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Uniform Bound



< 2sup |L(@) — L(O)]
0O



Uniform Boun.d

Bound sup | L(0) — L(Q) |
0cO

Why can’t we use Chernoff/CLT?
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Uniform Boun.d

Bound sup | L(0) — L(Q) |
0cO

Uniform Bound:

Pr [ve c 0,|L(6) — L(O)| > e'] <3y Pr [|£(9) — L(0)| > e’] |
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Finite Hypothesis Class

Theorem 4.1. Suppose that our hypothesis class H is finite and that our loss function ¢ is bounded in [0, 1],
i.e. 0<((z,y),h) <1. Then Vs s.t. 0 < 6 < 5 , with probability at least 1 — &, we have

In |H| + In(2/0)
2n

|L(h) — L(h)| < \/ Vh € H. (4.9)

As a corollary, we also have

L) — L(h*) < \/2(1n|7{| +1n (2/9)) (4.10)

n
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Finite Hypothesis Class




Infinite Hypothesis Class



Epsilon Cover

Definition 14.1 (e-covering). Let (V,|| - ||) be a normed space, and © C V. {Vi,...,Vn} is an
e-covering of © if © C UY , B(V;,€), or equivalently, V8 € ©, Ji such that |0 — V;|| <e.
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Epsilon Packing

Definition 14.2 (e-packing). Let (V, ||-||) be a normed space, and © C V. {61, ...,0,} is an e-packing
of © if min;; ||0; — 0;]| > € (notice the inequality is strict), or equivalently N, B(6;,¢/2) = 0.
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Covering and Packing Number

Definition 14.3 (Covering number). N (O, || - ||, €) := min{n : Je-covering over O of size n}.

Definition 14.4 (Packing number). M (O, || - ||, €) := max{m : Je-packing of O of size m}.
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Fact

Theorem 14.1. Let (V.| -||) be a normed space, and © C V. Then

(a) ()
M(©, |- 1I,2¢) < N(©, |- |l,e) < M(6,]|-]¢)-

g



Dimension Depedency

Intuition: A d-dimensional set has metric dimension d. (N (e) = ©(1/€%).)
Example: ([0,1]%,1,,) has N(e) = O(1/¢%).



Discretization Theorem

Theorem 1.1. Discretization Theorem:

R(f) < in (a + \/ 2log N(a, F, Lz(Pn)))

n
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Application

Theorem 3.3 (Subgaussian covariance concentration). Suppose A € R*" is a random matrix with columns
a; € R? that are independent, zero-mean, and 1-subgaussian. Further, assume that E [%AAT] = Iy.
Then, 3 universal constant C > 0 such that, ¥s > 0,

< 2exp(—s?), fors =C (\[g+ %) :

> max(8, %)
op

Pr

1
ll—AAT —I;
n

g



Chaining



Dudley’s Theorem

Theorem 3.1. Dudley:
> logN (e, F, Ly(Pn))

n

A

R(F) < 12 / de
0
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Chaining
The Chaining idea is to rewrite f as follows:

N
f= f+Z(fj - fi-1) +/%— fn.
i=1

Northwestern

-

19



Example

Example. F = the non-decreasing function from R to [0, 1].

We can actually cover such a function uniformly. We only need to approximate it at n points, marked in
the figure. If it is within « at each of these points then the Lo distance will be no more than «. From the
approximating points one can produce a non-decreasing function: for each of the a-levels (of which there will
be 1/a), just specify one of the n points at which it increases above that level. From this we can (loosely,
but to the right order of magnitude) upper bound the size of the class of estimate functions: |ﬁ‘ | < nl/e,

We see that we can cover F' in Lo:
N(a, F, Ly(P,)) < Cnl/~.

1. The Discretization Theorem gives

logn 1/3
n

Ro(F) < c(

2. The Chaining Theorem gives

1 1
Rn(F)sm/ ,/k’ﬂda=12,/log"/ ,/lda=24,/l°g"
0 an n 0 (07 n
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Chaining
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