Lecture 1/2 What is Machine Learning?

IEMS 402 Statistical Learning
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning
e Grading: |Pr0blem Sets (15%)|+ Exams (80%) + Scribe Note (5%)
max(HW1,HW8)+max(HW2,HW3)+max(HW4, HW5)+max(HW6,HW?7).

---------------------------------------------------------------------------------

*

- [Homework 3] Bias and Variance Trade-off 1 Start early!
- [Homework 3] Bias and Variance Trade-off 2

- [Homework 4] Asymptotic Theory 1

- [Homework 5] Asymptotic Theory 2

- [Homework 6] Non-Asymptotic Theory 1

- [Homework 7] Non-Asymptotic Theory 2

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------

* Latex and overleaf (not required)
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning
e Grading: |Pr0blem Sets (15%)|+ Exams (80%) + Scribe Note (5%)

max(HW1,HW8)+max(HW2, HW3)+max(HW4,HWS5)+max(HW6,HW?7).

] Start early!

- [Homework 7] Non-Asymptotic Theory 2
- [Homework 8] Advanced Topics

* Latex and overleaf (not required)
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Logistics

e Course Website: https://2prime.fithub do/teaching/2025-Statistical-I.earning

e Grading: Problem Sets (15%) +|Exams (80%)|+ Scribe Note (5%)

Exams

« [Practice Mid-Term Exam] /

o Modern Machine Learning Con

ts, Bias and Variance Trade-off

o Kernel Smoothing, Asymp,
Uniform Bound

ic Theory, Influnce Function Concentration Inequality,

* [Practice Final Exam]

o Rademacher complexity, Covering Number, Dudley’s theorem

o RKHS, Optimal Transport, Robust Learning
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-I.earning
e Grading: Problem Sets (15%) + Exams (80%) +|Scribe Note (5%
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i - oreCiparsipie. L 0k 151 troction to Optimal Tanapert Refine my note

11  %\usepackage{amsmath,amssymb,amsthm}

Optimal Transport is a mathematical framework that seeks the most efficient method to transform
12 \usepackage{geometry} one distribution of mass info another while minimizing a specified cost. Originally introduced by
Gaspard Monge in 1781, the theory has found applications in various fields including economics,

13  \usepackage{hyperref} fluid dynamics, machine learning, and image processing,
14 \usepackage{bm}

15.2 Discrete Optimal Transport

ADD PACKAGES here: While the continnous formulation of Optimal Transport is powerful, many practical problems in-
volve discrete distributions, often represented by finite measures. The discrete version of Optimal
Transport leverages linear programming techniques and i widely used in computational applica-
tions.

19 \usepackage{amsmath,amsfonts,amssymb,graphi 15.2.1 Discrote Measures
cx,mathtools, flexisym}
20 \newtheorem{problem}{Problem}

Gonsider two discrete probability measures j and v supported on fnite sats. Specifically, let:

;L:Z«,é‘ . ov= ib,éw

22 % The following commands set up the lecnum where ai,b; > 0, Y20 a; = Y27 by = 1, and 6, denotes the Dirac measure at point @,

(lecture number)
23 % counter and make various numbering 15.2.2  Transport Plan as a Matrix

schemes work relative Tn the discrete setting, a transport plan 7 can be represented as a matrix P = [p;;] € R™™, where

to the lecture number. Pij = (20,9;)

151

26 \newcounter{lecnum}

27 \renewcommand{\ thepage}{\thelecnum-

\arahicfnagall
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-I.earning

e Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

e Textbook: Bach, Francis. Learning theory from first principles. MIT press, 2024.
* https://www.di.ens.fr/~fbach/ltfp_book.pdf

Gradescope

Campuswire
ChatGPT Tutor!

Northwestern 7
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Late Work Policy

* For your first late assignment within 12 hours after the deadline (as
indicated on Gradescope), no point deductions.

* All subsequent assignments submitted within 12 hours after the deadline
will convert to a zero at the end of semester.

e In all cases, work submitted 12 hours or more after the deadline will not
be accepted.

Northwestern 8



Prelinminary

Review Document:
https://2prime.github.io/files/IEMS402/IEMS402ProbOptReview.pdf

Calculus, Linear Algebra

IEMS 302 Probability Probability and Statistics: Strong Law of Large Numbers, Central Limit
Theorem, Big-0O, little-o notation,

Optimization Theory: Lagrangian Duality Theory IEMS 450-2: Mathematical Optimization Il

(Interestingly, IEMS 450-1 is not required)

You need to know
Law of strong numbers, Central Limit Theorem, Continuous Map Theorem, Slutsky Theorem, Markov’s

Inequality
You don’t need to distinguish Convergence in Probability/Covergence in distribution, you just need to write —

Northwestern 9
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Online Calibration with Human Feedback

EE @E  RE

Feedback for IEMS402' Lecture 2

B I U o XY

» Feedback for each

This feedback will help calibrate future lectures. Feel free to answer any subset of the questions (it is
encouraged to at least answer the first question on pace).

N HBF e

The pace of material was

1 2 3 4 5

Much too slow O O O O O Much too fast

What parts were confusing?

WEXA

What was most surprising/interesting?

BEXA

N




E. Date Lecture Topic

August 31 Review

September 2 | Concentration Inequalities :
i September 4 | Concentration Inequalities Stats 705 C M U
t  September 7 | No Class (Labor Day) :

September 9 | Convergence

September 11 | Convergence

September 14 | Central Limit Theorem

September 18 | Uniform Laws and Empirical Process Theory

i September 18 | Uniform Laws and Empirical Process Theory
S 300 b S f d September 21 | Uniform Laws and Empirical Process Theory
tatS tan O r :  September 23 | Review
........................................................................................................................................................ . i _September 25 | TEST 1
:' ": September 28 | Likelihood and Sufficiency
¢ 1. Introduction i September 30 | Point Estimation (MLE)
X October 2 Point Estimation (Method of Moments, Bayes)
: 2. Convergence of random variables (January 14) : i 7 October 5 | Decision Theory
October 7 Decision Theory
3. Delta method (January 14) _ October 9 Asymptotic Theory :
: i i i : *e..October 12, .| Asymptotic. Theary. ..omuure e ee e remneeemnnennan
i 4. Basics of asymptotic normality (January 18 and 20) : October 14| Hypothesis Testing

October 16 | NO CLASS (Community Engagement)
October 19 | Goodness-of-fit, two-sample, independence

5. Moment method (January 20)

i 6. Uniform laws of large numbers (January 26) October 21 | Multiple testing
H . . H October 23 | NO CLASS (Mid-Semester Break)
i 7. Basics of concentration (January 28 and February 2) ] October 26 | Multiple testing
: . 90 : October 28 | Confidence Intervals
5 8. Sub Gaussian processes and chaining (February 2 and February 4) i October 30 | Confidence Intervals
] November 2 | Confidence Intervals
:9.VCDimension (Februaryq) J November 4 | Review
10. Uniform central limit theorems and convergence in distribution (February 9 and February 11) govemll;er g gEST 2
ovember ootstrap
11. Applications of Uniform Central Limit Theorems (February 16 and February 18) November 11 | Bootstrap
. . . November 13 | Bayesian Inference
12. Relative efficiency and basic tests (February 18 and February 23) November 16 | Bayesian Inference
; ; ; ; ; ...November 18 | Linear Regression ... ...........cccccciiiiiiiiiaanns )
13. Asymptotic level and relative efficiency in testing (February 23 and 25) " "November 20| Non- parametric Regression :
14. Contigui and As totics Februa 5 *essNovember 33+ 4« NG CI:ASS == ssssseccnnsssatscnnnsssssnsannnssssnnnnns o
4 guity ymp ( Ty 5) November 25 | NO CLASS (Thanksgiving)
15. Local Asymptotic Normality (March 2 and 4) November 27 | NO CLASS
. November 30 | Minimax Lower Bounds
16. Regular estimators and consequences (March 8 and 10) December 2 | Minimax Lower Bounds
.. December 4 | High-dimensional Statistics
17. U statistics (March 11 and 16) December 7 | High-dimensional Statistics
. December 9 | Model Selection
18. Partlng thoughts (March 18) December 11 | Model Selection

Northwestern 11




Other Course

Stanford: Stats 300b/ CS229T

Berkeley: Stats 241/Stats 241B

MIT 1DS.160/9.521/18.656/6.5988

CMU Stat705, 10-072

Princeton COS 511

Cornell CS6783, ORIE 7790

Umich EECS598, UW Madison CS 839, UofT STA3000F

[Good machine learning courses are open source! ]

N




Why IEMS4027?

Nature
https://www.nature.com > articles - EiFILTT ¢ o e, *
Highly accurate protein structure prediction with AlphaFold s afigi?

E&: J Jumper - 2021 - #E5|F/R%L: 30628 — AlphaFold greatly improves the

accur~~- Af Atriiatiira nradiatian b inAaarnaratina naval naniral nAahuarl, ArahitAasbiirAan

and ti Nature
https://www.nature.com > articles - EBiZIHETT

Magnetic control of tokamak plasmas through deep ...
EZ&: J Degrave - 2022 - ¥ 5| FHYr#y: 897 — In this work. we introduce a previouslv undescribed

architecture for t @ Nature
https://www.nature.com > news - EBiEIETT

DeepMind Al weather forecaster beats world-class system

2024F12H4H — Google DeepMind has developed the first artificial intelligence (Al) model of its kind to
predict the weather more accurately than the best ...

Northwestern
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| Don’t have a cat

Why IEMS4027?

ChatGPT o1 v

Thought about IEMS 402 course introduction for 7 seconds

Subject: Welcome to IEMS 402 - Let the Statistical Learning Adventure Begin!

Hello everyone,

Welcome to the brand-new (and dare | say, improved) version of IEMS 402! I'm excited, you're

cxeitedand even my cat is excited (though she's mostly excited for treats). This course is going to
be a lot of fun, full of intriguing discoveries, many “aha!” moments, and, well, a few puffs of chalk

dust here and there.

ChatGPT

A New Version of 402 - Your Feedback is Golden

Because this is a fresh, sparkling-new take on 402, | will be collecting anonymous opinions after
each course session. | genuinely want to hear your thoughts—both the accolades and the
grievances (go easy on me!). Your feedback will help shape how | refine and tweak the course
going forward. So please speak up, share your impressions, and let me know what's working well

or what you'd like to see improved.

Course Website:

2025-Statistical-Learning

Northwestern
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Supervised Learning



Supervised Learning

e Aim: learn a predictorf : & — ¥

i T A
EF‘ 3 Inl &Ml T
SE]l AR A - R VAT i

mammal —— placentalg —— carnivore —— canine —— dog ——workingdog — husky

A5 et @ES T P o
SNF CEE sde ual o Ell Il
MY < TIE I Dl M s

vehicle craft — watercraft —— sailing vessel sailboat — trlmaran

N



Probably Approximately Correct

PAC Learning Model

e Input: Training Data. S = {(z1,¥1),...(Zm,Ym)} is a finite set of pairs in x x Y. This is the
input that the learner has access to. Such labeled examples are also referred to as training examples
or labeled sample set. The size of the sample set m is the sample size. We will generally assume that
the sample S was generated by drawing m IID samples from the distribution D.

e Output: Hypothesis. A Hypothesis class consists of a subset of target functions H = {h: h: x = YV}
that turns unlabeled samples to labels. Each learning algorithm outputs a hypothesis, the class of
hypotheses the learner may return is the algorithms hypothesis class.

/ML A\%; "“W - m doto sufput . Q functon  hoX 7

Y



Probably Approximately Correct

PAC Learning Model

e Input: Training Data. S = {(z1,¥1),...(Zm,Ym)} is a finite set of pairs in x x Y. This is the
input that the learner has access to. Such labeled examples are also referred to as training examples
or labeled sample set. The size of the sample set m is the sample size. We will generally assume that
the sample S was generated by drawing m IID samples from the distribution D. vsf'l“PlQ

f
g !
e Output: Hypothesis. A Hypothesis class consists of a subset of target functions H = {h: h: x = YV} \L Mﬂbf’
that turns unlabeled samples to labels. Each learning algorithm outputs a hypothe81s the class of
hypotheses the learner may return is the algorithms hypothesis class. :

¥ s
Al

Definition 1.1 ((realizable) PAC Learning). A concent class C of target functions is PAC learnable (w.r.t
to H) if there exists an algorithm A and function/m{ : (0,1)? — N abith the following property:

Our Goal Assume S = ((1,Y1),- -, (Tm,Ym)) s a sample ofVIID examples generated by some arbitrary distribution
D such that y; = h(z;) for some h € C almost surely. If S is the input of A and m > mf (e, 8) then the
algorithm returns a hypothesis h’g € H such that, with probability 1 — § (over the choice of the m training

examples):
How to define error?
@) <«
?
The function m{ 2 (e, 8) is referred to as the sample complexity of algorithm A. 1

2]

N



Supervised Learning

e Aim: learn a predictorf : &' — ¥
 What is a good predictor? -> evaluation criteria

Assume data sample from a distribution p

R(f) = E[£(y, f@))] = J ¢6) fFO)dp(r.y))

SZ‘X? Evaluate the error of label and predicition

Hn O
R R

T



Supervised Learning

e Aim: learn a predictorf : &' — ¥
 What is a good predictor? -> evaluation criteria

R(f) = EI£(y, )] =f. fCPdp(x,y).

Evaluate the error of label and predicition

If | want to know the risk, | need to

C‘;xnl hebd. “A'maans @& have all the data in the univers?
Empirical Risk:'é( f) = " Z(y; f(x;)), where {(x;,y;)}"_, is a collected dataset
i=1

Northwestern 21




Conditional Risk

R() = By, [[E 0. ) | = x” - | Efevson|r =] dpeer.
A

*7means the b(@
., Bayes Predictor: x')y€ argmin [E [f (v,2) ‘x = x’] = argminr(z|x’).

Northwestern

@@

Conditional Risk: r(z|x") = E [f(y, 2) |x = x’]

IEY €Y

22



Conditional Risk

g?(f) — [Ex’rvp [[E [l’ﬂ(ya f(x/))

X = x’” = L[ E [f(y,f(x’)) ‘x = x’] dp(x').

Conditional Risk: r(z|x) = E [z,”(y, Z) |x = x’]
tR1%): € §-2 x= '] ¢ #= ETy[x=x]

, Bayes Predictor: f*(x’) € argmin[t [f (v,2) ‘x = x’] = argminr(z|x’).
IEY

IEY

What is the Baye; Predictor of £, Homework
loss or £'; loss? whall |
o8) .
: pintelt arorkls -

N -



How to design a loss function

e Method 1: Know what is your Bayes Predictor!

24



How to design a loss function

e Method 1: Know what is your Bayes Predictor!
e Method 2: Use Max likelihood
e Step 1: understand what is your p(y | x), e.g. Gaussian, heavy tail

distribution
o Step 2: What is the log-likelihood of dataset { (x;, y;) }'_,?

T



How to design a loss function

* Method 1: Know what is your Bayes Predictor!
e Method 2: Use Max likelihood
o Step 1: understand what is your p(y|x), e.g. Gaussian, heavy tail
distribution | o Sum Ik € ’ﬁcp,‘ Q?S k
e Step 2: What is the log—hkeﬂ/{f)ood of dataset {(x;,y;)};_;?
n

o fog Pl l=21 2pil%) . loss: means Gausiav Mﬁﬁ

e Step 3: use log p( - | x;) as your loss function!  p(Y ,X) =N l-F{X) _b'l\

How can | get the 7, loss using this methods?

5
Northwestern 26




Example: Logistic Regression

Consider a binary classification with p(y; =1 | x,,0) = G(XZTH) = =
1 +e %0

N -



Example: Gaussian with Learned Variance

Example (Gaussian with Learned Variance Leads to Sparsity) CNOt Required )

U(n,0”) =) log P(ys|p(z:), 0(x:)?)

i=1

P "R') n . fog

. (yi — p(z:))?
N (=M =Z —§log(27r)——log(0(wz) )~ oy W
il S ( \ o > )qu L7 \btiane

— p(zi))?
- — = l 2 7 ].
2 n(2m(zi)) ‘( n(U(g - 1 a(xi)2
sparse regularlzatlon ~ o

‘[ welghted {5 loss

, | ‘H/D):-w
e |, >

I-——-) will encure tlki) + O
i




Empirical Risk Minimization

| want an estimator to minimize the risk, but | can only get the

empirial risk? What’s the best thing | can do?

e Consider a parameterized family of prediction functions (often referred to as

models) fp : X = Y, e.g. 0: Patane v
e Linear prediction ‘clﬁ\t {x.0>
e Neural Network ~ means empirical

Empirical Risk Minimization: 0 € Z(fy) = — Z C(yi» fo(x;)) .
* n
i=1

T



Pro and Con of ERM

* Pro:
e Flexible
e Algorithms are available (e.g. SGD)
e can be relatively hard to optimize when the optimization formulation is
not convex (e.g.,neural networks); (2 n tedl Aliggion)
 the dependence on parameters can be complex (e.g., neural networks);

e need some capacity control to avoid@verﬁttingg (2w el D]’[’rl&f:an)

Our course is about overfitting!

T



The only theorem: Risk Decompoisition

R(fy) — R* = {gzé(fé) _ inf gz(f@,)} + { inf B(f,) — 99*}
0'e® 0'e®
@@ @@

Estimation error Approximation error

Northwestern
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The only theorem: Risk Decompoisition
& aafangn Ri{G) -2 best  povawetor
R(fp) — R* = {%(fg) a 522 %(fe')} + { 522 R(fy) — 9?*} Quetfins .

Estimation error Approximation error

Mopraswmetion Emron
For an ERM Estimator: || of @, \s fapael\, (
{
R(f3) = R(f3) + R(f3) = R(fys) + R(fys) — inf S (fy)
b — '
—_—
Generalization error Generalization error

T



The only theorem: Risk Decompoisition

R(fy) — R* = {gzé(fé) _ inf gz(f@,)} + { inf B(f,) — 99*}
0'e® 0'e®
%@ 5@

Estimation error Approximation error Qlerﬁm
For an ERM Estimator: - @‘E 028
7 Generoinetion Boued
R(fy) — R(fy)|+ R(fg) - «%’(f@*) + %(fg*) - mf K (fo) { D, brger .
\=\p=ﬂ’ 1
Generalization error ti¢ eneralization erro

< 2sup |R(fy) —R(f))|  Uniform Bound!
USC)

Northwestern 33




No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < % be a

number representing a training set size.
There exists a distribution D over X x {0,1} such that:

@ there exists a function f : X — {0,1} with Lp(f) =0;

e with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

Neagl A‘SS\MPH"M oe™~ dofa .

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

Northwestern
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No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < % be a

number representing a training set size.
There exists a distribution D over X x {0,1} such that:

@ there exists a function f : X — {0,1} with Lp(f) =0;

e with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

P Y4
AL
' @ How to formulate A(S) in math?
(&)

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

T
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No Free Lunch Theorem

max_ Es.pm(Lp,(A(S))) >

1<i<| T

This means that for every A’ that receives a training set of m examples
from X x {0, 1} there exists f : X — {0,1} and a distribution D over
X x {0,1} such that Lp(f) =0 and Es.pm(Lp(A'(S))) > 1.

T



No Free Lunch Theorem

max_ Es.pm(Lp,(A(S))) >

1<i<| T

This means that for every A’ that receives a training set of m examples
from X x {0, 1} there exists f : X — {0,1} and a distribution D over
X x {0,1} such that Lp(f) =0 and Es.pm(Lp(A'(S))) > 1.

N



No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < |2£| be a
number representing a training set size.

There exists a distribution D over X x {0,1} such that:

@ there exists a function f : X — {0,1} with Lp(f) =0;

e with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

QR
PN @

N

“¥ Important to know what’s the implicit assumption on target function

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

T
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Review
RUD)- R = { Rit)- R {R04y) ~ R
L, e

R(£) - %w@pm(ca\ R(#‘e* Rl4wr) - R (D4x)
D erence. defraen E'uphoo\ and T”N\‘*’“

A

P | ™ 1
Wit m f:f:&i!a’; -




Difference between 401 and 402

Statistics Learning
e Difference 1: Parameter Convergence and Risk Convergence
I\
9 - RI45) = R£w)
(tots mockae  (aotmyd 2 2
g g

e Difference 2: Parametric and Non-parametric (&}

. )
@ﬁssm]rhon ver date  ex \[:: CO- x>+ . xuNlo1)

You use a parameterized

iR

At { s Swosth family in Empirical risk
o | da.fn 9z (9. x> RO a8 minimization, why you
@ A lo® da‘h Nz (Q >.> call “non-parametric”?

&

Northwestern 40



Hardness of ERM



Error of ERM

IEMS 402 Focus
(Approximation Error + Generalization ErroD+ Optimization Error

inf %(f,) — R* sup | R(fy) — R(fy)| !\
=) ;Ffs:‘.t A UC (‘;‘:r..-;- 15 Dt a Tl i {C i

When we use more powerful parameterized family, e.g. ® is larger: DS
- Approximation error is smaller!
- Genera“zation error is Iarger! Underfitting zone | Overfitting zone = - Training error
. ° — Generalization error
-Variance Trade-off
E v\., ) f {ii 3

s

o lovast Bt

0 Optimal Capacity

Capacity

Y



Approximation: Curse of Dimensionality

Northwestern

0.58
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Formulation: Approximate a smooth function

Fact. The number of parameters /N required to achieve an approximation error of at most gcar

: _ e
be estimated by: S N= o’ (i ) 3

C 4 +k G\Thr Si\\mfhm; ' N <l') smoothness 4

L0x) =R 00) + 80 (x- %)+ - + 4% 0 6A® + O ix- 1)

\d d
; P +
J Lo

_ ¢

e Another Formulation see

T -



Formulation: Approximate a smooth function

Fact. The number of parameters N required to achieve an approximation error of at most ecar
be estimated by:

(Z) Dimension

1 smoothness ¢ { %
N~ <—> N= d [*"‘ )
€ T

§

* Another Formulation see

Y



How to think about High Dimension

Fe
'
[ a ]
Y1 V2’ aYa
§e ‘i"k “i’&‘}»ﬂ,}"t .
'
* [ a
L } {
e \/ P y § » o 3§
- [ ; P | » ——  ud
t % . . Yol § = o 4 # 4 i r 54 "“,« 3 B
A e ™ ’\'{ Lt Zifid O A 1 /Al \
1 W LAV D { MWATWLX Ny A AFL) LAV Y
Wt . - 1 LN )
i

Northwestern
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Generalization: Overfitting?

y = f(x) + noise A

VS
understanding

\_

Can we learn f from this data?

~

Repeated Parrot

v,

. /\
Y| * Y| °
), ),

Northwestern
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Degree of Freedom

Suppose that we observe y, = r(x;) + €,(i = 1,...,n), where the errors €; are uncorrelated with

common variance 62 > 0

Now consider the fitted values y; = 7(x;) from a regression estimator 7.

1 n
Degree of freedom is defined as|df(y) = — 2 Cov(y,,y,) -
o
i=1

|II

“How much | remember the labe

Y



A Degree,\of freedom
@EBZ“ y,)z]—[E[ Z(y, y,>2]=—df<y>
T

NG —
Generalization error

- TN p——
El w5 ‘dt’—%cj_(‘l;-v’c) + Hz—l‘l.)]
- J I A
Y = r(xU‘fei "‘ei'_?\')l‘&}—‘éi) MY
& =rixi) + o
e )'e"‘g(‘-}i) 2)'&\’(3"1}*) ’)6';
1




wels & v o EXample of DOF 1
O V=¥ &= j}af;'&a\l (i 57) =n
S
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Example of DOF 2

‘Qa/\

Not Required
@ livear %mjav\ Xe = X[ ] ( 9 )
‘h‘[ﬁa\l ECXM“,]_ Y)]
R"

\ T I
- X (X% % M(‘lo‘”} P
= & ‘\"‘l "

= ae(xOf %) = 4o Cx ox)) = -e.»[IP)

Y



W- Shee ot
\J However...

— lapoety e Coding:
“Double descent”

— :;,:::ni:'.’_;"crrnrmoﬂ'. Wor’ﬂg

\

#parameter > #data

. N

.E classic / \

e . bas/vanance / \ modern

Z N trade-ofl \ - _—

U t / \ wer-parametnzed

= “ ' \ region All the data can be remembered

/ interpolation threshold
»

OPPNK p[(\g.t m: T complexity t)ow)

T




Taxonomy of (over)fitting

Regression Classification
Benign lim,,_yoo Ry, = R* lim,,_yoo Ry, = R*
Tempered lim, o Ry € (R*, 00) lim, o Ry € (R*,1— %)
Catastrophic lim,, yoo Ry, = 00 lim,, yoo Ry, =1 — %

Table -1.1: Taxonomy of (over)fitting.

Benign Tempered

. Temper atastroph SN (g One Bpoc P
Benign Tempered Catastrophic o mineic ] O Catebtraniie 11

B (i“ ] l

Overfit MLP

Clean Test Error

.
0. 04 05 1 05 00 01 02 03 04 05 0 L1 02 03 04 05
| ? rol Train Label Flip Prob Train Label Flip Prob
. , , ) ! . T y=x f- n=1000 [~ n=10000 —f— n=60000

Mallinar, Neil, et al. "Benign, tempered, or catastrophic: A taxonomy of overfitting (2022)." arXiv preprint arXiv:2207.06569.
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CIFAR[es - fooo . \
Pulo xe: #omusir Implicit bias

[

“Multiple Minima”

Many models can achieve low training loss

Loss landscape of VGG on CIFAR

T -



Implicit bias

“Multiple Minima”

Many models can achieve low training loss

w®o PeSimictic

Traditional bounds:

sup | R(f) — R(f) |
€0

Loss landscape of VGG on CIFAR
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Implicit bias

“Multiple Minima”

Many models can achieve low training loss

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSEBLE “WHEN FACED WITH TWO POSSIBLE WAYS OF
EXPLANATIONS, THE SIMPLER OF DOING SOMETUING, THE MORE COMPLICATED
THE TWO 1S THE ONE MOST ONE 1S THE ONE YOUR PROFESSOR WILL
LIKELY TO BE TRUE.” MOST LIKELY ASK You To Do.”

Loss landscape of VGG on CIFAR

T



What's special about over-para

“Multiple Minima”

Training error
-- Testing error

: Sharp minimum  Flat minimum
Flat minimum Sharp minimum

T



Last Note on Learning Theory



ML Theory workshop @Neurips24

Plan for today

» Cultural open problems: philosophy; elephants in the room.
» Academics are leaving for industry.
» Theorists are leaving theory.
» Theory needs to use GPUs.
» The point of theory.
>

Suggestions for junior theorists.
Suggestions for senior theorists, culture shifts.

» Interlude: theory toys.
» Technical open problems.

https://cims.nyu.edu/~matus/
neurips.2024.workshop/talk.pdf

T -

those. Then I'll eat my own dog food. Like | was saying | gave myself a 20 minute time
it,




Math-physics-ethology

Theory of Language Models

“ethology”
aaaaa | behavior science

o k.
n 3 o
GPT4 \_ GPT4-mini
mathematics + learning theory
(concept class, data, model,

assumptions, learnability theorems) (chain-of thought, tree-of thought, etc)
in-of-thought, tree-of-thought, etc.

the theorems that you prove really do connect to
practice, and even if it does people may not read
: =

1CMLux Physics of language model

> Pl ¢ 1:59/1:58428

ICML 2024 Tutorial: Physics of Language Models I C M L 2024

@ onmezused @Y s S https://shorturl.at/ZDwQE
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https://shorturl.at/ZDwQE

Learning Theory Today

These facts prove No! These facts
MY theory! prove MY theory!
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