
Lecture 3/4 Bias-Variance Tradeoff
IEMS 402 Statistical Learning
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Announcement
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max(HW1,HW8)+max(HW2,HW3)+max(HW4,HW5)+max(HW6,HW7).

Easy

Easy

Easy

• Latex and overleaf (not required)

DDL 1.17
DDL 1.24
DDL 1.24

Postpone for one week!



Homework
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Lecture note
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https://www.stat.cmu.edu/~larry/=sml/nonpar2019.pdf 

https://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf 

https://www.stat.cmu.edu/~larry/=sml/nonpar2019.pdf
https://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf


Local Smoothing
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Non-parametric Regression
• The aim of a regression analysis is to produce a reasonable 

analysis to the unknown response function m, where for n 
data points , the relationship can be modeled as 


           


• Unlike parametric approach where the function m is fully 
described by a finite set of parameters, nonparametric 
modeling accommodate a very flexible form of the 
regression curve. 

(xi, yi)n
i=1

yi = f(xi) + ηi, ηi ∼ N(0,1)
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Instance-based learning

Its very similar to a

Desktop!!
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3-nearest neighbor
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K-nearest Neighbor
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Bias and Variance in k-NN

More data 
points but less 
similar data…
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Bias and Variance in k-NN

More data 
points but less 
similar data…

Curse of Dimensionality

Fewer data in the neighborhood

In high dimension

Homework 1 Problem 3
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Selecting k in k-NN

≈ ( k
n )

d

Homework 1 Problem 3
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Local Averaging Procedure
• A reasonable approximation to the regression curve m(x) will 

be the mean of response variables near a point x.  This local 
averaging procedure can be defined as 
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Average out the noise!
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Kernel Smoothing
The local averaging weights depend on the distance
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Normalize to be averaging!
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Kernel Smoothing
The local averaging weights depend on the distance
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 controls the size of the neighborhood!h

-d

Why -d ?
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Kernel Smoothing
The local averaging weights depend on the distance

)3()(ˆ/)()( xfXxKxW hihhi −=
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 controls the size of the neighborhood!h

• The Nadaraya-Watson estimator is defined by
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Error Analysis

Not Required

Hard, do a simpler model



Density Estimation
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Kernel Density Estimation
Let  be a sample from a distribution  with density . The goal of nonparametric 
density estimation is to estimate  with as few assumptions about  as possible.

Kernel Density Estimator:

X1, X2, ⋯, Xn P p
p p

Homework 2 Problem 1 show an equivalence between 

Kernel Density Estimator and Kernel smoothing
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Regards the bias

h

The volume is hd

Consider an easier estimator How histogram approximate the density
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Regards the Variance
Consider an easier estimator How histogram approximate the density
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Recall
Fact. The number of parameters  required to achieve an approximation error of at most can 
be estimated by:





N ϵ

N ≈ ( 1
ϵ )

d
s smoothness

Dimension

How can the 
smoothness helps?



25

What is the assumption behind…

Depend on the smoothness 

of target function



26

What does linear mean
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The estimation is a linear function in Y
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What does linear mean
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The estimation is a linear function in Y

How to do quadratic regression?   (Xi, Yi)n
i=1, Yi ≈ aX2

i + bXi + c
Linear regression over a b c

[
a
b
c] =

1 X1 X2
1

⋯
1 X2 X2

2

1 Xn X2
n

†
Y1
Y2
⋯
Yn

 is linear in ya, b, c
All quadratic function forms a (linear) vector space!

“Feature extraction”
Lecture 15
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What does linear mean
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The estimation is a linear function in Y

How to do quadratic regression?   (Xi, Yi)n
i=1, Yi ≈ aX2

i + bXi + c
Linear regression over a b c

[
a
b
c] =

1 X1 X2
1

⋯
1 X2 X2

2

1 Xn X2
n

†
Y1
Y2
⋯
Yn

 is linear in ya, b, c
All quadratic function forms a (linear) vector space!

Linear smoothing = 
local poly regression
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Higher-order Kernel
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Local Regression vs Local Smoothing
Bias of local smoothing: ∫ Kh(x − x0)p(x)[ f (x) − f (x0)]dx

Need to cancel the Taylor expansion

We don’t know what 
is the distribution p
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Bias
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Variance
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Final Result
The optimal bound one can get
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Estimating the derivatives

Not Required
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Estimating the derivatives
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Ok… Interpolation…(1-NN)

Xing Y, Song Q, Cheng G. Benefit of interpolation in nearest neighbor algorithms. SIAM Journal on Mathematics of Data 
Science, 2022, 4(2): 935-956.


