Lecture 14 Deep Learning Theory
IEMS 402 Statistical Learning
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https://www.di.ens.fr/~fbach/Itfp book.pdf
- Section 12
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Neural Tangent Kernel



Neural Tangent Theory

Minimizing F(w) := R(h(w))

Consider a linearized model F(w) := R(h(wy) + V  ha(wp)(w — wy))

lazy training the less expected situation where these two paths remain close until the algorithm is stopped.

Northwestern 4



Homogenous activation

ReLU relu(5x) = Srelu(x)
. R(z) =max(0, z)‘

Network 1 Network 2
worelu((Swy) x) = (Sw,) relu(w,x)

N ——

Wy W)

What’s the thing different? le + le, VWZ =+ VWZ
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Homogenous activation

o ReLU relu(5x) = Srelu(x)
R(z) =maz(0, z)

8 |

Network 1 Network 2
worelu((Swy) x) = (Sw,) relu(w,x)

N —

Wy W,
What’s the thing different? le + le, VWZ =+ V%

Is Adam/muon dynamics the same for two network?

Northwestern 6



ddddd

‘ Wider network has smaller

> gradient on first layer




Learning rate transfer
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https://arxiv.org/pdf/2203.03466
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Feature Learning and Lazy Learning

(a) Non-lazy training (7 = 0.1)

(b) Lazy training (7 = 2)
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(c) Generalization properties

Chizat, Lenaic, Edouard Oyallon, and Francis Bach. "On lazy training in differentiable programming." Advances in neural information

processing systems 32 (2019).
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When Lazy Trainning occurs?

Gradient descent wy = wo‘— hVF(’UJ ),

A(F) = E@)=Fo)l o IVF (o)

Relative change of objective function F(wg) F(wg)

Relative change of linearization

|Dh(wi)=Dh(wo)l| < , [[VF(wo)|l-|D*h(wo)]|
A(Dh) = DRty S [Dhiwo)l

E«:h(wo) — ) | et < 1]
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Example: Lazy Training For Homogeneous Model

Homogeneous models. If A is g-positively homogeneous* then multiplying the initialization by \
is equivalent to multiplying the scale factor o by A\9. In equation,

1D A (wo) |
I1DA(wo) |*

1 *
(o) = 52 [ATh(wo) — o]
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Mean Filed Theory



Mean Field Theory

h(z) = ana(w z +bj), » h= %i\ll(vj)

Reformulate as probability distribution:

h=h(,vi,...,Un)= /V\I'(v)d,u('u),
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Gradient Flow in Wasserstein Sapce
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Gradient descent in weight =
Gradient flow in Wasserstein space
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Implicit Bias



Convergence in direction

F(0) = Zlog + exp(—y;z; 0)),

1=1

Convergence In direction!
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KKT condition for Largest Margin

min |6]|3 subject to y(0; - x) > 1
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SVM=L09isitic Regression

N Zaw

Z 1exp( nyTO
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Converge to SVM solution




Where is the support vectors

1
F'(6:) ~ =~ > yiexp(—|0:|2yiz] n)zs.
el
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Failure of Importance Weighting

(a) Unadjusted. (b) Importance Weighting. (c) Importance Temperature. (a) Unadjusted. (b) Importance Weighting. (c) Importance Temperature.
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(a) Linear Model for Separable Data (b) Multilayer Perceptron with two hidden lay-
ers of size 200

Byrd J, Lipton Z. What is the effect of importance weighting in deep learning? International
conference on machine learning. PMLR, 2019: 872-881.
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Failure of Influnce Function
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https://arxiv.org/pdf/2006.14651
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Spearman Correlation

Correlation Decreases With Depth
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Number of Layers
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Spearman Correlation
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Correlation Decreases With Width

2 o 50

u E)
Width Of Layers
d)

23


https://arxiv.org/pdf/2006.14651

