Lecture 3/4 Bias-Variance Tradeoff
IEMS 402 Statistical Learning
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Announcement

max(HW1,HW8)+max(HW2, HW3)+max(HW4, HW5)+max(HW6,HW?).

Postpone for one week!

DDL1.17
DDL 1.24

DDL 1.24

- [Homework 7] Non-Asymptotic Theory 2
- [Homework 8] Advanced Topics

* Latex and overleaf (not required)

Northwestern 4



Homework



Lecture note

https://www.stat.cmu.edu/~larry/=sml/nonpar2019.pdf
https://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf
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https://www.stat.cmu.edu/~larry/=sml/nonpar2019.pdf
https://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf

Local Smoothing



Non-parametric Regression

« The aim of a regression analysis 1s to produce a reasonable
analysis to the unknown response function 72, where for n
data points (x;, y;)'_,, the relationship can be modeled as

y; = f(x;) + n;,n; ~ N(O,1)

* Unlike parametric approach where the function m 1s fully
described by a finite set of parameters, nonparametric
modeling accommodate a very flexible form of the
regression curve.
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Instance-based learning
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3-nearest neighbor
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K-nearest Neighbor

Here’s a basic method to start us off: k-nearest-neighbors regression. We fix an integer

k > 1 and define
Z Y, (4)
IE N (z)

where Ni(z) contains the indices of the k closest points of X,..., X, to z.
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Bias and Variance In k-I}II\?I

1

More data
points but less
similar data...
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Bias and Variance in k- NN

Curse of Dimensionality
Fewer data in the neighborhood
In high dimension

More data
points but less
similar data...

Northwestern



Selecting k in k-NN

E[(f(z) — mo(x))°] = (E[f(2)] — mo(x))” +E[(f(z) — E[f(=)])’]

— —

Bias? (m(x)) Var(m(z))
1 2 g2
(5 X mox) - mo(@)) +%

L 2 g2
<[5 > mx-an) +5-
i€ENg (z)
k d
~()
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Local Averaging Procedure

e A reasonable approximation to the regression curve m(x) will
be the mean of response variables near a point x. This local
averaging procedure can be defined as

A -1
m(x)=n Wm. (x)Y, (2)
=Y

Average out the noise!
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Kernel Smoothing

The local averaging weights depend on the distance

~ Normalize to be averaging!

W, (x) = K, (x = X)) | f,(x)
Here f,(x) = nt YK (- X,)

Northwestern
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Kernel Smoothing

The local averaging weights depend on the distance
Whi(x)=Kh(x—Xi))/ﬁl(x) A (3)
K,(u)=hiK@u/n) Here i) =n"3 K (x-X)

h controls the size of\the neighborhood!
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Kernel Smoothing
The local averaging weights depend on the distance

Whi(x)=Kh(x—Xl.))/fh(x) A (3)
K,(u)=h"K@u/h) Here /ilx)= 'y K (- X))

h controls the size of the neighborhood!

* The Nadaraya-Watson estimator 1s defined by

7, (x) = = — (4)
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Error Analysis

Théore;n: Risk boun\d wi,thout density. Suppose that the distribution of X has
compact support and that Var(Y|X = z) < 0? < oo for all z. Then
sup  E||f —m|} < crh? + —2.. 9)
PEeH,(1,L) nh

(Not Required )

Hard, do a simpler model
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Density Estimation



Kernel Density Estimation

Let X, X,, ---, X, be a sample from a distribution P with density p. The goal of nonparametric
density estimation is to estimate p with as few assumptions about p as possible.

Kernel Density Estimator:

o) - 137 Lac (L= X0
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Regards the bias

Consider an easier estimator pu(z) = hd
i=1

<":| The volume is h¢

Y



RegardsNthe Variance

Consider an easier estimator pi(z —J I(z € B

:h
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Recall

Fact. The number of parameters N required to achieve an approximation error of at most ecan
be estimated by:

(@ Dimension

1 smoothness
N=x | —
€

How can the

smoothness helps?
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What is the assumption behind..

Local regression: choices

Choice 1: Type of model - 8° o ”(‘;
Depend on the smoothness [ e Linearregression - , - Q geo
. e Degree 2 polynomial -~ °© . O
of target function e Degree 3 polynomial 'im'/:jz P
w g & ($S ad 8@@3’
< 60 o) % ¢ !
y o
/0 0 \ >
Choice 2: Weighting scheme / Y o S
e Normal density s S0
e Other schemes (called ' 0
kernels) =
T I 1
0.0 0.2 04 0.6 0.8 1.0

Figure 7.9 (ISLR)
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\What does linear mean

n’' E; K,(x- Xl. » The estimation is a linear function in Y
-1 R\
n Ei=1Kh(x_Xi)

m, (x) =

g



\What does linear mean

n’' En lKh (x - Xl. » The estimation is a linear function in Y
=

-1
n Yy K (= X))
1= . .
Linear regression over a bc

How to do quadratic regression? (X, Y; l 1, -N@X +@X +.

- _Trﬁ

1 X, Xt| [ v,
a “Feature extraction”
bll= Ll —

11 X, X3

m, (x) =

1 x, X2 |

L . —

» a,b,cislineariny

[AII guadratic function forms a (linear) vector space! ]
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\What does linear mean

n’' En lKh (x - Xl. » The estimation is a linear function in Y
=

-1
n Yy K (= X))
1= . .
Linear regression over a bc

. . - 2
How to do quadratic regression? (X, Y))._,,Y; N@Xl- +@Xi +

T

m, (x) =

1 x, x2|'Iry.
a A ? Linear smoothing =
— 2 local poly regression
H 1 ox, x2| || .5 poly reg
1 x, X2 |

?

3 o)

| 1 C I 2
» a,b,cislineariny

[AII guadratic function forms a (linear) vector space! ]
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Higher-order Kernel

/K(t)dtzl, /th(t)dtzo, j=1,..., k—1, and O</tkK(t)dt<oo.

IIIIIII

Northwestern 29



Local Regression vs Local Smoothing

Bias of local smoothing: JKh(x — x)P(XO)[f(x) — f(xp)]dx
—_—

Need to cancel the Taylor expansion

We don’t know what
is the distribution p
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Bias

Lemma 3 The bias of py, satisfies:

sup |pu(z) — p(@)] < ch’ (14)
pEX(B,L)
for some c.
Proof. We have
1
lpn(2) = p(z)| = [ 5K (v = z]|/h)p(u)du — p(z)

- ‘/ K(||lv]))(p(z + hv) — p(l‘))d’”‘

< | [ Ko o(o + o) = paata + h)io] + | [ K(Iol) (o + ho) - p(@))d]

The first term is bounded by Lh? [ K(s)|s|? since p € £(8,L). The second term is 0 from
the properties on K since p, g(x + hv) — p(x) is a polynomial of degree 3 (with no constant
term). O

Northwestern
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Variance

Lemma 4 The variance of py, satisfies:

c
sup Var(py(z)) < — 15
s V@) < (15

for some c > 0.
Proof. We can write p(z) =n~' )" | Z; where Z; = ;2K (”m_hX" |>. Then,
1 _
VarZ) < E(Z) = [ K (”h—“”) pw)dn = 1o [ K2 (ol plo + ho)ee

Supmp(x /K2(||U|| d’U < _

for some c since the densities in X(3, L) are unlformly bounded. The result follows. [l
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Final Result

The optimal bound one can get

/(ﬁ"(x) - p(2))’dz = (1)

n

sup E
peX(B,L)
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Estimating the derivatives

Given a kernel function K : R — R supported on [—1, 1] satisfying the conditions

/uJK(u)duz ‘7 ’
R 0 ]207277I_IBJ
iid,

Let X1, X9,--- ,X,, ~ p. Given bandwidth A > 0, consider the kernel-based estimator

e = e K ()

For any z(, and prove the MSE bound

E[|d,(z0) — P'(0)]?] < n

with an optimal bandwidth A = h,, (NOt ReqUIred )
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Estimating the derivatives
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OK... Interpolation...(1-NN)

:’ e I (t)

7 r _T'—TJ —— 1-log(t)
— 1k
— 11

Benign

Tempered

i

Xing Y, Song Q, Cheng G. Benefit of interpolation in nearest neighbor algorithms. SIAM Journal on Mathematics of Data

Science, 2022, 4(2): 935-956.
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