Lecture 11 Localized Complexity
IEMS 402 Statistical Learning

Northwestern
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Volume Based Bound

Last lecture, we discussed the problem of getting a covering number N for L; balls using Lo balls.

N(e, BL, || - |l2) (1)

Using a volume argument, we were able to establish the following result.
N(e,BY, || - Il2) < N(e, B, || - |I1) (2)
N(e.BLII-Ih) < (14 ) ®
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Empirical Method of Maurey

Theorem 1. When € > % < (2d + 1)0(1/62)

As a result, log N < % log(d).

Proof. Let’s cover the following set:

B{ = {z e RY|||z||; <1 and z; > 0 Vi}

The above set means that > z; <1 Vz; > 0.

We can think about a probability distribution over {e,...,eq,0}:

z—E:zze2 (1 —|lz|l1)-0
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Empirical Method of Maurey

This implies the following probabilities.

Plz =ej] = z;Vj € [d]
Plz = 0] = 1~ [zl

With these, we can get a mean of the probability distribution.
E[z] :ZIP’[z:ej] -ej-i—lP’[z:()]-O:ij-ej =z

We will draw ¢ samples 21, ..., 2; from the distribution where each z is some e;. After drawing the
samples, we can take the average of the samples:

We want to show that E[||z — z||3] < €2. If we can do this, then if we take all possible z, we get an
e-cover of the space using those Z since then all x we can choose will be within € of some point in
the cover by what we argue above.
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Localized Complexity



Example: Mean Estimation



ldea:Localized Complexity
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Localize Leads to Fast Rate
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Non-parametric Least Square

To estimate the unknown regression function f*, we consider the empirical risk minimizer (ERM), which
is given by

A

f = argmin = S "(f () - )* @

feF
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Method 1

Proof of Theorem 1:  Since f is optimal to the ERM problem (2) and f* € F is feasible, we have

2 D F@ <Y ) 3)

Also recall that
= f*(z;) +ow;, 1<i<n.

We plug this expression into y;’s in equation (3), open the squares and rearrange terms. Doing so gives the
“basic inequality”

SIF = 712 < 23 wilf@) - £ (@) @

Introducing the shorthand A := f — f* € F*, we rewrite the above basic inequality compactly as

1 0
JIAJR < - > wiA (). (5)
i=1
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We need star shape

Lemma 1. If F* is star-shaped, then the function § — L?F‘l is non-increasing on (0,00). Hence §*
ezists and is finite.

Proof For any 0 < § < t, we want to show that G”(Z’P) < G"(‘?}—*).

Given h € F* with ||h||, < t, define the rescaled function h = 2h. We have h € F* by definition with
IAln < 6. It is easy to see that

% <g Zwih(xi)> = %Zwﬁ(mi).

Taking the supreme and expectation on both side over h, we obtain that

n
sup fz w;h(z;)| .
heF||hl.<s ™ i1

1 n
sup = Z w;h(z;)

REF*:||h||ln<t T i=1

)

<E
i <

This is equivalent to desired inequality

Gult, F*) _ Ga(8, F")
t - 0
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Final Error

« o
0* :==min< 4 : Gn (6 F7) < i} = sup ;Z 0:8(x;)) < uo*
6>0 0 20 gl <u
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Method 2: Peeling

Lemma 1 (Peeling Technique) If there is a function ¢ : [0,00) — [0,00) and r* > 0 s.t. Vr > 7%,
we have

* P(4r) < 2¢(r)
* Ry(Gr)) < o(r)
Then we have for all r > 7* we have

l% Dic1 Uz'g(zi)] < 48(r)
Ti%i Pg+r - r
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