
Convenient Matrix Notation

Define: 

Model becomes:                          

LS solution becomes: 

If XTX invertible:   

• Tip:  Always pay attention to whether the quantities are 
scalars, vectors, or matrices, and their dimensions
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Assessing the Fit

• As in simple regression, calculate: 
   fitted values:  
   residuals:      
   error sum of squares:  
   total sum of squares:      
   regression sum of squares: 

• Still have same total sum of squares decomposition: 

  SST = SSR + SSE 
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 r2 for Multiple Regression (beware though)

• We can still look at 

• In multiple regression, r2 is called coefficient of multiple 
determination. It still represents the proportion of 
variability in y that is accounted for by its linear 
dependence on the set of predictors. 

• Mathematically, r2 is equivalent to the square of the 
correlation coefficient between yi and   

• Beware: r2 is artificially high when n >> k because of 
overfitting – use something called "adjusted r2" instead 
(coming up soon)
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Illustration of Overfitting with Simulated Data

• The following code generates an array of completely random data with n 
rows and k predictor variables and fits a regression model 

• What will happen if we use k = 50 and n = 40? Why? 
• With n = 40, what is the largest k for which we can still fit the model and 

estimate all coefficients? What will r2 be in this case? 
• What will happen if we use k = 30 and n = 40? 

#####R code for overfitting randomly generated data################# 
k=30;n=40 
x<-matrix(rnorm(k*n,0,1),n,k) 
y<-rnorm(n,0,1) 
overfit<-data.frame(y,x) 
lm2<-lm(y~.,data=overfit) 
summary(lm2) 
yhat<-fitted(lm2) 
plot(yhat,y)  #plot of y vs. fitted values 
#### 
rm(x,y,overfit,k,n)



A Real Overfitting Example (sil_etch.txt)

• A manufacturer of semiconductor etching machines wants to predict 
the number of days until the customer signs off on a received machine 
and pays the manufacturer (after shipping to customer, set up, trouble-
shooting, fine tuning, etc, so that the machine is confirmed to work 
properly).  This became extremely important following the Sarbanes-
Oxley Act that tightened the rules on corporate accounting following 
the scandals of the late 1990's 

• The idea is to predict days2signoff before the machine is shipped to 
the customer, based on quality-related predictor variables that are 
recorded during manufacturing 

• sil_etch.txt contains the days2signoff (the response) and nine other 
predictors for a set of 11 machines that were manufactured, shipped 
and eventually signed-off (they produce many machines, but not many 
of each type, and they did not want to mix machines when shipping).  

• Let's fit a multiple regression model regressing days2signoff onto all 
nine predictors and see how well the model predicts



Fit a Multiple Regression to the ETCH Data

#########R code for fitting a multiple regression model to the ETCH data##### 
ETCH<-read.table("sil_etch.txt", header=TRUE, sep="\t") 
ETCH 
lm1<-lm(days2signoff~.,data=ETCH) 
summary(lm1) 
yhat <- predict(lm1) 
plot(yhat,ETCH$days2signoff, ylim=c(0,300), xlim=c(0,300)) 
data.frame(ETCH,round(yhat))



> summary(lm1) 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept) 9993.23538 3950.70892   2.529    0.240 
MNC          -32.23923   13.10992  -2.459    0.246 
ISDR           0.05951   21.12661   0.003    0.998 
DMR          -15.76123    4.70646  -3.349    0.185 
PDSrev        16.03662   15.27724   1.050    0.485 
NSR          121.27142   46.62543   2.601    0.234 
UPSF         -29.01261   12.14763  -2.388    0.252 
ILTR          -7.91838   10.52495  -0.752    0.589 
BayDay       -49.91432   23.38041  -2.135    0.279 
Test        -900.59213  362.52289  -2.484    0.244 

Residual standard error: 40.3 on 1 degrees of freedom 
Multiple R-squared: 0.9715,     Adjusted R-squared: 0.7152  
F-statistic: 3.791 on 9 and 1 DF,  p-value: 0.3801 
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Discussion Points and Questions

• How good does the fit appear to be for the ETCH data? 
• Does it look like the fitted model for days2signoff has 

good predictive power? 
• If you were the manufacturer, would you be comfortable 

using the model to predict days2signoff for machines you 
are about to ship?



Definition of r2
adj 

• Recall: 

• Define the "mean squares" corresponding to the "sum of squares": 

• For multiple regression, instead of r2 you should look at "adjusted r2":
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Discussion Points and Questions

• In multiple regression, r2
adj is interpreted as a better 

estimate (than r2) of the percentage of variability in the 
response that is attributed to its linear dependence on the 
predictors 

• But with severe overfitting, r2
adj can still be misleading if 

the error d.f. is very small 
• What are r2

adj and r2 for the GAS data? For the  ETCH 
data? For the simulated random data with k = 30 and n = 
40? 

• Does r2
adj for the ETCH data seem reasonable?



Statistical Inference on the Coefficients

• A regression fit can seem practically significant (high 
r2) without being statistically significant, and vice-
versa.  

• Three common tests of whether individual parameters or 
groups of parameters differ from zero are: 
– F-test for testing whether at least one of the k 

parameters differs from zero 
– t-tests and CIs for testing whether an individual 

parameter differs from zero (if so, the predictor has a 
statistically significant effect on the response) 

– Partial sum of squares F-test for testing whether at 
least one of a specified group of parameters differs 
from zero



Overall F-test on All k Coefficients

All of the statistical inference assumes a "true" model: 
observations:  Yi = β0 + β1xi1 +. . . + βkxik + εi :   i = 1, ..., n  
random errors:   εi ~ N(0,σ2)  and all i.i.d. 
"true" parameters:     β0,  β1, . . ., βk  

To test:   H0:  β1 = . . . = βk = 0 
      H1:  at least one β ≠ 0 
  
Use test statistic                        where 

Null distribution: F ~ Fk,n−(k+1) 

Reject H0 if
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F-test for the GAS data

#########R code for F-test with gas mileage data and r^2##### 
GAS<-read.csv("gas_mileage.csv",header=TRUE) 
n<-30 
k<-11 
lm1<-lm(Mpg~.,data=GAS) 
summary(lm1)  #The F-test produced by the summary() command is the overall F-test 
a <- anova(lm1); a  #This shows SSE, MSE, and other things 
#The following does the same F-test manually 
SSR <- sum(a[[2]][1:11]) 
SSE <- a[[2]][12] 
MSR <- SSR/k 
MSE <- SSE/(n-k-1) 
F <- MSR/MSE 
pf(F,k,n-k-1, lower.tail=FALSE) #P-value for F test



> summary(lm1) 

Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)   
(Intercept)     17.339838  30.355375   0.571   0.5749   
Displacement    -0.075588   0.056347  -1.341   0.1964   
Hpower          -0.069163   0.087791  -0.788   0.4411   
Torque           0.115117   0.088113   1.306   0.2078   
Comp_ratio       1.494737   3.101464   0.482   0.6357   
Rear_axle_ratio  5.843495   3.148438   1.856   0.0799 . 
Carb_barrels     0.317583   1.288967   0.246   0.8082   
No._speeds      -3.205390   3.109185  -1.031   0.3162   
Length           0.180811   0.130301   1.388   0.1822   
Width           -0.397945   0.323456  -1.230   0.2344   
Weight          -0.005115   0.005896  -0.868   0.3971   
Trans._type      0.638483   3.021680   0.211   0.8350   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 3.227 on 18 degrees of freedom 
  (2 observations deleted due to missingness) 
Multiple R-squared: 0.8355,     Adjusted R-squared: 0.7349  
F-statistic:  8.31 on 11 and 18 DF,  p-value: 5.231e-05 



Discussion Points and Questions

• Is the multiple regression fit to the GAS data statistically 
significant?  

• In general, does strong statistical significance imply a 
strong predictability?



Practical Versus Statistical Significance

triscan_5dx.txt contains quite a few observations of two variables related to 
measurement of solder paste volume in printed circuit board assembly.  The 
response is FiveDX, which are volume measurements for a set of solder bricks 
using a machine based on X-ray technology. The predictor variable is Triscan, 
which are volume measurements of the same set of solder bricks using a 
machine based on laser scanning. The Triscan measurements are known to be 
quite accurate, but these measurements can only be obtained prior to placing 
the chips on the board. The FiveDX measurements can be obtained even after 
the chips are placed, but their accuracy is in question. The goal is to assess the 
accuracy of the FiveDX measurements by comparing it to the Triscan 
measurements.  What is the conclusion? 

######R code#### 
X<-read.table("triscan_5dx.txt",header=TRUE,sep="\t") 
X[1:20,] 
anova(lm(FiveDX~Triscan,data=X)) 
## 
plot(X$Triscan,X$FiveDX); rm(X)



Discussion Points and Questions

• If the F-test rejects H0, an appropriate next step might be 
to determine which of the predictor variables (e.g., all of 
them, just a few, etc) have significant effects on the 
response 

• Why might it be of interest to determine which predictors 
have significant effects? 

• How would you formalize this as an hypothesis test? 
• We can sometimes (but there is a big pitfall, discussed 

later) use a t-test on individual coefficients to determine 
which βj's ≠ 0



t-tests for the Tire Wear Data

######R code for t-tests and CIs on tire wear data #### 
TIRE<-read.table("tire_wear.txt",header=TRUE,sep="\t") 
TIRE 
plot(TIRE$mileage, TIRE$depth) 
abline(lm(depth~mileage, data=TIRE), col="red") #plot of simple lin. regression 
lm1<-lm(depth~poly(mileage,2, raw=TRUE), data=TIRE) 
summary(lm1) 
confint(lm1,level=.95) 

##The following fits the same quadratic model 
lm1<-lm(depth ~ mileage + I(mileage^2), data=TIRE) 

##can calculate t-percentile via 
qt(.975, 6)



> summary(lm1) 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)     
(Intercept)                   386.26485    4.79996   80.47 2.48e-10 *** 
poly(mileage, 2, raw = TRUE)1 -12.77238    0.69948  -18.26 1.74e-06 *** 
poly(mileage, 2, raw = TRUE)2   0.17162    0.02103    8.16 0.000182 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 5.906 on 6 degrees of freedom 
Multiple R-squared: 0.9961,     Adjusted R-squared: 0.9948  
F-statistic: 762.8 on 2 and 6 DF,  p-value: 6.011e-08  

> confint(lm1,level=.95) 
                                    2.5 %      97.5 % 
(Intercept)                   374.5197613 398.0099357 
poly(mileage, 2, raw = TRUE)1 -14.4839431 -11.0608134 
poly(mileage, 2, raw = TRUE)2   0.1201549   0.2230796
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Some Points and Pitfalls

• Usually begin with the overall F-test: 
– If H0 not rejected, consider other predictors, nonlinear regression, or 

conclude there is no predictability and stop   
– If H0  rejected, follow up by determining important predictors using t-tests 

on individual predictors (problematic with multicollinear predictors), partial 
F-tests on groups of predictors, or automated methods like stepwise or 
best subsets    

• Pitfall:  Beware interpreting individual t-tests when predictors are 
multicollinear, which is almost always. P-values will be 
misleadingly high. The reason is that the t-test of whether βj ≠ 0 is 
essentially testing whether including/excluding the individual predictor xj in the 
model significantly changes the SSE. E.g., the t-test for β1 compares the 
following two models: 

 Y = β0 + β1x1 + β2x2 +. . .+ βkxk + ε    (with x1), vs  

Y = β0 +           β2x2 + . . .+ βkxk + ε    (without x1)



Individual t-tests for the GAS Data Illustrating the Pitfall

##########refit the gas mileage data regression with all predictors included##### 
GAS<-read.csv("gas_mileage.csv",header=TRUE) 
pairs(GAS, cex = 0.5, pch = 16)  #matrix scatterplot 
##fit a linear regression with all 11 predictors 
lm1<-lm(Mpg~.,data=GAS) 
summary(lm1) 

##repeat with only Rear_axle_ratio and weight 
lm1<-lm(Mpg~ Rear_axle_ratio + Weight,data=GAS) 
summary(lm1)



> summary(lm1) 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)   
(Intercept)     17.339838  30.355375   0.571   0.5749   
Displacement    -0.075588   0.056347  -1.341   0.1964   
Hpower          -0.069163   0.087791  -0.788   0.4411   
Torque           0.115117   0.088113   1.306   0.2078   
Comp_ratio       1.494737   3.101464   0.482   0.6357   
Rear_axle_ratio  5.843495   3.148438   1.856   0.0799 . 
Carb_barrels     0.317583   1.288967   0.246   0.8082   
No._speeds      -3.205390   3.109185  -1.031   0.3162   
Length           0.180811   0.130301   1.388   0.1822   
Width           -0.397945   0.323456  -1.230   0.2344   
Weight          -0.005115   0.005896  -0.868   0.3971   
Trans._type      0.638483   3.021680   0.211   0.8350   

Residual standard error: 3.227 on 18 degrees of freedom 
  (2 observations deleted due to missingness) 
Multiple R-squared: 0.8355,     Adjusted R-squared: 0.7349  
F-statistic:  8.31 on 11 and 18 DF,  p-value: 5.231e-05 





the analogous results with only two predictors

> summary(lm1) 

Call: 
lm(formula = Mpg ~ Rear_axle_ratio + Weight, data = GAS) 

Coefficients: 
                  Estimate Std. Error t value Pr(>|t|)     
(Intercept)     31.7594958  5.8348313   5.443 7.41e-06 *** 
Rear_axle_ratio  2.2141129  1.3146877   1.684    0.103     
Weight          -0.0051025  0.0007106  -7.181 6.63e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 3.151 on 29 degrees of freedom 
Multiple R-squared: 0.7674,     Adjusted R-squared: 0.7514  
F-statistic: 47.84 on 2 and 29 DF,  p-value: 6.547e-10 



Discussion Points and Questions

• Why are the coefficients not statistically significant when 
we include all 11 predictor variables? 

• Why does Weight become much more significant when 
we fit the model with only Weight and Rear_axle_ratio 
included?



Example:  Predicting Property Value – Illustration of PI on Y* vs. 
CI on µ* 

• property_value.txt contains home sales prices and nine other characteristics (taxes, lot 
size, living space, age, etc) for a sample of 24 houses. The objective is to predict the 
sales price as a function of the other characteristics 

• The following R code illustrates PIs and CIs for the simpler case of having only a 
single predictor taxes.  

###R code for illustrating CIs and PIs with property value data with one predictor#### 
PROP<-read.table("property_value.txt",sep="\t",header=TRUE) 
pairs(PROP, cex=0.5, pch=16)  #matrix scatterplot 
PROP[1:10,] 
Xnew <- data.frame(taxes = seq(4, 9, 0.5)) 
plim <- predict(lm(sales_price ~ taxes,data=PROP), newdata=Xnew, interval="prediction") 
clim <- predict(lm(sales_price ~ taxes,data=PROP), newdata=Xnew, 

interval="confidence") 
 matplot(Xnew$taxes,cbind(clim, plim[,-1]), lty=c(1,2,2,3,3), 

col=c("black","red","red","blue","blue"),type="l", ylab="predicted y") 
points(PROP$taxes,PROP$sales_price)
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Discussion Points and Questions

• Which is the PI and which is the CI in the previous figure? 
• What is the interpretation of the PI? 
• What is the interpretation of the CI? 
• If someone is putting their house up for sale and wants to 

know the high end of the range for which it might sell, 
would the response PI or CI be more relevant? 

• What is the relationship between the CI on µ* versus a CI 
on one of the coefficients? 

• How are the response CI and PI calculated? 



The Statistical View of Y* 

For fixed x*:   Y* = β0 + β1x1* + . . .  + βkxk*  + ε  
                              =             µ*                         + ε    ~ N(µ* , σ2)

x*

µ*

x

y
β0 + β1x
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Calculating PIs and CIs in R

#########R code for illustrating CIs and PIs with property value data############ 
PROP<-read.table("property_value.txt",sep="\t",header=TRUE) 
pairs(PROP[,1:3], cex=0.5, pch=16)  #matrix scatterplot 
lm1<-lm(sales_price~.,data=PROP[,1:3]) 
summary(lm1) 
Xnew<-data.frame(taxes=7,baths=1.5) 
predict(lm1, newdata=Xnew, se.fit = T, level=0.95, interval = "confidence") 
predict(lm1, newdata=Xnew, se.fit = T, level=0.95, interval = "prediction") 

###manual calculations of some of the same thing### 
s<-sqrt(anova(lm1)[[2]][3]/21)  #this is s, the sqrt of the MSE 
X<-as.matrix(cbind(1,PROP[,2:3])) 
x<-matrix(c(1,7,1.5),3,1) 
V<-solve(t(X)%*%X) 
SE<-s*sqrt(t(x)%*%V%*%x)  #this is SE of mu*


