Lecture 1/2 What is Machine Learning?

IEMS 402 Statistical Learning
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-L.earnin
e Grading:|Problem Sets (15%)|+ Exams (80%) + Scribe Note (5%)
max(HW1,HW8)+max(HW2,HW3)+max(HW4,HW5)+max(HW6,HW?7).

---------------------------------------------------------------------------------

.

- [Homework 3] Bias and Variance Trade-off 1 Start early!
- [Homework 3] Bias and Variance Trade-off 2

- [Homework 4] Asymptotic Theory 1

- [Homework 5] Asymptotic Theory 2

- [Homework 6] Non-Asymptotic Theory 1

- [Homework 7] Non-Asymptotic Theory 2

---------------------------------------------------------------------------------

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

e Latex and overleaf (not required)
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-L.earnin
e Grading:|Problem Sets (15%)|+ Exams (80%) + Scribe Note (5%)

max(HW1,HW8)+max(HW2,HW3)+max(HW4,HW5)+max(HW6,HW?7).

{Homexors 11 Review of Probabilly and Optimization. } Start early!

:[Homework 2] Bias and Variance Trade-off 1

-------------------------------------------------------------------------------

[Homework 7] Non-Asymptotic Theory 2

[Homework 8] Advanced Topics

e Latex and overleaf (not required)

Northwestern


https://2prime.github.io/teaching/2025-Statistical-Learning

Logistics

o Course Website: https://2prime.github.io/teaching/2025-Statistical-L.earnin
e Grading: Problem Sets (15%) +iExams (80%)i+ Scribe Note (5%)
Exams

e [Practice Mid-Term Exam|] /

o Modern Machine Learning Con

ts, Bias and Variance Trade-off

o Kernel Smoothing, Asymp,
Uniform Bound

ic Theory, Influnce Function Concentration Inequality,

* [Practice Final Exam]

o Rademacher complexity, Covering Number, Dudley’s theorem

o RKHS, Optimal Transport, Robust Learning

Northwestern
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Logistics

e Course Website: https://2prime.github.io/teaching/2025-Statistical-L.earnin
e Grading: Problem Sets (15%) + Exams (80%) +|Scribe Note (5%

IEMS 402 Note

Review & Share @ Submit O History IO Layout v
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WRITEFULL S Get 10% off Premium

\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in} Lecture 15: Optimal Transport
\setlength{\textwidth}{6.5 in} Lecturr: Yiping Lu Serites.
\setlength{\textheight}{8.5 in}

\setlength{\headsep}{0.75 in} ot Thcy e b it i o oty e b of B i
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. 151 troduction to Optimal Tramsprt Refine my note

11 %\usepackage{amsmath,amssymb,amsthm}

TEMS 402: Statistical Learning Winter 2024-2025

Optimal Transport i a mathematical framework that seeks the most efficient method to transform.

one distribution of mass into wother while winimizing » specified cost, Origiaally introduced by
12 \usepackage{geometry} Gaspard Mange in 1781, the theory has found applications in varions fields including economics,
13 \usepackage{hyperref} fuid dynamics, machine learing, and mage processng,

14 \usepackage{bm}
15.2 Discrete Optimal Transport

15

16 % ADD PACKAGES here: ‘While the contimuous formulation of Optimal Transport is powerful, many practical problems in-
. volve discete distibations, often represented by fisite measuses. The disrete version of Optimal

17 % “Tranport leverages liear progrananing techuigues aud i widely used i computational applica-

s tom.

19 \usepackage{amsmath,amsfonts,amssymb,graphi 1521 Discrete Measures

cx,mathtools, flexisym
ym} Cousider two discrete probability measures p and v supported ou inite sets. Specifically, let:

20 \newtheorem{problem}{Problem}
21 %

22 % The following commands set up the lecnum here sy 20, 5
(lecture number)
23 % counter and make various numbering 15.2:2 Transport Plan as a Matrix
schemes work relative In the diserete seting,  transport plan 7 can be represcatod a5 & matrix P = [p] & R, where
24 % to the lecture number. Py = (o).

25 %
151

26 \newcounter{lecnum}

27 \renewcommand{\thepage}{\thelecnum-

\arahicfnacall
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Logistics

» Course Website: https://2prime.github.io/teaching/2025-Statistical-L.earning
e Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

e Textbook: Bach, Francis. Learning theory from first principles. MIT press, 2024.
* https://www.di.ens.fr/~fbach/ltfp _book.pdf

Gradescope

Campuswire
ChatGPT Tutor!

Northwestern 7


https://2prime.github.io/teaching/2025-Statistical-Learning
https://www.di.ens.fr/~fbach/ltfp_book.pdf

Late Work Policy

e For your first late assignment within 12 hours after the deadline (as
indicated on Gradescope), no point deductions.

* All subsequent assignments submitted within 12 hours after the deadline
will convert to a zero at the end of semester.

n all cases, work submitted 12 hours or more after the deadline will not
be accepted.

Northwestern 8



Prelinminary

Review Document:
https://2prime.github.io/files/IEMS402/IEMS402ProbOptReview.pdf

Calculus, Linear Algebra

IEMS 302 Probability Probability and Statistics: Strong Law of Large Numbers, Central Limit
Theorem, Big-0O, little-o notation,

Optimization Theory: Lagrangian Duality Theory IEMS 450-2: Mathematical Optimization Il
(Interestingly, IEMS 450-1 is not required)

You need to know
Law of strong numbers, Central Limit Theorem, Continuous Map Theorem, Slutsky Theorem, Markov’s
Inequality

You don’t need to distinguish Convergence in Probability/Covergence in distribution, you just need to write —

Northwestern 9
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Online Calibration with Human Feedback

@ EE RE

Feedback for IEMS402| Lecture 2

B I U o Y

» Feedback for each

This feedback will help calibrate future lectures. Feel free to answer any subset of the questions (it is
encouraged to at least answer the first question on pace).

The pace of material was

e BT ®[e

1 2 3 4 5

Much too slow O O O O O Much too fast

What parts were confusing?

WEXAE

What was most surprising/interesting?

WEXAE

N



Stats 300b - Stanford

. Introduction

N I I SO SR

. Relative efficiency and basic tests (February 18 and February 23)
13.
14.
15.
16.
17.
18.

Date

Lecture Topic

August 31
September 2
September 4

Review
Concentration Inequalities
Concentration Inequalities

Other Course

September 7
September 9
September 11

No Class (Labor Day)
Convergence
Convergence

September 14
September 18
September 18

Central Limit Theorem
Uniform Laws and Empirical Process Theory
Uniform Laws and Empirical Process Theory

September 21
September 23
September 25

Uniform Laws and Empirical Process Theory
Review
TEST 1

September 28
September 30

Likelihood and Sufficiency
Point Estimation (MLE)

November 13

October 2 Point Estimation (Method of Moments, Bayes
. y
. Convergence of random variables (January 14) October 5 | Decision Theory
October 7 Decision Theory
. Delta method (J anuary 14) : October 9 Asymptotic Theory
: : : ...Octoher.12...{. Asymptotic. Theary..
. Basics of asymptotic normality (January 18 and 20) October 14 | Hypothesis Testing
Moment method (January 20) October 16 | NO CLASS (Community Engagement)
October 19 | Goodness-of-fit, two-sample, independence
niform laws of large numbers (January 2 ctober ultiple testing
Unif 1 flarg bers (J ry 26 October 21 | Multipl
. ) October 23 | NO CLASS (Mid-Semester Break)
Basics of concentration (January 28 and February 2) October 26 | Multiple testing
. q.Q October 28 | Confidence Intervals
Sub Gaussian processes and chaining (February 2 and February 4) October 30 | Confidence TIntereals
: : 3 November 2 | Confidence Intervals
N ; November 4 | Review
Uniform central limit theorems and convergence in distribution (February 9 and February 11) November 6 | TEST 2
i . . L. November 9 | Bootstrap
. Applications of Uniform Central Limit Theorems (February 16 and February 18) November 11 | Bootstrap

Bayesian Inference

November 16

Asymptotic level and relative efficiency in testing (February 23 and 25)

November 20

...November. 18 |. Linear. Regression

Bayesian Inference

Non-parametric Regression

Contiguity and Asymptotics (February 25) -

November 27

«+-Neovember 23-

NG GLASE = sersessessaasassnasnssaassasaasaasansnnss g

NO CLASS (Thanksgiving)
NO CLASS

Local Asymptotic Normality (March 2 and 4)

Regular estimators and consequences (March 8 and 10)

November 30
December 2
December 4

Minimax Lower Bounds
Minimax Lower Bounds
High-dimensional Statistics

U statistics (March 11 and 16)
Parting thoughts (March 18)

December 7
December 9
December 11

High-dimensional Statistics
Model Selection
Model Selection

Northwestern
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Other Course

Stanford: Stats 300b/ CS229T

Berkeley: Stats 241/Stats 241B

MIT IDS.160/9.521/18.656/6.5988

CMU Stat705, 10-072

Princeton COS 511

Cornell CS6783, ORIE 7790

Umich EECS598, UW Madison CS 839, UofT STA3000F

[Good machine learning courses are open source! ]

Y -




Why IEMS4027

Nature

https://www.nature.com > articles - BIEILTT  : % *
Highly accurate protein structure prediction with AlphaFold " ] 2
fE&: J Jumper - 2021 - #5|F/R¥: 30628 — AlphaFold greatly improves the

accur~~- Af atriiatiira nradiatian b inAaarnaratina nAavAal naniral nahuarl, ArahitAaatbiiras

and t Nature
https://www.nature.com > articles - EiFIETT

Magnetic control of tokamak plasmas through deep ...
{EZ&: J Degrave - 2022 - #51F/r#l: 897 — In this work. we introduce a previouslv undescribed

architecture for t Nature
https://www.nature.com > news - BIFIETT  §

DeepMind Al weather forecaster beats world-class system

202412 H4H — Google DeepMind has developed the first artificial intelligence (Al) model of its kind to
predict the weather more accurately than the best ...

Northwestern
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Why IEMS4027?

https://www.nature.com > articles - BIFILTT ¢ e S *

Highly accurate protein structure prediction with AlphaFold
EZ&: J Jumper - 2021 - 55| F/R¥EL: 30628 — AlphaFold greatly improves the

accur~~- Af Atrmiiatiira neAadiAtiAn s inaarnaratina nauAal mAaniral nAahuarl, ArahitAaAbiieAs

and ti Nature
https://www.nature.com > articles - EJFILTT

Magnetic control of tokamak plasmas through deep ...
{E¥&: J Degrave - 2022 - #51Fr#h: 897 — In this work. we introduce a oreviouslv undescribed

architecture for t Nature
https://www.nature.com > news - BJiFILTT

DeepMind Al weather forecaster beats world-class system

2024F12 H4H — Google DeepMind has developed the first artificial intelligence (Al) model of its kind to
predict the weather more accurately than the best ...

Northwestern
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| Don’t have a cat

Why IEMS4027?

ChatGPT o1 v

Thought about IEMS 402 course introduction for 7 seconds
Subject: Welcome to IEMS 402 - Let the Statistical Learning Adventure Begin!
Hello everyone,

Welcome to the brand-new (and dare | say, improved) version of IEMS 402! I'm excited, you're
@ even my cat is excited (though she's mostly excited for treats). This course is going to
be a lot of fun, full of intriguing discoveries, many “aha!" moments, and, well, a few puffs of chalk

dust here and there.

ChatGPT

A New Version of 402 - Your Feedback is Golden

Because this is a fresh, sparkling-new take on 402, | will be collecting anonymous opinions after

each course session. | genuinely want to hear your thoughts—both the accolades and the

grievances (go easy on me!). Your feedback will help shape how | refine and tweak the course
going forward. So please speak up, share your impressions, and let me know what's working well

or what you'd like to see improved.

Course Website:
2025-Statistical-Learning

Northwestern
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Supervised Learning



Supervised Learning

e Aim: learn a predictorf : & — ¥

BE TS @B [H% § EE
gk Dl AR W oy
ORI L Yy

—— carnivore canine —— dog —-worklng dog —— husky

=Y hE

vehicle craft — watercraft — salllng vessel ——  sailboat — tnmaran

Northwestern
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PAC Learning Model

e Input: Training Data. S = {(z1,¥1),-..(Zm,Ym)} is a finite set of pairs in x x Y. This is the
input that the learner has access to. Such labeled examples are also referred to as training examples
or labeled sample set. The size of the sample set m is the sample size. We will generally assume that
the sample S was generated by drawing m IID samples from the distribution D.

e Output: Hypothesis. A Hypothesis class consists of a subset of target functions X = {h : h : x = YV}
that turns unlabeled samples to labels. Each learning algorithm outputs a hypothesis, the class of
hypotheses the learner may return is the algorithms hypothesis class.

g



Probably Approximately Correct

PAC Learning Model

e Input: Training Data. S = {(z1,¥1),-..(Zm,Ym)} is a finite set of pairs in x x Y. This is the
input that the learner has access to. Such labeled examples are also referred to as training examples
or labeled sample set. The size of the sample set m is the sample size. We will generally assume that
the sample S was generated by drawing m IID samples from the distribution D.

e Output: Hypothesis. A Hypothesis class consists of a subset of target functions X = {h : h : x = YV}
that turns unlabeled samples to labels. Each learning algorithm outputs a hypothesis, the class of
hypotheses the learner may return is the algorithms hypothesis class.

PN Definition 1.1 ((realizable) PAC Learning). A concept class C of target functions is PAC learnable (w.r.t
g 74 g
4@ y, to H) if there exists an algorithm A and function m : (0,1)? — N with the following property:
\ Our Goal Assume S = ((z1,Y1),- -, (Tm,Ym)) s a sample of IID examples generated by some arbitrary distribution
= —_— D such that y; = h(x;) for some h € C almost surely. If S is the input of A and m > m{(¢,8) then the
algorithm returns a hypothesis h‘é € H such that, with probability 1 — § (over the choice of the m training
examples):

How to define error?

@) <

The function mé(e, 0) is referred to as the sample complexity of algorithm A. a2

g




Supervised Learning

e Aim: learn a predictorf : & — ¥
 What is a good predictor? -> evaluation criteria

Assume data sample from a distribution p

R(f) = E[£(y, fO)] = J ¢0) FoPdp@. )

%X? Evaluate the error of label and predicition

g



Supervised Learning

e Aim: learn a predictorf : & — ¥
 What is a good predictor? -> evaluation criteria

R(f) = El£(y, f(x))] =f' fCpdp(x, y).

Evaluate the error of label and predicition

If | want to know the risk, | need to

have all the data in the univers?

Empirical Risk: QAQ( 1) Z Z(y;, f(x;)), where {(x;,y;)}'_, is a collected dataset

l—l

Northwestern 21



Conditional Risk

A(f)=Ey., [[E 0 )] x = x” — | £ [eosoon]v =] apw).
X
—

Conditional Risk: r(z|x") = E [f(y, Z) |x = x/]

* means the best
., Bayes Predictor: x’) € argmin [E [f(y, 2) ‘x = x’] = argmin r(z|x).
IEY €Y

g



Conditional Risk

A(f)=Ey., [[E 0 )] x = x” = L E |20 0 |x = x| dpx).
—

Conditional Risk: r(z|x") = E [f(y, Z) |x = x/]

, Bayes Predictor: f*(x") € argmin[E [f(y, 2) ‘x = x’] = argmin r(z|x).
IEY €Y

What is the Bayes Predictor of £,

loss or £ loss?

g




How to design a loss function

* Method 1: Know what 1s your Bayes Predictor!

24



How to design a loss function

* Method 1: Know what 1s your Bayes Predictor!
e Method 2: Use Max likelihood
 Step 1: understand what is your p(y| x), e.g. Gaussian, heavy tail
distribution
o Step 2: What is the log-likelihood of dataset {(x;, y;)}7_,?

g



How to design a loss function

* Method 1: Know what 1s your Bayes Predictor!
e Method 2: Use Max likelihood
 Step 1: understand what is your p(y| x), e.g. Gaussian, heavy tail
distribution
e Step 2: What is the log-li}felihood of dataset {(x;, y;)}:_,?

o log H?:lp(yilxi) = Z log p(y;|x;)

i=1
o Step 3: use log p( - | x;) as your loss function!
1

'™ ?
? b?; How can | get the £, loss using this methods?

g




Example: Logistic Regression

Consider a binary classification with p(y; = 1 | x,,0) = a(xiTQ) =

1 + e X0

g



Example: Gaussian with Learned Variance

Example (Gaussian with Learned Variance Leads to Sparsity) (NOt Required )

U, 0%) =Y log P(yi|u(z:), o (z:)?)

=1

I
'M:’

(_% log(2) — %log(”(“”')Q) - (inZf(I:Lv(j;)) )

-
Il
[y

In(27(x;)) — gln(a(ﬂfi)z) . z (%2;([;(3;))

N >

2

NS

- v~ - 1=1

sparse regularization

weighted £5 loss

g



Empirical Risk Minimization

| want an estimator to minimize the risk, but | can only get the

empirial risk? What’s the best thing | can do?

e Consider a parameterized family of prediction functions (often referred to as
models) fy : X — Y ,e.g.
* Linear prediction
e Neural Network " means empirical
Empirical Risk Minimization: 0 € Z(fy) = — Z £(yi, fo(x))) -
* n
i=1

g~



Pro and Con of ERM

* Pro:
e Flexible
e Algorithms are available (e.g. SGD)
* Con: e T A B
e can be relatively hard to optimize when the optlmlzatlon formulatlon is
not convex (e.g.,neural networks);
* the dependence on parameters can be complex (e.g., neural networks);

e need some capacity control to avoid@verﬁttin@

Our course is about overfitting!

g



The only theorem: Risk Decompoisition

R(f;) - R = {%%) - inf %(fgo} + { inf (/) - 9%*}
— —

Estimation error Approximation error

Northwestern
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The only theorem: Risk Decompoisition

R(f;) - R = {%%) - inf %(fgo} + { inf (/) - 9%*}
— —

Estimation error Approximation error

For an ERM Estimator: ||

R(fy) — R(fy) + R(f3) — B(fye) + B(fpe) — inf Z(fy)
e;;gJ '
e;;-=‘
Generalization error Generalization error

g



The only theorem: Risk Decompoisition

R(fp) — F* = {%(fé) 7 Hilfelg %(ﬁg/)} + { gillel(fa R(fy) — 9?*}
— —

Estimation error Approximation error

For an ERM Estimator: ||

[ R(f3) — fe<f9>]+ R(fy) — R(fye) +E<fg*> — inf %(@j
\ 0'e® ,
Generalization error eneralization erro

< 2sup|R(fy) — R( fo)l  Uniform Bound!
0e®

Northwestern 33



No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < |2ﬂ be a
number representing a training set size.
There exists a distribution D over X x {0,1} such that:

@ there exists a function f : X — {0,1} with Lp(f) =0;

@ with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

Northwestern
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No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < |2£| be a
number representing a training set size.

There exists a distribution D over X x {0,1} such that:

@ there exists a function f : X — {0,1} with Lp(f) =0;

@ with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

"™ ?

A0

' How to formulate A(S) in math?
(12 |

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

g



https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

No Free Lunch Theorem

max_Es.pm(Lp,(A(S))) >

1<ig| T

This means that for every A’ that receives a training set of m examples
from X x {0, 1} there exists f : X — {0, 1} and a distribution D over
X x {0,1} such that Lp(f) = 0 and Espm(Lp(A'(S))) > 3.

7



No Free Lunch Theorem

max_Es.pm(Lp,(A(S))) >

1<ig| T

This means that for every A’ that receives a training set of m examples
from X x {0, 1} there exists f : X — {0, 1} and a distribution D over
X x {0,1} such that Lp(f) = 0 and Espm(Lp(A'(S))) > 3.

g



No Free Lunch Theorem

Let A be any learning algorithm for the task of binary classification with
respect to the 0/1-loss function over a domain X. Let m < |2ﬂ be a
number representing a training set size.

There exists a distribution D over X x {0,1} such that:
@ there exists a function f : X — {0,1} with Lp(f) =0;

@ with probability at least 1/7 over the choice of a sample S ~ D™ (of
size m) we have that Lp(A(S)) > 1/8.

Important to know what’s the implicit assumption on target function

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf

g
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Review
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Difference between 401 and 402

Statistics Learning

e Difference 1: Parameter Convergence and Risk Convergence

e Difference 2: Parametric and Non-parametric

You use a parameterized

family in Empirical risk
minimization, why you
call “non-parametric”?

g



Hardness of ERM



Error of ERM

IEMS 402 Focus
(Approximation Error + Generalization ErroD+ Optimization Error

in ) — d | R — R(f;
%(1@) R* (fo) — R(f3) |

When we use more powerful parameterized family, e.g. ® is larger:
- Approximation error is smaller!
- Generalization error is larger! ottt sone| Ot e |~ i error
. ° —  Generalization error
-Variance Trade-off

—’TJ
L
N

=

I
0 Optimal Capacity

Capacity

g



Approximation: Curse of Dimensionality

0.58

Y



Formulation: Approximate a smooth function

Fact. The number of parameters N required to achieve an approximation error of at most ecar

be estimated by:
(Z) Dimension

1 smoothness
N~ | —
€

e Another Formulation see

g



Formulation: Approximate a smooth function

Fact. The number of parameters N required to achieve an approximation error of at most ecar

be estimated by:
(Z) Dimension

1 smoothness
N~ | —
€

e Another Formulation see

g



How to think about High Dimension

/
£ ",
<)
", ).
|
. JJ. & :
2

Northwestern 46



Generalization: Overfitting?

y = f(x) + noise

Can we learn f from this data?

VS

understanding

\_

Repeated Parrot

_




Degree of Freedom

Suppose that we observe y; = r(x;) + €¢;,(i = 1,...,n), where the errors ¢; are uncorrelated with

common variance 2 > 0

Now consider the fitted values y; = 7(x;) from a regression estimator 7.

1 n
Degree of freedom is defined as|df(y) = — 2 Cov(y,,y;) -
o
i=1

III

“How much | remember the labe

g



Degree of freedom
Fact. F Ei@;—w] —[E[ Z(yl yl>2] =27 a15)

|- — )

Generalization error

g



Example of DOF 1




Example of DOF 2

(Not Required )

51



However...

. e Coding:

“Double descent”

lest erron
—— lriining error

= \ //-\'
= \ classic / \
¥ hias/varnance / \ Aoen
i \ trade-off  / \ :Tgxtrun)-'uirc‘
= v\ ,‘C.c,-m,ﬁ B All the data can be remembered
ot "u N\ '.' 'I o
E \ /’ \ #parameter > #data
\l\_‘ \"-._
.\‘ -‘—__‘ -
\“ interpolation threshold
e — -
— >

model complexity

g



Taxonomy of (over)fitting

Regression Classification
Benign lim, o R, = R* lim, o R, = R*
Tempered lim,, o Ry € (R*,00) limy, 00 R € (R*,1— %)
Catastrophic lim,,—y00 Ry, = 00 lim, oo R =1— %

Table -1.1: Taxonomy of (over)fitting.

Benign Tempered

One Epoch MLP -N1 Overfit MLP

Benign Tempered Catastrophic

B ('| l

Clean Test Error

. ‘ . . N T N y=x i .Li(’m(:m ~f- n j:‘(i)'{‘)(:""' F::)":: 60000 e
Mallinar, Neil, et al. "Benign, tempered, or catastrophic: A taxonomy of overfitting (2022)." arXiv preprint arXiv:2207.06569.

Northwestern
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Implicit bias

“Multiple Minima”

Many models can achieve low training loss

Loss landscape of VGG on CIFAR

N



Implicit bias

“Multiple Minima”

Many models can achieve low training loss

Traditional bounds:

sup | R(fp) — R(f3) |

0e®

Loss landscape of VGG on CIFAR

Y



Implicit bias

“Multiple Minima”

Many models can achieve low training loss

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSEBLE “WHEN FACED WITH TWO POSSIBLE WAYS OF
EXPLANATIONS, THE SIMPLER OF DOING SOMETHING, THE MORE COMPLICATED
THE TWO 1S THE ONE MOST ONE 1S THE ONE YOUR PROFESSOR WILL
LIKELY TO BE TRUE." MOST LIKELY ASK You To Do.”

Loss landscape of VGG on CIFAR

Y



What's special about over-para

“Multiple Minima”

Training error
-- Testing error

- Sharp minimum  Flat minimum
Flat minimum Sharp minimum

g ¥



Last Note on Learning Theory



ML Theory workshop @Neurips24

Plan for today

» Cultural open problems: philosophy; elephants in the room.
» Academics are leaving for industry.
» Theorists are leaving theory.
» Theory needs to use GPUs.
» The point of theory.
2

Suggestions for junior theorists.
> Suggestions for senior theorists, culture shifts.

» Interlude: theory toys.
» Technical open problems.

https://cims.nyu.edu/~matus/
neurips.2024.workshop/talk.pdf

g

those. Then I'll eat my own dog food. Like | was saying | gave myself a 20 minute time
it,




Math-physics-ethology

Theory of Language Models

“ethology”

animal behavior science

<
DS GPT4 \_ GPT4-mini
mathematics + learning theory
(concept class, data, model,

assumptions, learnability theorems) (chain-of thought, tree-of-though, etc)
chain-of-thought, tree-of-thought, etc

the theorems that you prove really do connect to
practice, and even if it does people may not read
; .

r Pl ¢ 1:59/1:355428Prelld . PhySICS Of Ianguage mOdeI

ICML 2024 Tutorial: Physics of Language Models I C M L 2 O 24

G Zoyenhlenzhusch. @Y CRCUND B S " https://shorturl.at/ZDwQE

Northwestern
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https://shorturl.at/ZDwQE

Learning Theory Today

These facts prove No! These facts
MY theory! prove MY theory!
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