xα∥ℓ= k < ∞, ℓ > 0 then by Markov’s inequality

P [∥Xα∥> M ] = P [∥Xα∥ℓ> M ℓ] ⩽ E∥Xα∥ℓ

M ℓ
= k

M ℓ

Choosing M > ( k
ε )1/ℓ gives the desired bound.

Example 4 (Non-example: not uniformly tight collection). If Xn ∼ N (n, 1), then {Xn}n∈N is not
uniformly tight. In general, if Xn is a sequence with increasing means, it will not be uniformly tight.
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Uniform tightness gives us nice vocabulary and is an important concept that will come up later in the
course when we talk about optimality. The following is a theorem which will be used from time to time
in this couse. It essentially gives necessary and sufficient conditions for uniform tightness.
Theorem 5 (Prohorov). A collection {Xα}α∈A is uniformly tight if and only if for all sequences
{Xn}n∈N ⊂ {Xα}α∈A, there is a subsequence nk and a random variable X such that Xnk

d−→ X.

Proof. A sketch of one direction follows from the fact that every weakly converging sequence is uniformly
tight. Let {Xn} such that Xn

d−→ X. First, note that any random vector X is tight: for all ε > 0,
there exists a constant M such that P (∥X∥> M) < ε. By definition of convergence in distribution
(Portmanteau lemma), there exists some N0 such that for all n > N0, P [∥Xn∥> M ] ⩽ ε + P [∥X∥>
M ] < ε + ε. Since there are only finitely many n ⩽ N0, and each of the Xn is tight, we can pick M
(by increasing its value if necessary) such that P [∥Xn∥> M ] < 2ε for every n. See van der Vaart for
the proof of the other direction (Section 2.1, page 9).

4 Big-O, little-o notation
We define shorthand notation to help clean things up. First, recall the definition of general (non-
stochastic) big-O and little-O: f(x) = O(g(x)) if limε→0

f(ε)
g(ε) < ∞ and f(ε) = o(g(ε)) if limε→0

f(ε)
g(ε) =

0.
Definition 5 (Little-op). Let Xn be vector-valued and Rn real-valued sequences of random variables.
We write Xn = op(Rn) if there exist vector-valued random variables Yn such that Xn = Rn · Yn and
Yn

p−→ 0; i.e. the magnitude of Xn is bounded in probability by Rn.

Definition 6 (Big-Op). We write Xn = Op(Rn) if there exist vector-valued Yn such that Xn = Rn ·Yn

and Yn are uniformly tight (equiv. Yn = Op(1)); i.e. in probability, Xn takes values proportional to Rn

up to a constant.

Example 5. Xn − µ = op(1) since by LLN, Xn
p−→ µ.

√
n(Xn − µ) = Op(1) since by CLT,

√
n(Xn −

µ) d−→ N (0, 1), which has finite variance and is thus uniformly tight.

Remark: The following lemma will come in handy for dealing with remainders (such as in the proof of
the Delta Method, which will come up shortly).

Lemma 2. If f : Rd → R
k satisfying f(0) = 0 and Xn

p−→ 0, then

(1) If f(ε) = o(∥ε∥ℓ) as ε → 0 for some ℓ, then f(Xn) = op(∥Xn∥ℓ)

(2) If f(ε) = O(∥ε∥ℓ) as ε → 0 for some ℓ, then f(Xn) = Op(∥Xn∥ℓ)

See Van der Vaart for a proof of the lemma (Section 2.2, page 13).

5 Optimization
5.1 Fenchel-Legendre Biconjugate and Bi-Dual

The Fenchel-Legendre transform (or convex conjugate) of a function f : Rn → R ∪ {∞} is defined as:

f∗(y) = sup
x∈Rn

{⟨y, x⟩ − f(x)} .
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The function f∗ maps y ∈ Rn to the supremum of the affine functions ⟨y, x⟩ − f(x) and is always
convex, regardless of whether f itself is convex.

The biconjugate (or Fenchel-Legendre biconjugate) of f , denoted f∗∗, is defined as the conjugate
of f∗:

f∗∗(x) = sup
y∈Rn

{⟨x, y⟩ − f∗(y)} .

The biconjugate f∗∗ is the largest lower semi-continuous convex function that does not exceed f . By
the Fenchel-Moreau theorem, we have:

f∗∗(x) = f(x) if and only if f is convex and lower semi-continuous.

An equivalent definition of the Fenchel-Legendre biconjugate is: given a function g, g∗∗ is the unique
function such that

Epi g∗∗ = co Epi g
where Epi g = {(r, s) | g(r) ⩽ s}, co is the convex hull, and the overline indicates set closure. Note
that νL(0) = 0 (since η = 1/2 makes CL unconstrained), so ψL(0) = 0, and that ψL is not decreasing
because νL ⩾ 0 and ψL is convex.

5.2 Lagrangian Duality Theory

Duality is a fundamental concept in convex optimization that provides a powerful framework for analyzing
and solving optimization problems. It involves formulating a dual problem associated with a given primal
problem and studying the relationships between them.

Primal Problem Consider the following convex optimization problem, known as the primal problem:

minimize
x∈Rn

f0(x)

subject to fi(x) ⩽ 0, i = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,

where:

• f0, f1, . . . , fm : Rn → R are convex functions.

• h1, . . . , hp : Rn → R are affine (linear) functions.

Lagrangian The Lagrangian L(x, λ, ν) combines the objective function and the constraints:

L(x, λ, ν) = f0(x) +
m∑

i=1
λifi(x) +

p∑
j=1

νjhj(x),

where:

• λi ⩾ 0 are the Lagrange multipliers for the inequality constraints.

• νj are the Lagrange multipliers for the equality constraints.
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Dual Function The dual function g(λ, ν) is defined as the infimum of the Lagrangian over x:

g(λ, ν) = inf
x
L(x, λ, ν).

This function provides a lower bound on the optimal value of the primal problem for any λ ⩾ 0 and
ν.

Dual Problem The dual problem is formulated as:

maximize
λ⩾0,ν

g(λ, ν).

The dual problem is always a concave maximization problem, even if the primal problem is not
convex.

Weak Duality The weak duality theorem states that for any primal feasible x and dual feasible (λ, ν):

g(λ, ν) ⩽ f0(x).

This implies that the optimal value of the dual problem d⋆ is a lower bound to the optimal value of
the primal problem p⋆:

d⋆ ⩽ p⋆.

Strong Duality Under certain conditions, such as Slater’s condition (which requires that there exists
a strictly feasible point x where fi(x) < 0 and hj(x) = 0), strong duality holds:

d⋆ = p⋆.

Strong duality allows us to solve the dual problem instead of the primal problem, which can be more
tractable.

Karush-Kuhn-Tucker (KKT) Conditions The KKT conditions provide necessary (and under con-
vexity, sufficient) conditions for optimality:

1. Primal Feasibility:
fi(x⋆) ⩽ 0, hj(x⋆) = 0.

2. Dual Feasibility:
λ⋆

i ⩾ 0.

3. Complementary Slackness:
λ⋆

i fi(x⋆) = 0.

4. Stationarity:

∇f0(x⋆) +
m∑

i=1
λ⋆

i ∇fi(x⋆) +
p∑

j=1
ν⋆

j ∇hj(x⋆) = 0.
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5.3 Example 1: Minmum Norm Linear Regression

Consider the following optimization problem (the primal problem):

min
x

x⊤Ax

subject to Bx = y,

where:

• x ∈ Rn is the variable vector,

• A ∈ Rn×n is a symmetric positive definite matrix,

• B ∈ Rm×n is a matrix representing the constraints,

• y ∈ Rm is a constant vector.

Formulating the Lagrangian To incorporate the constraints into the objective function, we introduce
Lagrange multipliers λ ∈ Rm and define the Lagrangian L(x, λ):

L(x, λ) = x⊤Ax+ λ⊤(Bx− y).

Deriving the Dual Function The dual function g(λ) is obtained by minimizing the Lagrangian with
respect to x:

g(λ) = inf
x
L(x, λ).

To find g(λ), we set the gradient of L(x, λ) with respect to x to zero:

∂L

∂x
= 2Ax+B⊤λ = 0.

Solving for x:

x = −1
2A

−1B⊤λ.

Computing the Dual Function Substitute x back into the Lagrangian:

g(λ) = L

(
−1

2A
−1B⊤λ, λ

)
=

(
(1
2λ

⊤BA−1)A(1
2A

−1B⊤λ)
)

+ λ⊤
(
B

(
−1

2A
−1B⊤λ

)
− y

)
= 1

4λ
⊤BA−1B⊤λ− 1

2λ
⊤BA−1B⊤λ− λ⊤y

= −1
4λ

⊤BA−1B⊤λ− λ⊤y.

Formulating the Dual Problem The dual problem is: maxλ g(λ). Simplify g(λ): g(λ) = − 1
4λ

⊤Qλ−
λ⊤y, where Q = BA−1B⊤.
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Solving the Dual Problem To find the optimal λ∗, take the gradient of g(λ) with respect to λ and
set it to zero: ∂g

∂λ = − 1
2Qλ− y = 0. Solve for λ: λ∗ = −2Q−1y.

Recovering the Primal Solution Substitute λ∗ back into the expression for x:

x∗ = −1
2A

−1B⊤λ∗ = −1
2A

−1B⊤ (
−2Q−1y

)
= A−1B⊤Q−1y,

where Q = BA−1B⊤.

6 Taylor expansions
6.1 Real-valued functions

For f : Rd → R differentiable at x ∈ Rd,

f(y) = f(x) + ∇f(x)T (y − x) + o(∥y − x∥). (Remainder version)

f(y) = f(x) + ∇f(x̃)T (y − x). (Mean value version)
If f is twice differentiable,

f(y) = f(x) + ∇f(x)T (y − x) + 1
2(y − x)T ∇2f(x)(y − x) + o(∥y − x∥2). (Remainder version)

f(y) = f(x) + ∇f(x)T (y − x) + 1
2(y − x)T ∇2f(x̃)(y − x). (Mean value version)

6.2 Vector-valued functions

Let f : Rd → Rk, f(x) =


f1
f2
...
fk

. Define Df(x) =


∇fT

1 (x)
∇fT

2 (x)
...

∇fT
k (x)

 ∈ Rk×d to be the Jacobian of f .

Then,
f(y) = f(x) +Df(x)(y − x) + o(∥y − x∥). (Remainder version)

But for the mean value version, we don’t necessarily have x̃ such that

f(y) = f(x) +Df(x̃)(y − x).

Example 2 (Failure of mean value version): Let f : R → Rk, f(x) =


x
x2

...
xk

, then Df(x) =


1

2x
...

kxk−1

. Take x = 0, y = 1, then f(y) − f(x) = 1 =


1
1
...
1

. Yet Df(x̃) =


1

2x̃
...

kx̃k−1

 ̸=

1
...
1

.
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Example 3 (Quantitative continuity guarantees): Recall the operator norm of A is

∥A∥op= sup
∥u∥2=1

∥Au∥2,

this implied that ∥Ax∥2⩽ ∥A∥op∥x∥2. For f : Rd → Rk, differentiable, assume that Df is L-Lipschitz,
i.e. ∥Df(x) −Df(y)∥op⩽ L∥x− y∥2. (Roughly, this means that ∥D2f(x)∥⩽ L.)

Claim 2. We have
f(y) = f(x) +Df(x)(y − x) +R(y − x),

where R is a remainder matrix (depending on x, y) that satisfy ∥R∥op⩽ L
2 ∥y − x∥ and ∥R(y − x)∥⩽

L
2 ∥y − x∥2.

Proof Define ϕi(t) = fi((1 − t)x + ty), ϕi : [0, 1] → R. Note that ϕi(0) = fi(x), ϕi(1) = fi(y),
and ϕ′

i(t) = (∇fi((1 − t)x+ ty))T (y − x). Then

Df((1 − t)x+ ty)(y − x) =


∇fT

1 ((1 − t)x+ ty)
∇fT

2 ((1 − t)x+ ty)
...

∇fT
k ((1 − t)x+ ty)

 (y − x) =


ϕ′

1(t)
ϕ′

2(t)
...

ϕ′
k(t)

 .
Since ϕi(1) − ϕi(0) =

∫ 1
0 ϕ

′
i(t) dt,

f(y)−f(x) =
∫ 1

0
Df((1−t)x+ty)(y−x) dt =

∫ 1

0
(Df((1−t)x+ty)−Df(x))(y−x) dt+Df(x)(y−x).

To bound the remainder term,∥∥∥∥∫ 1

0
(Df((1 − t)x+ ty) −Df(x))(y − x) dt

∥∥∥∥ ⩽ ∫ 1

0
∥(Df((1 − t)x+ ty) −Df(x))(y − x)∥ dt

⩽
∫ 1

0
∥Df((1 − t)x+ ty) −Df(x)∥op∥y − x∥ dt

⩽
∫ 1

0
L∥t(y − x)∥∥y − x∥ dt

⩽
∫ 1

0
Lt∥y − x∥2 dt

= L

2 ∥y − x∥2.
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