
Lecture 1/2 What is Machine Learning?

IEMS 402 Statistical Learning
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• Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning 
• Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

max(HW1,HW8)+max(HW2,HW3)+max(HW4,HW5)+max(HW6,HW7).
Review of technical basic

Advanced research in OR

• Latex and overleaf (not required)

Start early!

https://2prime.github.io/teaching/2025-Statistical-Learning
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• Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning 
• Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

max(HW1,HW8)+max(HW2,HW3)+max(HW4,HW5)+max(HW6,HW7).

Easy

Easy

Easy

• Latex and overleaf (not required)

Start early!

https://2prime.github.io/teaching/2025-Statistical-Learning
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• Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning 
• Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

The same technique as the exam

https://2prime.github.io/teaching/2025-Statistical-Learning
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• Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning 
• Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)

Refine my note

https://2prime.github.io/teaching/2025-Statistical-Learning
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• Course Website: https://2prime.github.io/teaching/2025-Statistical-Learning 
• Grading: Problem Sets (15%) + Exams (80%) + Scribe Note (5%)
• Textbook: Bach, Francis. Learning theory from first principles. MIT press, 2024.

• https://www.di.ens.fr/~fbach/ltfp_book.pdf 

Gradescope 
Campuswire

ChatGPT Tutor!

https://2prime.github.io/teaching/2025-Statistical-Learning
https://www.di.ens.fr/~fbach/ltfp_book.pdf


Late Work Policy
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•For your first late assignment within 12 hours after the deadline (as 
indicated on Gradescope), no point deductions. 

•All subsequent assignments submitted within 12 hours after the deadline 
will convert to a zero at the end of semester. 

• In all cases, work submitted 12 hours or more after the deadline will not 
be accepted.



Prelinminary
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You need to know 
Law of strong numbers, Central Limit Theorem, Continuous Map Theorem, Slutsky Theorem, Markov’s 
Inequality

You don’t need to distinguish Convergence in Probability/Covergence in distribution, you just need to write →

Review Document:  
https://2prime.github.io/files/IEMS402/IEMS402ProbOptReview.pdf 

Calculus, Linear Algebra  
IEMS 302 Probability Probability and Statistics: Strong Law of Large Numbers, Central Limit 
Theorem, Big-O, little-o notation,  
Optimization Theory: Lagrangian Duality Theory IEMS 450-2: Mathematical Optimization II 
(Interestingly, IEMS 450-1 is not required)

https://2prime.github.io/files/IEMS402/IEMS402ProbOptReview.pdf


Online Calibration with Human Feedback
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Feedback for each lecture



Other Course
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Stats 300b - Stanford

Stats 705 - CMU



Other Course
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Stanford: Stats 300b/ CS229T 
Berkeley: Stats 241/Stats 241B 
MIT IDS.160/9.521/18.656/6.S988 
CMU Stat705, 10-072 
Princeton COS 511 
Cornell CS6783, ORIE 7790 
Umich EECS598, UW Madison CS 839, UofT STA3000F

Good machine learning courses are open source!



Why IEMS402?
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Deep learning is eating the world — Jorge Nocedal



Why IEMS402?
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Why IEMS402?
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I Don’t have a cat



Supervised Learning
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Supervised Learning
• Aim: learn a predictor f : 𝒳 → 𝒴
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PAC Learning Model
Probably Approximately Correct 
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PAC Learning Model
Probably Approximately Correct 

How to define error?

Our Goal
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Supervised Learning
• Aim: learn a predictor 
• What is a good predictor? -> evaluation criteria 

f : 𝒳 → 𝒴

ℛ( f ) = 𝔼[ℓ(y, f(x))] = ∫𝒳×𝒴
ℓ(y, f(x))dp(x, y) .
Evaluate the error of label and predicition

Assume data sample from a distribution p
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Supervised Learning
• Aim: learn a predictor 
• What is a good predictor? -> evaluation criteria 

f : 𝒳 → 𝒴

ℛ( f ) = 𝔼[ℓ(y, f(x))] = ∫𝒳×𝒴
ℓ(y, f(x))dp(x, y) .
Evaluate the error of label and predicition

If I want to know the risk, I need to 
have all the data in the univers?

Empirical Risk: , where  is a collected datasetℛ̂( f ) =
1
n

n

∑
i=1

ℓ(yi, f(xi)) {(xi, yi)}n
i=1
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Conditional Risk
ℛ( f ) = 𝔼x′ ∼p [𝔼 [ℓ(y, f (x′ )) x = x′ ]] = ∫𝒳

𝔼 [ℓ(y, f (x′ )) x = x′ ] dp(x′ ) .

Condi`onal Risk: r (z |x′ ) = 𝔼 [ℓ(y, z) x = x′ ]

• Bayes Predictor:  f*(x′ ) ∈ arg min
z∈𝒴

𝔼 [ℓ(y, z) x = x′ ] = arg min
z∈𝒴

r(z |x′ ) .
* means the best
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Conditional Risk
ℛ( f ) = 𝔼x′ ∼p [𝔼 [ℓ(y, f (x′ )) x = x′ ]] = ∫𝒳

𝔼 [ℓ(y, f (x′ )) x = x′ ] dp(x′ ) .

Condi`onal Risk: r (z |x′ ) = 𝔼 [ℓ(y, z) x = x′ ]

• Bayes Predictor:  f*(x′ ) ∈ arg min
z∈𝒴

𝔼 [ℓ(y, z) x = x′ ] = arg min
z∈𝒴

r(z |x′ ) .

What is the Bayes Predictor of  
loss or  loss?

ℓ2
ℓ1
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How to design a loss function
• Method 1: Know what is your Bayes Predictor!  Homework 1 Question 1.
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How to design a loss function
• Method 1: Know what is your Bayes Predictor!  Homework 1 Question 1.
• Method 2: Use Max likelihood

• Step 1: understand what is your , e.g. Gaussian, heavy tail 
distribution

• Step 2: What is the log-likelihood of dataset ?

p(y |x)

{(xi, yi)}n
i=1
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How to design a loss function
• Method 1: Know what is your Bayes Predictor!  Homework 1 Question 1.
• Method 2: Use Max likelihood

• Step 1: understand what is your , e.g. Gaussian, heavy tail 
distribution

• Step 2: What is the log-likelihood of dataset ?

•

• Step 3: use  as your loss function!

p(y |x)

{(xi, yi)}n
i=1

log Πn
i=1p(yi |xi) =

n

∑
i=1

log p(yi |xi)

log p( ⋅ |xi)

How can I get the  loss using this methods?ℓ2
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Example: Logistic Regression
Consider a binary classification with p(yi = 1 ∣ xi, θ) = σ(x⊤

i θ) =
1

1 + e−x⊤
i θ
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Example: Gaussian with Learned Variance
Not Required
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Empirical Risk Minimization
I want an estimator to minimize the risk, but I can only get the 
empirial risk? What’s the best thing I can do?

• Consider a parameterized family of prediction functions (often referred to as 
models) , e.g.

• Linear prediction
• Neural Network

• Empirical Risk Minimization:  

fθ : 𝒳 → 𝒴

̂θ ∈ ℛ̂( fθ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi)) .
 means empirical̂
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Pro and Con of ERM
• Pro:

• Flexible
• Algorithms are available (e.g. SGD)

• Con: 
• can be relatively hard to optimize when the optimization formulation is 

not convex (e.g.,neural networks); 
• the dependence on parameters can be complex (e.g., neural networks);
• need some capacity control to avoid overfitting

Our course is about overfitting!
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The only theorem: Risk Decompoisition
ℛ( f ̂θ) − ℛ* = {ℛ( f ̂θ) − inf

θ′ ∈Θ
ℛ( fθ′ )} + { inf

θ′ ∈Θ
ℛ( fθ′ ) − ℛ*}

Approximation errorEstimation error
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The only theorem: Risk Decompoisition
ℛ( f ̂θ) − ℛ* = {ℛ( f ̂θ) − inf

θ′ ∈Θ
ℛ( fθ′ )} + { inf

θ′ ∈Θ
ℛ( fθ′ ) − ℛ*}

Approximation errorEstimation error

For an ERM Estimator: =
ℛ( f ̂θ) − R̂( f ̂θ) + R̂( f ̂θ) − ℛ̂( fθ*) + ℛ̂( fθ*) − inf

θ′ ∈Θ
ℛ( fθ′ )

Generalization error Generalization errorOptimization error 
≤ 0

θ* = arg min
θ∈Θ

R( fθ)
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The only theorem: Risk Decompoisition
ℛ( f ̂θ) − ℛ* = {ℛ( f ̂θ) − inf

θ′ ∈Θ
ℛ( fθ′ )} + { inf

θ′ ∈Θ
ℛ( fθ′ ) − ℛ*}

Approximation errorEstimation error

For an ERM Estimator: =
ℛ( f ̂θ) − R̂( f ̂θ) + R̂( f ̂θ) − ℛ̂( fθ*) + ℛ̂( fθ*) − inf

θ′ ∈Θ
ℛ( fθ′ )

Generalization error Generalization errorOptimization error

≤ 2 sup
θ∈Θ

|R( fθ) − R̂( fθ) | Uniform Bound!



34

No Free Lunch Theorem

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf 

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf
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No Free Lunch Theorem

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf 

How to formulate  in math?A(S)

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf
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No Free Lunch Theorem
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No Free Lunch Theorem
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No Free Lunch Theorem

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf 
Important to know what’s the implicit assumption on target function

https://www.cs.cornell.edu/courses/cs6783/2015fa/lec3.pdf
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Review
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Difference between 401 and 402
Statistics Learning

• Difference 1: Parameter Convergence and Risk Convergence

• Difference 2: Parametric and Non-parametric

You use a parameterized 
family in Empirical risk 
minimization, why you 
call “non-parametric”?



Hardness of ERM
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Error of ERM
Approximation Error + Generalization Error + Optimization Error

IEMS 402 Focus

inf
θ′ ∈Θ

ℛ( fθ′ ) − R*

Assume to be 0 

sup
θ∈Θ

|R( fθ) − R̂( f ̂θ) |

When we use more powerful parameterized family, e.g.  is larger: 
- Approximation error is smaller! 
- Generalization error is larger! 
Bias-Variance Trade-off

Θ
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Approximation: Curse of Dimensionality
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Formulation: Approximate a smooth function
Fact. The number of parameters  required to achieve an approximation error of at most can 
be estimated by: 

 

N ϵ

N ≈ ( 1
ϵ )

d
s smoothness

Dimension

• Another Formulation see  Homework 1 Question 3.
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Formulation: Approximate a smooth function
Fact. The number of parameters  required to achieve an approximation error of at most can 
be estimated by: 

 

N ϵ

N ≈ ( 1
ϵ )

d
s smoothness

Dimension

• Another Formulation see  Homework 1 Question 3.



46

How to think about High Dimension
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Generalization: Overfitting？

x

y

x

y

y = f(x) + noise 

Can we learn f from this data?
Repeated Parrot 
vs 
understanding
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Degree of Freedom
Suppose that we observe  where the errors  are uncorrelated with 

common variance   

Now consider the fitted values   from a regression estimator  . 

Degree of freedom is defined as 

yi = r(xi) + ϵi(i = 1,…, n), ϵi

σ2 > 0

̂yi = ̂r(xi) ̂r

df( ̂y) =
1
σ2

n

∑
i=1

Cov( ̂yi, yi) .

“How much I remember the label”
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Degree of freedom
Fact. 𝔼 [ 1

n

n

∑
i=1

(y′ i − ̂yi)2] − 𝔼 [ 1
n

n

∑
i=1

(yi − ̂yi)2] =
2σ2

n
df( ̂y) .

Generalization error
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Example of DOF 1
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Example of DOF 2
Not Required
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However…

All the data can be remembered 
#parameter >  #data

“Double descent”
• Coding:  Homework 2 Question 3.
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Taxonomy of (over)fitting

Mallinar, Neil, et al. "Benign, tempered, or catastrophic: A taxonomy of overfitting (2022)." arXiv preprint arXiv:2207.06569.
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Implicit bias

Loss landscape of VGG on CIFAR

Many models can achieve low training loss

“Multiple Minima”
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Implicit bias

Loss landscape of VGG on CIFAR

Many models can achieve low training loss

sup
θ∈Θ

|R( fθ) − R̂( f ̂θ) |
Traditional bounds:

“Multiple Minima”
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Implicit bias

Loss landscape of VGG on CIFAR

Many models can achieve low training loss

“Multiple Minima”
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What’s special about over-para
“Multiple Minima”



Last Note on Learning Theory
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ML Theory workshop @Neurips24

https://cims.nyu.edu/~matus/
neurips.2024.workshop/talk.pdf
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Math-physics-ethology

Physics of language model 
ICML 2024 
 https://shorturl.at/ZDwQE 

https://shorturl.at/ZDwQE
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Learning Theory Today


