Lecture 13 Distribution Shift IEMS 402 Statistical Learning

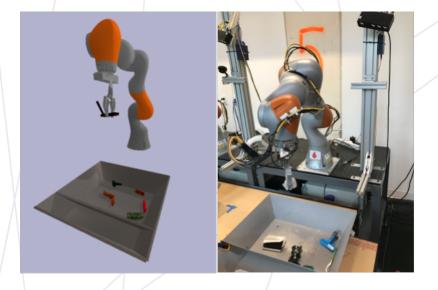
References

https://hsnamkoong.github.io/assets/html/b9145/index.html

Distribution Shift

Reconsider the ML Theory...

However...



Elephant or Cat

Shortcut learning

				Article: Super Bowl 50 Paragraph: "Peython Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXII at age 38 and is currently Denver's Executive Vice President of Foot- ball Operations and General Manager. Quarterback Jeff Dean had a jersey number 37 in Champ Bowl XXXIV." Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" Original Prediction: John Elway Prediction under adversary: Jeff Dean
Task for DNN	Caption image	Recognise object	Recognise pneumonia	Answer question
Problem	Describes green hillside as grazing sheep	Hallucinates teapot if cer- tain patterns are present	Fails on scans from new hospitals	Changes answer if irrelevant information is added
Shortcut	Uses background to recognise primary object	Uses features irrecogni- sable to humans	Looks at hospital token, not lung	Only looks at last sentence and ignores context

spurious correlation

Common training examples

Waterbirds

y: waterbird a: water background

y: blond hair

a: female

FUUNDING SPU

y: landbird a: land background

y: dark hair

a: male

y: waterbird

Test examples

a: land background

y: blond hair a: male

y: entailment
a: has negation
(P) There was silence for a moment.
(H) There was a short period of time where no one spoke.

MultiNLI

CelebA

y: contradiction a: has negation (P) The economy

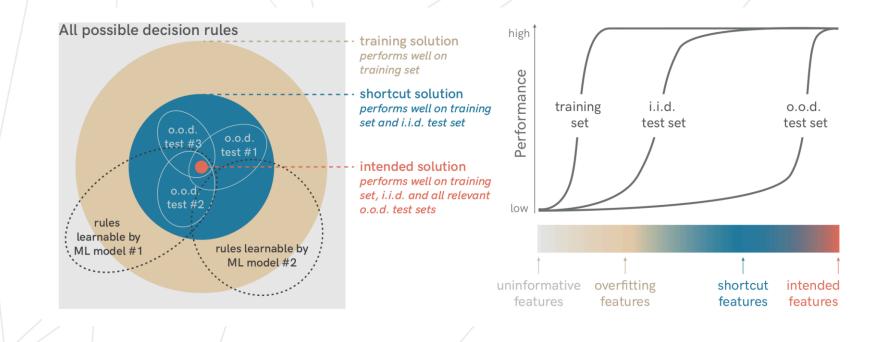
(F) The economycould be still better.(H) The economy hasnever been better.

y: entailment

a: no negation

(P) Read for Slate's take on Jackson's findings.(H) Slate had an opinion on Jackson's findings.

From i.i.d to o.o.d



Importance Weighting

Importance Weighting

How do we deal with covariate / label shifts?

What we haveWhat we want $E_{p_{train}}[\ell(z;\theta)]$ $E_{p_{test}}[\ell(z;\theta)]$

Most basic approach: reweight the loss

$$E_{p_{train}}\left[\frac{p_{test}(z)}{p_{train}(z)}\ell(z;\theta)\right] = E_{p_{test}}\left[\ell(z;\theta)\right]$$

Weighted loss over the training distribution

(also possible: resample the dataset)

Importance weighting

An alternative algorithm: use a classifier that separates p_{train} and p_{test}

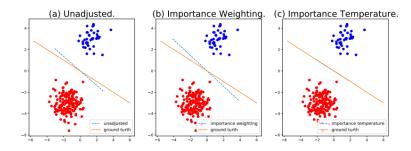
1.Estimate a classifier $f(x) \approx \frac{p_{train}(x)}{p_{test(x)} + p_{train}(x)}$

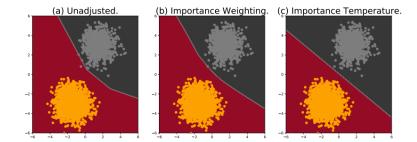
2.Reweight by
$$h(x) = \frac{1}{f(x)} - 1$$

3. Fit a model by minimizing the loss $h(x)\ell(x, y; \theta)$

Discriminative Learning for Differing Training and Test Distributions				
Steffen Bickel Michael Brückner	BICKEL [®] MPI-INF.MPG.DE			
Michael Brückner Tobias Scheffer	BRUM@MPI-INF.MPG.DE SCHEFFER@MPI-INF.MPG.DE			

Not Working for Over-parameterized Model





(a) Linear Model for Separable Data

(b) Multilayer Perceptron with two hidden layers of size 200

Byrd J, Lipton Z. What is the effect of importance weighting in deep learning? International conference on machine learning. PMLR, 2019: 872-881.

Background material: integral probability measures

To state this clearly, we need to first go into some background.

Definition (IPM):

For two probability distributions p and q, the integral probability metric (IPM) for a family of functions \mathcal{F} is defined as

$$d_{\mathcal{F}}(p,q) = \sup_{f \in \mathcal{F}} |E_p[f(x)] - E_q[f(x)]|$$

Intuition: \mathcal{F} are 'test functions' that can distinguish p and q

If two have the same function value for all \mathcal{F} , then they are similar

IPM and distribution shift

What we wantWhat we haveDomain distance $E_{p_{test}}[\ell(x, y, \theta)] = E_{p_{train}}[\ell(x, y, \theta)] + \Delta$

From the trivial restatement

$$\Delta = E_{p_{test}}[\ell(x, y, \theta)] - E_{p_{train}}[\ell(x, y, \theta)]$$

This looks like an IPM! (if $\ell(x, y, \theta) \in \mathcal{F}$ for all θ)

$$\Delta \leq \sup_{f \in \mathcal{F}} E_{p_{test}}[f(x, y)] - E_{p_{train}}[f(x, y)] = d_{\mathcal{F}}(p_{train}, p_{test})$$

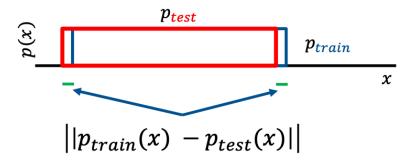
Takeaway: IPMs bound excess error under transfer

Example: L1 distance

We can now bound test performance in terms of IPMs

For $0 \leq \ell(x, y, \theta) \leq 1$ and under covariate shift,

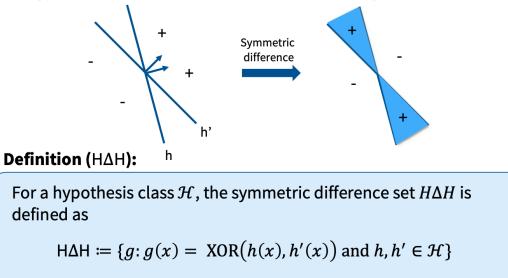
$$E_{p_{test}}[\ell(x, y, \theta)] \le E_{p_{train}}[\ell(x, y, \theta)] + ||p_{train}(x) - p_{test}(x)||_{1}$$



	Reweighting	IPM	
Goals	Correct train-test mismatch	Estimate train-test mismatch	
Assumptions	Overlap	Boundedness	
Training	Weighted/modified loss	No change	
Costs	More samples (variance)	Inaccurate models (bias)	
		Curse of dimensionality (r	

Defining H∆**H**

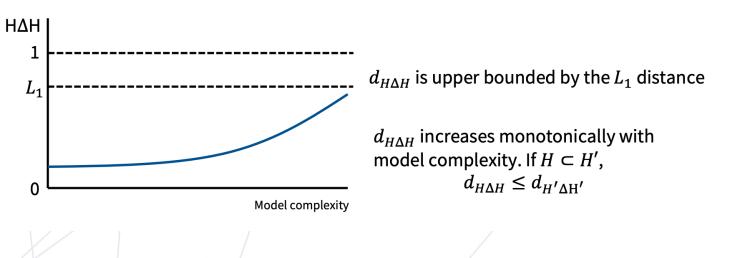
For a hypothesis class $\mathcal H$, the H Δ H set is defined as the symmetric difference



Dependency on Hypothesis Space

For a hypothesis class \mathcal{H} , the H Δ H-divergence is

 $d_{H\Delta H}(p_{train}, p_{test}) = 2 \sup_{g \in H\Delta H} \left| E_{p_{train}}[g(x)] - E_{p_{test}}[g(x)] \right|$



H\DeltaH: $\frac{1}{2}d_{H\Delta H}(p_{train}, p_{test})$

Another trade-off

Let's walk through the main bound.

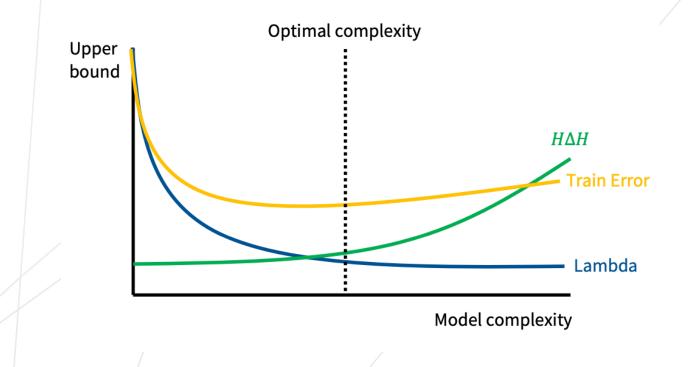
$$\begin{split} E_{p_{test}}[\ell(x,y,h)] & \text{Different answer on two domains} \\ \leq E_{p_{train}}[\ell(x,y,h)] + \frac{1}{2}d_{H\Delta H}(p_{train},p_{test}) + \lambda & \text{same answer but} \\ & \text{Both are wrong} \\ & \text{Training domain error} & \text{Domain distinguishability} \end{split}$$

Minimal error of a classifier on both domains

$$\lambda = \inf_{h \in \mathcal{H}} p_{train} (y \neq h(x)) + p_{test} (y \neq h(x))$$

H\DeltaH claim: Low training domain error + low $H\Delta H$ divergence + rich \mathcal{H} = good generalization to target domain

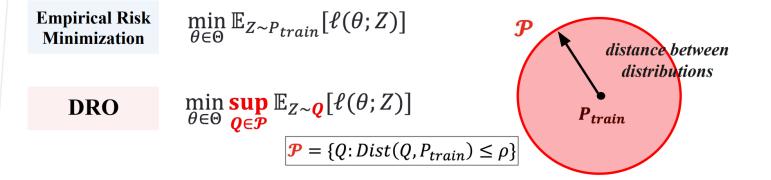
Another tradeoff



Distributionally Robust Optimization

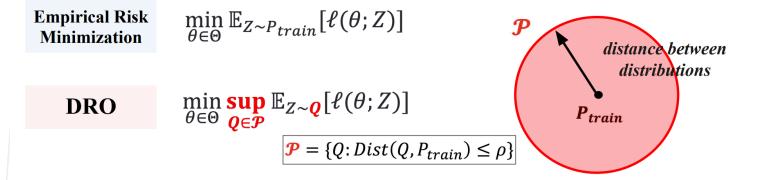
F-divergence

Distributionally Robust Optimization



Instead of minimizing loss over training distribution, minimize loss over distributions *near* it

Generalization of DRO



Instead of minimizing loss over training distribution, minimize loss over distributions *near* it

Duality of DRO

$$R_f(\theta; P) = \inf_{\lambda \ge 0, \eta \in \mathbb{R}} \left\{ \lambda \mathbb{E}_P \left[f^* \left(\frac{\ell(\theta; Z) - \eta}{\lambda} \right) \right] + \lambda \rho + \eta \right\} \qquad \qquad f^*(s) := \sup_t \{ st - f(t) \}.$$

 $= \sup_{L \ge 0} \inf_{\lambda \ge 0, \eta \in \mathbb{R}} \left\{ \mathbb{E}_P[L(Z)\ell(\theta; Z)] + \lambda(\rho - \mathbb{E}_P[f(L(Z))] - \eta(\mathbb{E}_P[L(Z)] - 1)) \right\}$

Duality of DRO

$$R_{f}(\theta; P) = \inf_{\lambda \ge 0, \eta \in \mathbb{R}} \left\{ \lambda \mathbb{E}_{P} \left[f^{*} \left(\frac{\ell(\theta; Z) - \eta}{\lambda} \right) \right] + \lambda \rho + \eta \right\} \qquad f^{*}(s) := \sup_{t} \{st - f(t)\}.$$

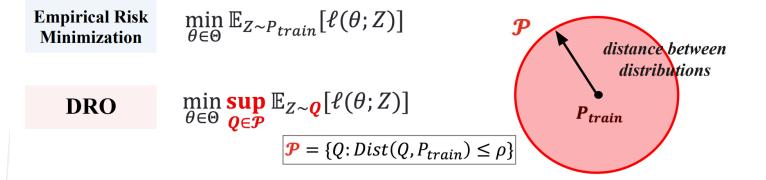
$$= \sup_{L \ge 0} \inf_{\lambda \ge 0, \eta \in \mathbb{R}} \left\{ \mathbb{E}_{P} [L(Z)\ell(\theta; Z)] + \lambda(\rho - \mathbb{E}_{P} [f(L(Z))] - \eta(\mathbb{E}_{P} [L(Z)] - 1)) \right\}$$

$$= \inf_{\lambda \ge 0, \eta \in \mathbb{R}} \sup_{L \ge 0} \left\{ \lambda \mathbb{E}_{P} \left[\frac{L(Z)(\ell(\theta; Z) - \eta)}{\lambda} - f(L(Z)) \right] \right\} + \lambda \rho + \eta.$$

$$= \mathbb{E}_{P} \left[f^{*} \left(\frac{\ell(\theta; Z) - \eta}{\lambda} \right) \right].$$

Variance Regularization

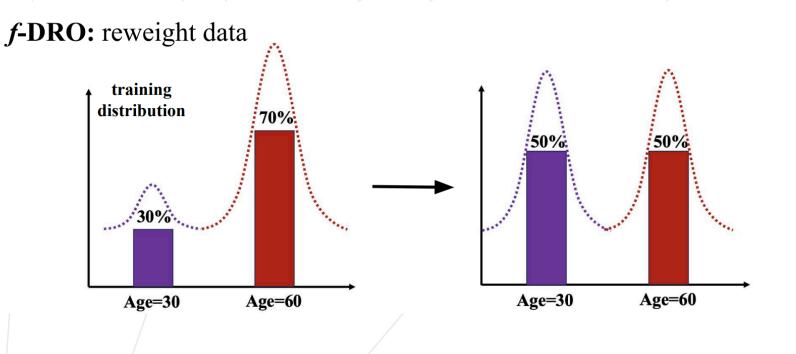
Generalization of DRO



Instead of minimizing loss over training distribution, minimize loss over distributions *near* it

Is DRO Working?

F-divergence DRO only reweighting



spurious correlation

Common training examples

Waterbirds

y: waterbird a: water background

y: blond hair

a: female

FUUNDING SPU

y: landbird a: land background

v: dark hair

a: male

. . . .

y: waterbird a: land background

Weights more on rare data!

Test examples

y: blond hair a: male

air

y: entailment
a: has negation
(P) There was silence
for a moment.
(H) There was a short period
of time where no one spoke.

MultiNLI

a: has negation (P) The economy could be still better.

y: contradiction

(H) The economy has never been better.

y: entailment a: no negation

(P) Read for Slate's take on Jackson's findings.(H) Slate had an opinion on Jackson's findings.

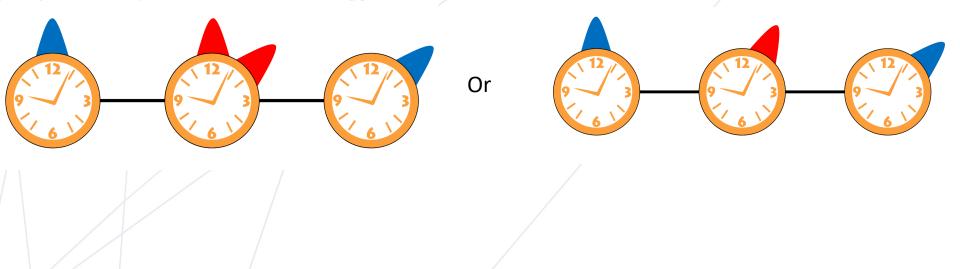
Northwestern

CelebA

33

What's wrong about f-divergence

What's wrong about f-divergence

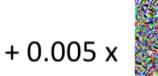


Over-parameterization?

			Average Accuracy		Worst-Group Accuracy	
			ERM	DRO	ERM	DRO
С	Waterbirds	Train	100.0	100.0	100.0	100.0
d tioi	wateronus	Test	97.3	97.4	60.0	76.9
Standard Regularization	CelebA	Train	100.0	100.0	99.9	100.0
		Test	94.8	94.7	41.1	41.1
Seg	MultiNLI	Train	99.9	99.3	99.9	99.0
	IVIUIUN LI	Test	82.5	82.0	65.7	66.4
Penalty						
ena	Waterbirds	Train	97.6	99.1	35.7	97.5
ℓ_2 P	vv alei Ull US	Test	95.7	96.6	21.3	84.6
ر م (بح	CelebA	Train	95.7	95.0	40.4	93.4
Strong	CEIEDA	Test	95.8	93.5	37.8	86.7
St						

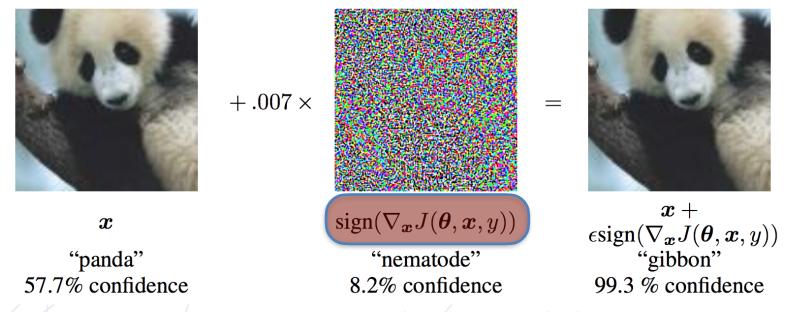
Adversarial Learning

adversarial training



"airliner"

How to find Adversarial Examples?



Optimization that maximize the loss

Adversarial Training

 $\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left| \max_{\delta\in\mathcal{S}} L(\theta, x+\delta, y) \right| \; .$

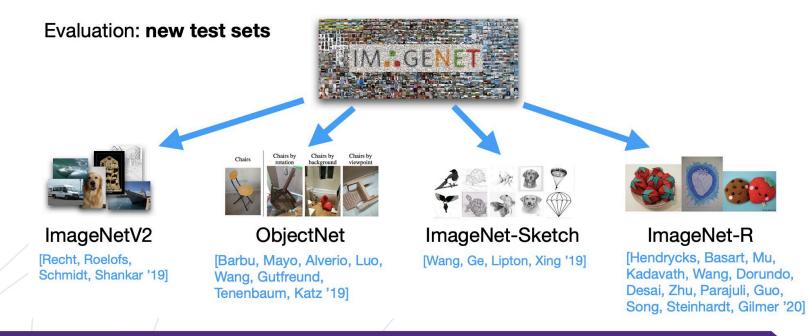
https://arxiv.org/pdf/1706.06083

Adversarial Training Can Hurt Generalization

	Standard training	Adversarial training
Robust test	3.5%	45.8%
Robust train	-	100%
Standard test	95.2%	87.3%
Standard train	100%	100%

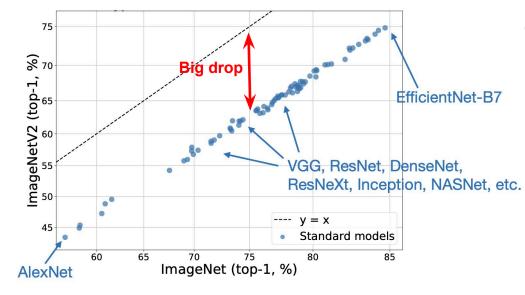
Real World?

Lots of progress on ImageNet over the past 10 years, but models are still not robust.



Agree on the line!

Recht B, Roelofs R, Schmidt L, et al. Do imagenet classifiers generalize to imagenet?[C]// International conference on machine learning. PMLR, 2019: 5389-5400.



[Taori, Dave, Shankar, Carlini, Recht, Schmidt '20]

