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k-NN Regression (k = 1)

f̂ (x) = y(1)
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k-NN Regression (k = 10)

f̂ (x) =
1
10

10∑
i=1

y(i)
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Non-parametric Statistics

“A precise and universally acceptable definition of the term ‘nonparametric’ is
not presently available. The viewpoint adopted in this handbook is that a
statistical procedure is of a nonparametric type if it has properties which are
satisfied to a reasonable approximation when some assumptions that are at
least of a moderately general nature hold.”

– The Handbook of Nonparametric Statistics
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Bias and Variance Trade-off
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Bias and Variance Trade-off
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k-NN Regression with Limited Data (k=3)

f̂ (x) =
1
3

3∑
i=1

y(i)
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k-NN Regression with More Data

Use the same size of neighborhood, now we have 10 data in the circle

❐ How is bais changing? How is variance changing?
❐ How should we do bias-variance trade-off?
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Local Kernel Smoothing: Nadaraya-Watson Estimator

f̂ (x) =

∑n
i=1 Kh(x − xi ) yi∑n
i=1 Kh(x − xi )
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Curse of Dimensionality
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Nonlinear Regression Models



Nonlinear Regression Model

A general form of nonlinear regression model is Yi = g(xi ;β) + ϵi , where

❐ Yi : response for observation i ;

❐ xi : vector of predictors for observation i ;

❐ β: vector of model parameters;

❐ g(xi ;β): some parametric nonlinear function;

❐ ϵi : zero-mean random error for observation i .

We will see shortly that if the random errors are Gaussian and independent of
x, the MLE of β is just nonlinear least squares.

12



Example of Manufacturing Learning Curve

• Two facilities operate with (different) efficiency as a function of time.
• We denote Y as the relative efficiency of operation. The predictor variables

are

• x1 =

1, facility B (modern)

0, facility A (old)
;

• x2 = number of weeks.

Week

Efficiency

Facility B

Facility A
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Questions and Discussions

• For facility A, and the data looked like in the previous slide, how would you
model it?

• Facilities A and B have different asymptotic efficiencies, how would you
modify the model?

• If facilities A and B have different learning rates, how would you modify the
model?

• If the objective was to determine if the two facilities have different
asymptotic efficiencies, how could you do this?

Hint: Play with the model Y = β0 + β3 exp(β2x2) + ϵ.
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MLE for General Nonlinear Regression Model

Nonlinear model Yi = g(xi ;β)︸ ︷︷ ︸
:=µi

+ϵi with ϵi ∼ N(0, σ2).

Now we view xi as deterministic, not random.

• Accordingly, the nonlinear model becomes Yi = µi + ϵi .

• Marginal pdf of Yi is f (yi ;β, σ) =
1√
2πσ

exp
(
− 1

2σ2 (yi − µi )
2
)
.

What is the Max-likelihood Estimator?
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Maximizing Likelihood Function

Joint pdf (a.k.a. the likelihood function) of Y1, . . . ,Yn is

f (y;β, σ) =
1

(2π)n/2σn
exp

(
− 1

2σ2

n∑
i=1

(yi − µi )
2

)
.

We want to maxβ,σ f (y;β, σ) = maxβ,σ
1
σn exp

(
− 1

2σ2

∑n
i=1(yi − µi )

2
)
.

Some inspection suggests that for β, it suffices to

min
β

n∑
i=1

(yi − µi )
2 = min

β

n∑
i=1

(yi − µi )
2. log-likelihood

That is, the MLE of β for the general nonlinear regression model with i.i.d.
Gaussian errors (that are independent of x) is “nonlinear least squares” .

How to compute β? Optimization!
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Summary of Steps in General MLE

❐ Write out the form of the statistical model that you are using to represent
the data.

❐ Find the marginal distribution of each individual observation Yi (for
regression problems the xi ’s are not treated as random, so you only need to
find the marginal distribution of the Yi ’s given the xi ’s).

❐ From the marginal distributions in step (2), find the joint distribution
f (Y;θ) of the entire set of data Y. Here θ denotes all the parameters.

If tractable, find an analytical expression for the θ that maximizes the
likelihood f (Y;θ). Otherwise, use numerical optimization software to
minimize − log f (Y;θ).
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R for Nonlinear Regression

• R has several built-in commands for nonlinear regression such as nlm and
nls (a little buggier than nlm).

• For the manufacturing learning curve example, we read data in MLC.csv.

• The following code snippet is for nonlinear regression on MLC.csv.
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Example: Gaussian Distribution with Learned Variance

The likelihood function of a Gaussian distribution is given by:

P(yi | µ(xi ), σ(xi )2) =
1√

2π σ(xi )2
exp

(
− (yi − µ(xi ))

2

2σ(xi )2

)

ℓ(µ, σ2) =
n∑

i=1

logP(yi |µ(xi ), σ(xi )2)

=
n∑

i=1

(
−1

2
log(2π)− 1

2
log(σ(xi )

2)− (yi − µ(xi ))
2

2σ(xi )2

)

= −n

2
ln(2π(xi ))−

n

2
ln(σ(xi )

2)︸ ︷︷ ︸
sparse regularization

−
n∑

i=1

(yi − µ(xi ))
2

2σ(xi )2︸ ︷︷ ︸
weighted ℓ2 loss
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Another Example: Weibull Distribution

The likelihood function of a Weibull distribution is given by:

pk(x |λ) =
k

λ

(x
λ

)k−1
e−(x/λ)k

, where 1 > k > 0 is the shape parameter and λ > 0 is the scale parameter.

log pk(y |λ(x)) = −(y/λ(x))k − k log λ(x) + log(kyk−1)︸ ︷︷ ︸
not dependent on the prediction λ(x)

Fact. f (y , λ) attains its minimum at λ = y .
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Non-parametric Statistical
Inference



Statistical Uncertainty in Supervised Learning

• With nonlinear regression models, the formulae for assessing statistical
uncertainty in linear regression (e.g., F -tests and t-tests for significance of
predictors, SEs and CIs for parameters, PIs and CIs for new observations,
etc.) do not apply directly.

• Question: Why might we want to calculate SEs, CIs/PIs, do hypothesis
tests, etc?

• For some nonlinear models, we can use approximate asymptotic analytical
results valid for sufficiently large sample size n to assess statistical
uncertainty.

• Fortunately, we have alternative computational approaches that apply to
any nonlinear model:

• Cross-validation for deciding which models are the best.
• Bootstrap resampling (or bootstrapping for short) for SEs and CIs on the

parameters and CIs and PIs on new observations.
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Overview of Bootstrapping

Objective: Estimate the sampling distribution of θ̂ and quantities like SE(θ̂)
that are derived from it.

❐ You are given a sample of data of size n observations.

❐ You have estimated some parameter(s) θ (call it θ̂).

Problem: Hypothetically, if we knew the form of the population distribution,
we could consider using simulation to draw many random samples (each of
size n) from the population and calculate a different θ̂ for each sample. We
could construct a histogram of all the θ̂’s and take their sample standard
deviation to be an estimate of SE(θ̂). But what if we do not know the form
of the population distribution?
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Illustration of Sampling from Known Distribution

AIM. estimate the mean of a Gaussian distribution and want to known the SE
of the estimate.

❐ Generate say 10,000 samples, each of size n = 20, from an N(5.3, 0.42)

distribution.

❐ Calculate the averages {ȳ (j)
sim : j = 1, . . . , 10000} for the 10000 replicates.

❐ Take

SE(ȳ) ≈

√√√√ 1
10000 − 1

10000∑
j=1

(ȳ
(j)
sim − ȳsim)2,

where ȳsim is the average of ȳ (j)
sim.
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Idea: Bootstrap Sampling

However, Step:
Generate say 10,000 samples, each of size n = 20, from N(5.3, 0.42)︸ ︷︷ ︸

population

is

impossible!

Idea. Bootstrap Sampling

Original Distribution

Sample 1
Sample 2

Sample B

Ideal Sampling

Empirical Distribution

Bootstrap Sample 1
Bootstrap Sample 2

Bootstrap Sample B

Bootstrap Resampling

Similar
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Idea:

If we know fθ, we can generate new samples to recompute the statistic, and
take the sample variance of these estimators
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Realisitic

Idea: use the observed samples z1, ..., zn to generate n “new” samples, as if
they come from
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Bootstrapping Overview Cont’d

❐ The bootstrap sampling approach: Draw a “bootstrap” sample as a
random sample of the same size n from the original sample of n
observations (with replacement), and calculate a θ̂ for the bootstrap
sample.

❐ Repeat a large number of times, each time drawing another bootstrap
sample (of size n) and calculating another θ̂ for that sample.

❐ Then construct a histogram of all the θ̂’s, take their sample standard
deviation to be an estimate of SE(θ̂), etc.

Why this works: Consider making a pretend population that consists of your
original sample of n observations, copied over and over, an infinite number of
times. Each bootstrap sample is equivalent to drawing a random sample of
size n from this infinite pretend population.
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Illustration of Bootstrapping

AIM. estimate the mean of an unknown distribution and want to known the
SE of the estimate.

❐ Generate say 10,000 samples, each of size n = 20, from the given observed
data (with replacement).

❐ Calculate the averages {ȳ (b) : b = 1, . . . , 10000} for the 10000 replicates.
(We think of ȳ (b) just as the estimator θ̂.)

❐ Take

SE(ȳ) ≈

√√√√ 1
10000 − 1

10000∑
j=1

(ȳ (b) − ȳ)2,

where ȳ is the average of ȳ (b).
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Bootstrapping in Nonlinear Regression

❐ We have a sample of n observations {(yi , xi )}ni=1 of a response variable and
a set of predictor variables.

❐ We fit a nonlinear regression model to the data to estimate a set of
parameters θ.

❐ Let θ denote one of the parameters of interest and θ̂ its estimate.

Objective: Estimate the sampling distribution of θ̂, its standard error, a
confidence interval for θ, etc.
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Steps of the Bootstrap Procedure

❐ Generate a “bootstrap” sample (with replacement) of n observations from
{(yi , xi )}ni=1. Denote the bootstrap sample by

{(y (b)
i , x(b)i )}ni=1.

❐ Fit the same type of regression model (with the same set of parameters θ

and parameter θ of special interest) to the bootstrapped sample. Denote
the estimates for the bootstrapped sample by θ̂(b) and θ̂(b).

❐ Pick a large number B (e.g., B = 10, 000), and repeat Steps (1) and (2) a
total of B times, which produces

{θ̂(b)}Bb=1.
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Steps of the Bootstrap Procedure Cont’d

❐ Construct a histogram of {θ̂(b)}Bb=1 and calculate

• θ̂ = 1
B

∑B
b=1 θ̂

(b): average of all bootstrapped estimates.

• SE(θ̂) =
√

1
B−1

∑B
b=1(θ̂

(b) − θ̂): standard error of θ̂.

• θ̂α/2: upper α/2 quantile.
• θ̂1−α/2: lower α/2 quantile.
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Some Output of Bootstrap

❐ A crude 1 − α confidence interval for θ is

θ̂ − zα/2 · SE(θ̂) ≤ θ ≤ θ̂ + zα/2 · SE(θ̂).

❐ A better 1 − α confidence interval for θ is

θ̂ − (θ̂α/2 − θ̂) ≤ θ ≤ θ̂ + (θ̂ − θ̂1−α/2).
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Conformal Prediction



Conformal Prediction

AIM.

❐ Finite-sample coverage guarantees without distributional assumptions

❐ Converting a point prediction algorithm into a prediction set
❙ Input: i.i.d. data pairs (Xi ,Yi ) for i = 1, . . . , n
❙ Objective: Construct a prediction band Ĉn(x) such that

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1 − α

Note: Trivial solutions (Why?) exist, but the goal is to develop nontrivial,
adaptive methods
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Key Idea: Using Ranks and Quantiles

Observation.the rank of Yn+1 is uniformly distributed over the values
1, 2, . . . , n + 1. This means that

P
(
Yn+1 is among the

[
(1 − α)(n + 1)

]
smallest of Y1, . . . ,Yn

)
= 1 − α,

which is in turn equivalent to1

P
(
Yn+1 is among the (1 − α)(n + 1) smallest of Y1, . . . ,Yn

)
≥ 1 − α.

Accordingly, by defining qn = the
[
(1− α)(n+ 1)

]
-th smallest of Y1, . . . ,Yn,

we have precisely achieved the desired property. via Yn+1 ≤ the[
(1 − α)(n + 1)

]
-th order statistic of Y1, . . . ,Yn.
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Full Conformal Prediction

We havei.i.d. pairs {(Xt ,Yt)}nt=1, where Xt ∈ X and Yt ∈ Y. We want to
construct a prediction set for Yn+1 given Xn+1. Let f̂n be any regression
predictor trained on

(X1,Y1), (X2,Y2), . . . , (Xn,Yn).

Our goal is to achieve (1 − α) coverage, i.e.,

P
(
Yn+1 ∈ Cn(Xn+1)

)
≥ 1 − α.

Why the Naive procedure Fails?

❐ Compute the training residuals ĝi = Yi − f̂n(Xi ), i = 1, 2, . . . , n.
❐ Let q̂n be an estimate of a suitable quantile of the absolute residuals, for

example the (1 − α) empirical quantile of{
|ĝ1|, |ĝ2|, . . . , |ĝn|

}
.

❐ Define the prediction set for a new point x as

Cn(x) =
[
f̂n(x) − q̂n, f̂n(x) + q̂n

]
. 35



Full Conformal Prediction

We havei.i.d. pairs {(Xt ,Yt)}nt=1, where Xt ∈ X and Yt ∈ Y. We want to
construct a prediction set for Yn+1 given Xn+1. Let f̂n be any regression
predictor trained on

(X1,Y1), (X2,Y2), . . . , (Xn,Yn).

Our goal is to achieve (1 − α) coverage, i.e.,

P
(
Yn+1 ∈ Cn(Xn+1)

)
≥ 1 − α.

Full Conformal Prediction

❐ Compute the training residuals ĝi = Yi − f̂ −i
n(Xi ), i = 1, 2, . . . , n.

(−i means delete i−th data while training)

❐ Let q̂n be an estimate of a suitable quantile of the absolute residuals, for
example the (1 − α) empirical quantile of

{
|ĝ1|, |ĝ2|, . . . , |ĝn|

}
.

❐ Define the prediction set for a new point x as

Cn(x) =
[
f̂n(x) − q̂n, f̂n(x) + q̂n

]
. 36



Split Conformal Prediction

Full Conformal Prediction is computationally intractable! (why?)

Key Idea. Data Split

❐ Proper Training Set (D1): Fit the point predictor f̂n1(x)

❐ Calibration Set (D2): Compute residuals

Ri = |Yi − f̂n1(Xi )|, i ∈ D2

• Define quantile from calibration residuals:

qn2 = ⌈(1 − α)(n2 + 1)⌉-th smallest residual

• Prediction set:
Ĉn(x) =

[
f̂n1(x)− qn2 , f̂n1(x) + qn2

]
• Guarantee: Ensures marginal coverage of at least 1 − α
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Mathematical Formulation: Regression Case

Nonconformity Score

For a predictive model f̂ and calibration data {(xi , yi )}ncal
i=1, define the

nonconformity score as:
αi =

∣∣∣yi − f̂ (xi )
∣∣∣

Prediction Interval

Let q̂1−α be the (1 − α)-quantile of {αi}ncal
i=1. For a new input xn+1, the

prediction interval is given by:

{y ∈ R :
∣∣∣y − f̂ (xn+1)

∣∣∣ ≤ q̂1−α}
This interval guarantees that the true y falls inside with probability at least
1 − α.
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Mathematical Formulation: Classification Case

Nonconformity Score
For a classification model, a common choice is:

αi = 1 − p(yi | xi )
where p(yi | xi ) is the predicted probability for the true class.

Prediction Set
For a new example xn+1, the prediction set is defined as:

Γ(xn+1) =

{
y ∈ Y :

#{i : αi ≥ α(y)}+ 1
ncal + 1

> α

}
where α(y) is the nonconformity score computed if y were the true label.
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Advantages and Limitations

Advantages

• Finite-Sample Guarantees: Ensures valid coverage without asymptotic
approximations.

• Model-Agnostic: Can be applied on top of any predictive model.

Limitations

• Computational Cost: Some methods can be computationally intensive,
especially in the transductive setting.

• Loose Confidence Interval

• Assumptions: Relies on the exchangeability assumption which might not
hold in all cases.
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