Lecture 13 Distribution Shift
IEMS 402 Statistical Learning
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Distribution Shift



Reconsider the ML Theory...
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Elephant or Cat
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Shortcut learning

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super Bow!
at age 39. The past record was held by John Elway, who
led the Broncos to victory in Super Bowl XXXIII at age 38
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Jeff
Dean had a jersey number 37 in Champ Bowl XXXIV."

Question: “What is the name of the quarterback who was
38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Task for DNN Caption image Recognise object Recognise pneumonia Answer question

Problem Describes green Hallucinates teapot if cer-  Fails on scans from Changes answer if irrelevant
hillside as grazing sheep tain patterns are present new hospitals information is added

Shortcut Uses background to Uses features irrecogni- Looks at hospital token, Only looks at last sentence and
recognise primary object sable to humans not lung ignores context
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Waterbirds

CelebA

MultiNLI

Northwestern

spurious correlation

Common training examples

y: waterbird
a: water
background

HUUNUING Spu

y: blond hair
a: female

y: contradiction
a: has negation
(P) The economy
could be still better.
(H) The economy has
never been better.

y: landbird
a: land

y: dark hair ~~ vy
a: male '

y: entailment

a: no negation

(P) Read for Slate's take
on Jackson's findings.
(H) Slate had an opinion
on Jackson's findings.

Test examples

y: waterbird
a: land
background

y: blond hair
a: male

y: entailment

a: has negation

(P) There was silence

for a moment.

(H) There was a short period
of time where no one spoke.




From I1.1.d to 0.0.
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Importance Weighting



Importance Weighting

How do we deal with covariate / label shifts? rCaes { ‘f‘d’

What we have What we want Y (053 {d‘*{b\ ) + "’” [d&fﬂ)
Eptrain [e(Z; 0)] Eptest [e(Z; 9)] Ve’a&‘p!L

@ dob) dfalr - dfel deky

Fhis st b
¢ : o 4

Most basic approach: reweight the loss

Prest@ (4. 9)] = Epe.. [£(2;0)]

Ptrain [ptrain (z) |

Weighted loss over the

training distribution .
(also possible: resample the dataset)
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. .. ../mportance weighting

An alternative algorithm: use a classifier that separates p;,-4in and Prest

Ptrain(X) ( c°”e(+ anofer dofaes -
Ptest(x)tPtrain(X) . ‘
(X'('uu,, |) {’X’t'qf, 0)

1.Estimate a classifier f(x) =

2.Reweight by h(x) = % -1

3.Fita model by minimizing the loss h(x)€(x, y; 6)

Discriminative Learning for Differing
Training and Test Distributions

N



Not Working for Over-parameterized Model

(a) Unadjusted. ,,(b) Importance Weighting. (g) Importance Temperature.

(a) Unadjusted. (b) Importance Weighting. (c) Importance Temperature.
. X .
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4 P LS -t v L0 - I LY - L -t J 4 .
S.. --- unadjusted %o - importance weighting £~ importance temperature = b 5 b 5 b
. ground turth e— groundtuth | | —— groundturth - -
6 -6 -6 -6 - -6 = 3
6 -4 = o 2 4 6 -6 -1 =2 [ 2 4 6 - -4 =2 0 2 H 6 - -4 -2 ° 2 4 6 - -a -2 0 2 4 6 6 Y] 2 [ 2 4 6

(a) Linear Model for Separable Data (b) Multilayer Perceptron with two hidden lay-
ers of size 200

Byrd J, Lipton Z. What is the effect of importance weighting in deep learning? International
conference on machine learning. PMLR, 2019: 872-881.
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Background material: integral probability measures

To state this clearly, we need to first go into some background.

Definition (IPM):

For two probability distributions p and g, the integral probability
metric (IPM) for a family of functions F is defined as

d5(p, @) = [FuNE,[F (] — E,[f O] |
. Sl

d‘lifﬂl&‘«ﬂ- Le"mw dU‘hb‘ﬁ"‘ P £t / R"

Intuition: F are ‘test functions’ that can distinguish p and g

If two have the same function value for all F, then they are similar
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IPM and distribution shift

What we want What we have Domain distance
-
Eptest [e(x) y) 6)] = Eptrain [e(x) y) 0)] + A
From the trivial restatement & Rest L& EFM., 0+
A = By, [£(x,7,0)] = Ep, .. [£(x,,0)] b B, Bor)

This looks like an IPM! (if £(x,y,0) € F for all )

A< ?elg Ey o Lf Cx, )] — EPtrain If (x, )] = dr (Ptrain Drest)

Takeaway: IPMs bound excess error under transfer
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Example: L1 distance

We can now bm.'nd test performancein terms of IP[AS

FH Rt v, dR(RR) = X [P- g9
For0 < #(x, }'1, 6) < 1 and under covariate shift,
Eptest [t’(x, y,9)] < Eptrain [£’(x, Y, 0)] + ||ptrain(x) _ ptest(x)”l

Ptest

[l | Ptrain

- X

\/

| Iptrain (x) — Ptest (x) | |

N

p(x)




IPM

Reweighting
Goals Correct train-test mismatch Esfimate train-test mismatch
Assumptions Overlap Boundedness
Training Weighted/modified loss No change
Costs More samples (variance) Inaccurate models (bias)
Curse of dimensionality (next lecture)
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Northwestern

Defining HAH [ASG @nu
For a hypothesis class H, the HAH set is defined as the symmetric difference

+

Symmetric
- difference
+ E—
h)
Definition (HAH): h
For a hypothesis class H', the symmetric difference set HAH is A
defined as
HAH := {g: g(x) = XOR(h(x), h’(x)) and h,h' € H}

J
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Dependency on Hypothesis Space

For a hypothesis class ', the HAH-divergence is

duan Ptrains Prest) = 2 sup |Eptmin [g(x)] - Eptest [g ()] |
gEHAH

1 oa——
HAH: EdHAH (Ptrains Ptest) E
HAH
3
O dyay is upper bounded by the L distance
1

dyay increases monotonically with
model complexity. If H c H’,

0 Ayan < dy'py
Model complexity
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Another trade-off

Let’s walk through the main bound.

Eptest [{’(x, Y h)] Different answer on two domains

< Epirain [£(x,y,h)] + deAH (Ptrain Ptest) T A same answer but

/ 7 ‘ Both are wrong

Training domain error Domain distinguishability

Minimal error of a classifier on both domains

A= hlg.‘{[ ptrain(y F h(x)) + Dtest (Y # h(x))

HAH claim: Low training domain error + low HAH divergence +rich i
= good generalization to target domain

Northwestern

21



Another tradeoff

Optimal complexity

Upper
bound \

HAH

s

Lambda

Model complexity

Northwestern
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Distributionally Robust Optimization



F-divergence
{- iR lone - D-C (@HP) (= J‘ -ﬁ(%) dP

£1#) = *logt, <en kL= dierges

) =1 4-0] > 4 diRew
(o) Uonort m)

\ )
o = [ty X'L c‘{ertn

/g,



Distributionally Robust Optimization
olise{ P, Proys ) =P

Empirical Risk minE.,_ 12(0:7
Minimization CIS{0) Z~P tTaln[ ( ’ )] P

DRO min zlelg Ez o[f(6;2)]

P = {Q: Dist(Q, Perain) < P}

Instead of minimizing loss over training distribution,
minimize loss over distributions near it

T



Generalization of DRO

avtomeTicall y @ he bult.
ap. Ea«e L2872y » Lanp,, Te8:2))

Empirical Rlsk min IEZ~Ptrain [€(0; Z)] P
distance\between
distribiions

Minimization CISC)
P train

DRO m1n supE; g [£(6;2)]
O Qep

P ={Q: Dist(Q, Ptrain) < p}

Instead of minimizing loss over training distribution,
minimize loss over distributions near it

T



P Bi(P) = QuP

Duality of DRO

Ry (6;P) = »%n;eR{AEP[f*(w;zﬁ_”)]+Ap+n} £*(5) = sup{st — (t)}.

@nfe {EP[L(Z)€(9 Z)] + /\(P IEP[f(L( N] — n(Ep[L(Z)] - 1)} stw borties

O Next s Gle vho Cp over L

Qd P) S(’) E&‘iﬂ( 9;_“}
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Duality of DRO

ro:P) =t e |1 () [+ aeen) £*(s) = sup{st — f(1)).
= sup it (ER(L(Z)0,2))+ No ~ Erlf(L2)) - nEr L(Z)] - 1)
- it sw {)\IEP [L(Z )(“i; Z)=n) _ f(L(Z))] } A
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Variance Regularization
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Generalization of DRO

Empirical Risk minE, _ 12(6:7
Minimization CISC) Z~P tram[ ( ’ )] P

DRO g sup Ez-q[£(6;2)]

P ={Q: Dist(Q, Ptrain) < p}

Instead of minimizing loss over training distribution,
minimize loss over distributions near it

Northwestern
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s DRO Working?



F-divergence DRO only reweighting

f-DRO: reweight data
. training
distribution 70%
—
30%
Age—30 Age=60 Age=30 Age=60

T



Waterbirds background

CelebA

MultiNLI

Northwestern

: Common training examples

"oy 1 waterblrd
a: water

FUUNUING sbU

y: blond hair
a: female

‘

y: contradiction
a: has negation
(P) The economy
could be still better.
(H) The economy has
never been better.

y: landbird
a: land
background

y: dark hair

a: male

y: entailment

a: no negation

(P) Read for Slate's take
on Jackson's findings.
(H) Slate had an opinion
on Jackson's findings.

I,spurlous correlation

Weights more on rare data!

Test examples

y: entailment
a: has negation

(P) There was silence

for a moment.

(H) There was a short period
of time where no one spoke.
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What's wrong about f-divergence
DL (PM1g) = Epp £153)
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What's wrong about f-divergence
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Over-parameterization?

Standard

Strong £, Penalty( Regularization

ol
Cloo s ol -

Average Accuracy

Worst-Group Accuracy

ERM DRO ERM DRO
) Train _

Waterbirds Test 60.0 76.9
CelebA Tram
Test
. Tramn

MuliNLL ros | 825 82.0 65.7 66.4
Waterbirds Tram
Test
CelebA Train

Test

b fun{ Yo teussf-
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Adversarial Learning
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How to find Adversarial Examples?

T T+
esign(VgJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Optimization that maximize the loss

T



Adversarial Training

rr19mp(9), where p(0) = E(, D rgleanL(H,x—l—é,y) .

https://arxiv.org/pdf/1706.06083

T



Adversarial Training Can Hurt Generalization

Standard Adversarial

training training
Robust test 3.5% 45.8%
Robust train - 100%
Standard test 95.2% 87.3%
Standard train 100% 100%

Northwestern
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Real World?



Lots of progress on ImageNet over the past 10 years, but models are still not robust.

Evaluation: new test sets

Chairs Chaurs by Chairs by Chairs by

background viewpoint
™ Ae v 8P
¢ y & ¥
p X - &y = d
i N )

ImageNetV2 ObjectNet ImageNet-Sketch ImageNet-R
[Recht, Roelofs, [Barbu, Mayo, Alverio, Luo, [Wang, Ge, Lipton, Xing *19] [Hendrycks, Basart, Mu,
Schmidt, Shankar ’19] Wang, Gutfreund, Kadavath, Wang, Dorundo,

Tenenbaum, Katz ’19] Desai, Zhu, Parajuli, Guo,

Song, Steinhardt, Gilmer ’20]

Y



Agree on the line!

Recht B, Roelofs R, Schmidt L, et al. Do imagenet classifiers generalize to imagenet?[C]//
International conference on machine learning. PMLR, 2019: 5389-5400.

75

~
o

[=)]
w

ImageNetV2 (top-1, %)

v
o

H
w

AlexNet

i

HficientNet-B7

enseNet,
on, NASNet, etc.

,B'rgj/drop i :
> qJ""" E
" o
Il
v’ \
s T b VGG, ResNet, D
ResNeXt, Incept
° = %

e Standard models

60 65 80 85

70 75
ImageNet (top-1, %)

[Taori, Dave, Shankar, Carlini, Recht, Schmidt '20]
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Why??
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