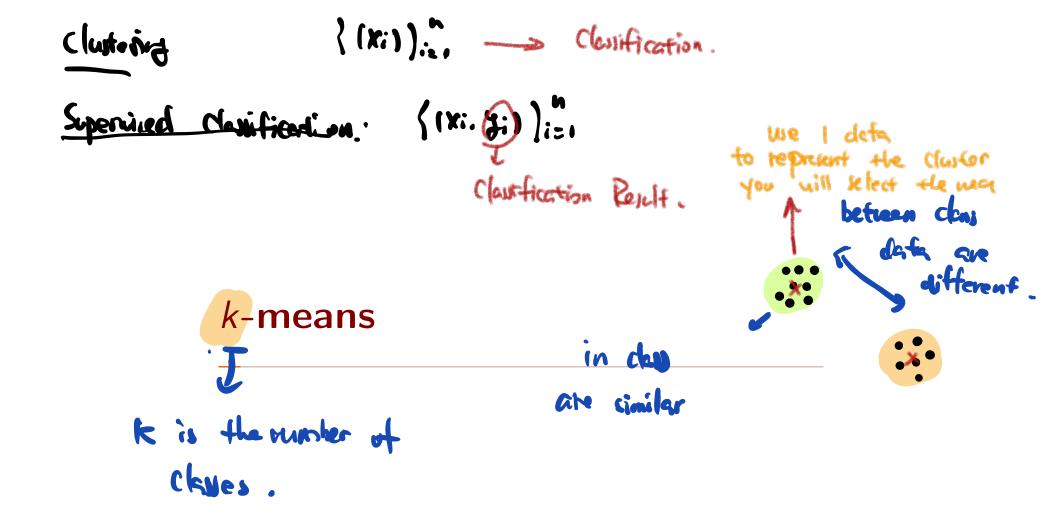


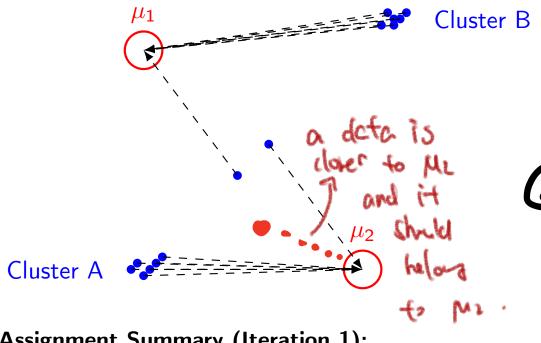
IEMS 304 Lecture 8: Unsupervised Learning

Yiping Lu yiping.lu@northwestern.edu

Industrial Engineering & Management Sciences
Northwestern University



Iteration 1: Initialization & Forced Assignment



Drandonly initialize
the k-means.

(2) once you know the dessification

Assignment Summary (Iteration 1):

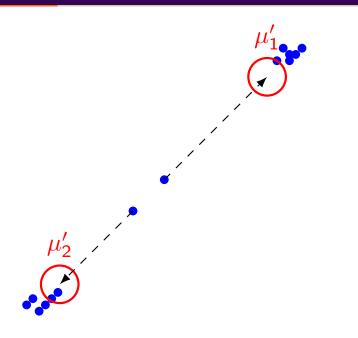
- $\mu_1 = (1, 4.5)$ gets: all Cluster B points (6 pts) + ambiguous point (2.5, 2.5) [total 7 pts].
- $\mu_2 = (4.5, 1)$ gets: all Cluster A points (6 pts) + ambiguous point (3,3) [total 7 pts].

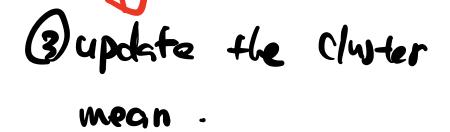
Updated centroids (computed as the mean):

$$\mu_1' = \left(\frac{30+2.5}{7}, \frac{30+2.5}{7}\right) \approx (4.643, 4.643)$$

$$\mu_2' = \left(\frac{6.3+3}{7}, \frac{6.3+3}{7}\right) \approx (1.329, 1.329)$$

Iteration 2: Reassignment







Reassignment (Iteration 2):

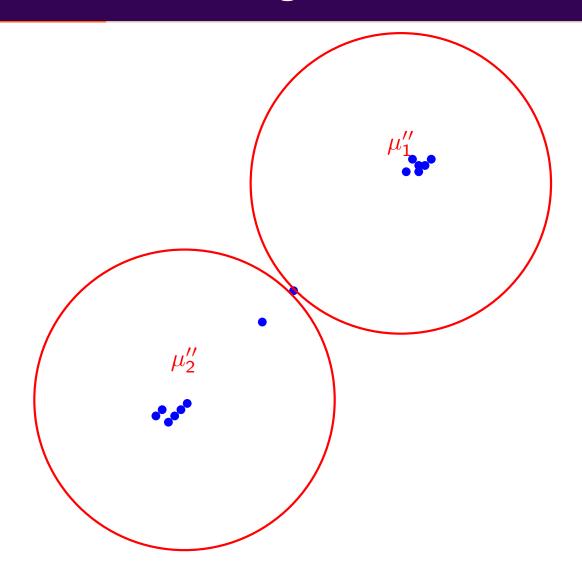
- (2.5, 2.5) switches from μ_1 to μ'_2 (closer to (1.329, 1.329)).
- (3,3) switches from μ_2 to μ'_1 (closer to (4.643,4.643)).

New centroids:

$$\mu_1'' = \left(\frac{30+3}{7}, \frac{30+3}{7}\right) = \left(\frac{33}{7}, \frac{33}{7}\right) \approx (4.714, 4.714)$$

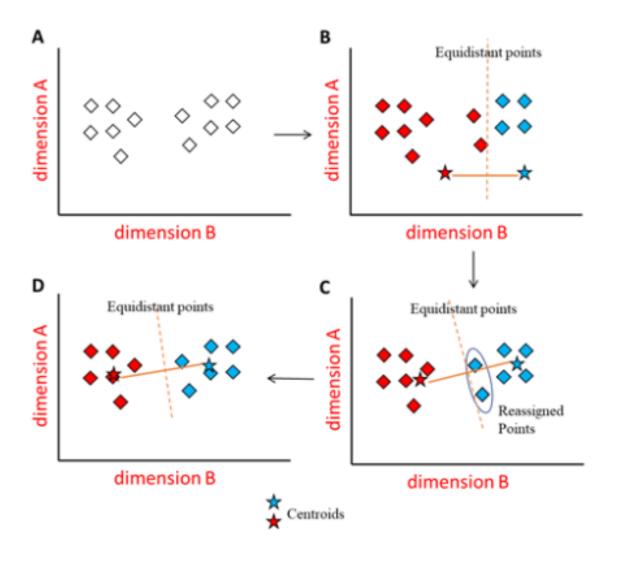
$$\mu_2'' = \left(\frac{6.3+2.5}{7}, \frac{6.3+2.5}{7}\right) = \left(\frac{8.8}{7}, \frac{8.8}{7}\right) \approx (1.257, 1.257)$$

Iteration 3: Convergence



Convergence: With centroids $\mu_1'' \approx (4.714, 4.714)$ and $\mu_2'' \approx (1.257, 1.257)$, all data points are now correctly grouped according to their true clusters.

k-means



k-means as Optimization

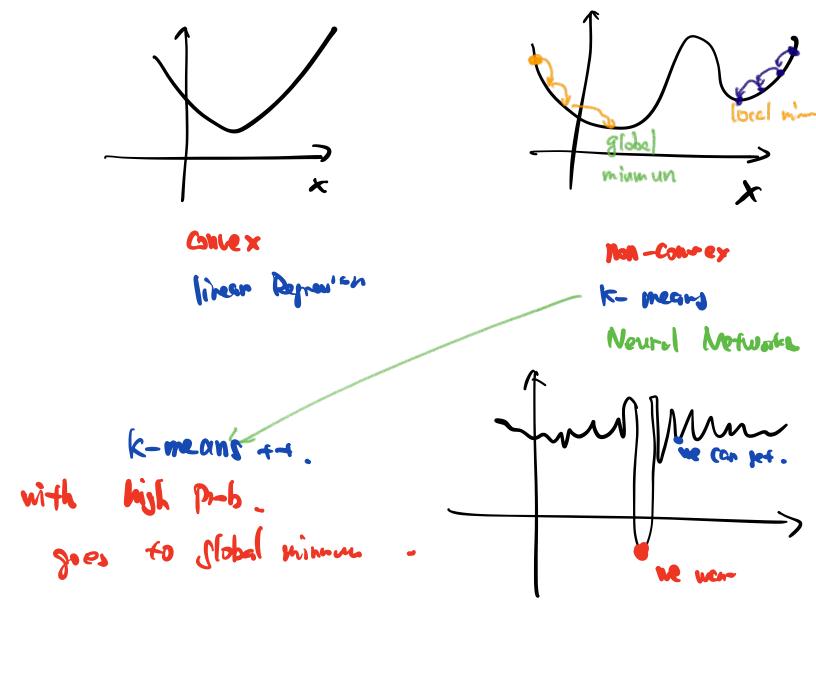
k—means aims to minimize the total within cluster (square) distance

$$\min_{\{C_j\},\{\mu_j\}} \sum_{j=1}^k \sum_{\mathbf{x} \in C_j} \|\mathbf{x} - \mu_j\|^2$$

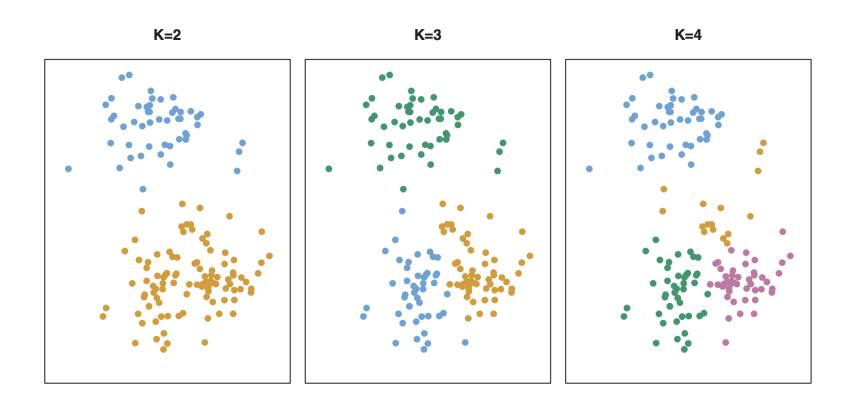
How you the mean of the charles

k—means as alternating direction optimization algorithm

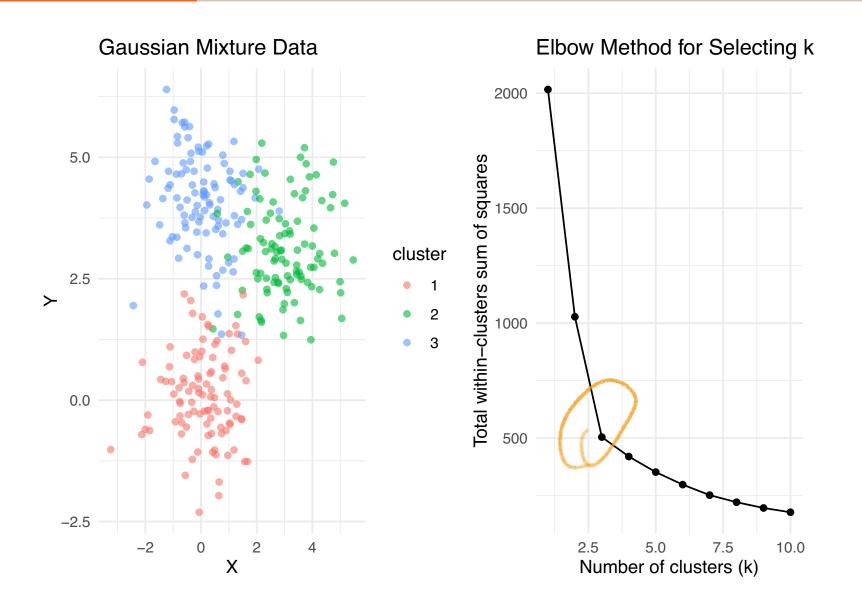
- **Assignment:** Assign each x to its nearest μ_j (minimizes distance).
- □ **Update:** Recompute μ_j as the mean of C_j (minimizes variance).

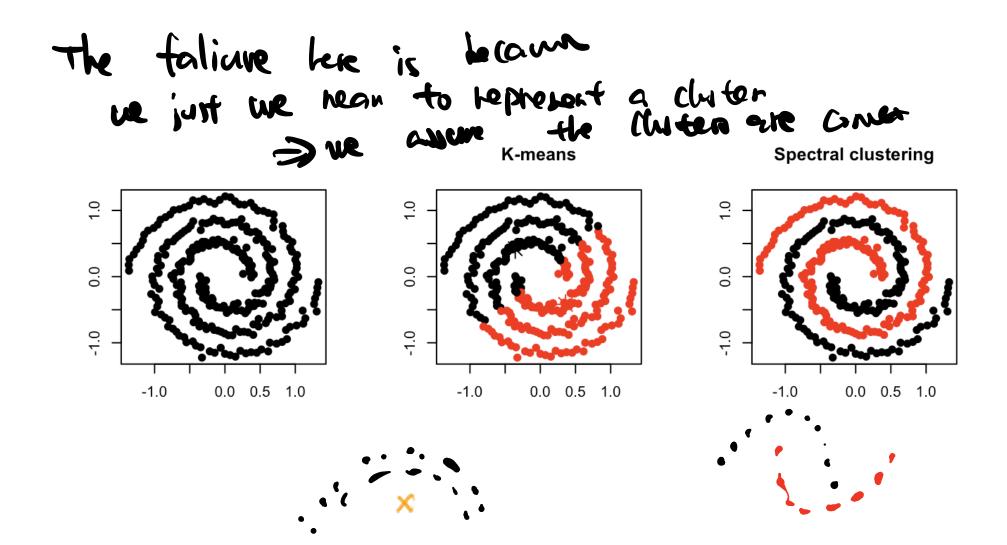


Wrong k can be Problematic



How to Select *k*: Elbow Effect



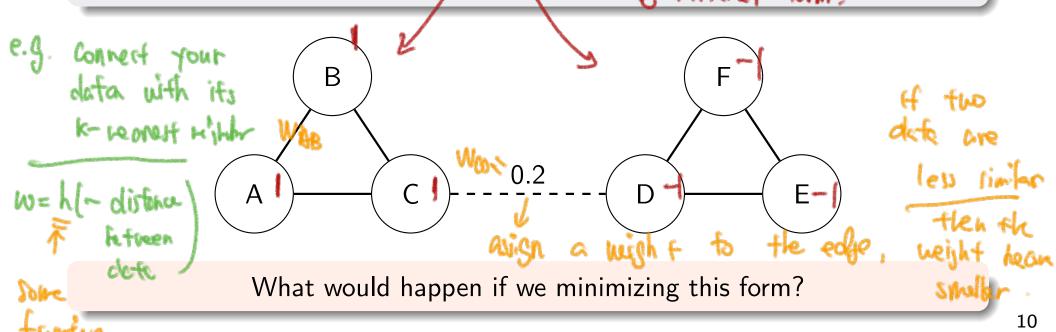


We first represent data as a weighted graph G(V, E) with weights w_{ij} .

Consider the Dirichlet form,

$$\frac{1}{2}\sum_{i,j}w_{ij}\big(f(i)-f(j)\big)^2=f^TLf,\quad \text{(Why?)}$$

where L is the graph Laplacian defined as L = D - W (where D is the degree matrix).



Quadratic Function as a Quadratic Form

put all variable as a vector
$$v^{T}Av = \left(x \quad y\right) \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3x^{2} + 2xy + 2xy + 2y^{2} = 3x^{2} + 4xy + 2y^{2}.$$
all the defoont
$$\begin{bmatrix} x \cdot y \end{bmatrix} \begin{pmatrix} 3x + 2y \\ 2x + 2y \end{pmatrix} = x \begin{bmatrix} 3x + 2y \\ 2x + 2y \end{pmatrix} + y \begin{bmatrix} 2x + 2y \\ 2x + 2y \end{pmatrix}$$

$$\begin{bmatrix} x \cdot y \end{bmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{22} & a_{21} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

$$\begin{cases} a_{11} & a_{22} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = a_{11}x^{2} + (a_{21}+a_{21})x^{2} + a_{22}y^{2}.$$

Why is the Dirichlet Form Equal to $f^T L f$?

Consider the Dirichlet form:

$$\frac{1}{2}\sum_{i,j}w_{ij}\big(f(i)-f(j)\big)^2=\frac{1}{2}\sum_{i,j}w_{ij}\big[f(i)^2-2f(i)f(j)+f(j)^2\big].$$

 \square terms involving $f(i)^2$:

$$\frac{1}{2} \left(\sum_{i,j} w_{ij} f(i)^2 + \sum_{i,j} w_{ij} f(j)^2 \right)$$

$$= \sum_{i} f(i)^2 \sum_{i} w_{ij} = \sum_{i} d_i f(i)^2.$$

☐ The cross term simplifies to:

$$-\sum_{i,j}w_{ij}f(i)f(j).$$

$$\frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2 = \sum_i d_i f(i)^2 - \sum_{i,j} w_{ij} f(i) f(j).$$

At the same time,

$$f^{T}Lf = \sum_{i} d_{i}f(i)^{2} - \sum_{i,j} w_{ij}f(i)f(j)$$
, where $L = D - W$,

Understanding the Dirichlet Form

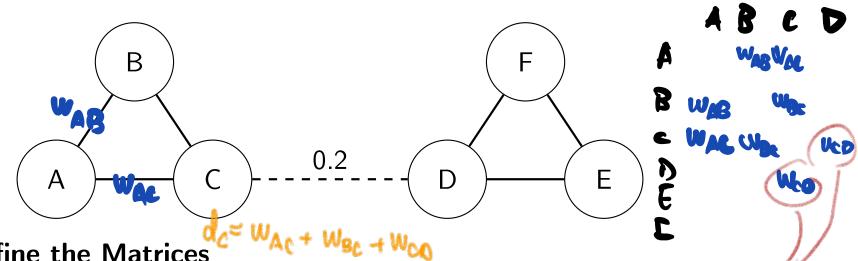
Definition

The Dirichlet form on a graph is defined as:

$$\frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2 = f^T L f.$$

- It sums the squared differences of the function values f(i) over every edge, weighted by w_{ij} .
- A small value of $f^T L f$ indicates that neighboring nodes (with high similarity w_{ij}) have similar function values.
- Minimizing the Dirichlet form under constraints leads to smooth functions on the graph, thus revealing inherent cluster structure.

Computing the Graph Laplacian



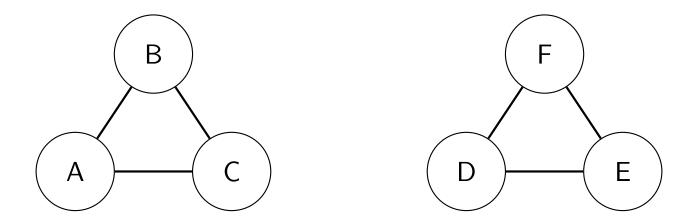
- **Step 1: Define the Matrices**
- Weighted Adjacency Matrix W: For each edge (i,j), w(i,j) = 1except for the edge between C and D where w(C,D) = 0.2.
- **Degree Matrix** *D*: Diagonal with $d_A = 2, d_B = 2, d_C = 2.2, d_D = 2.2, d_E = 2, d_F = 2$

Step 2: Compute the Graph Laplacian

$$L = D - W$$

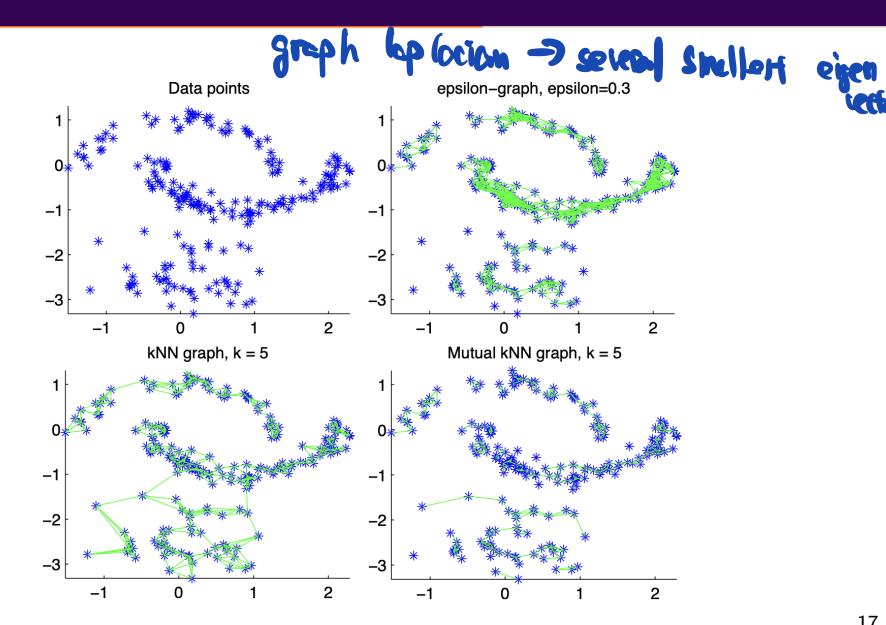
$$= \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 \cdot 2 & -0 \cdot 2 & 0 & 0 \\ 0 & 0 & -0 \cdot 2 & 2 \cdot 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}.$$

Computing the Graph Laplacian



What is the smallest eigenvalue/eigenvectors of the graph laplacian? What would happen if we have *I*-connected component

Then run a k-means on the spectral clustering representation f. (homework)



The procedure of specified Chartering.

- 1. Construct a graph based on if two data are similar
- 2. Compute the metrix L.

6

I

- 3. Compute the eigenectors (the smallest four eigeneur)
 of L

Dimension Reduction

Francubrk of Dimension Reduction
Data: X = P ⁿ feature C IR ^m
(We may Gaziler m is much smaller than)
e.g. in the face dataset.
n: th number of pixel of face ingr
m: m= 2: Ptes.
blad should inculde must of the information in
your dets x. (Compression),
data feature
the information
we aim: $r(\phi(x)) \approx x$ auto-encoder encoder
encoder deboler-

Review: Projection

X: linear projection.

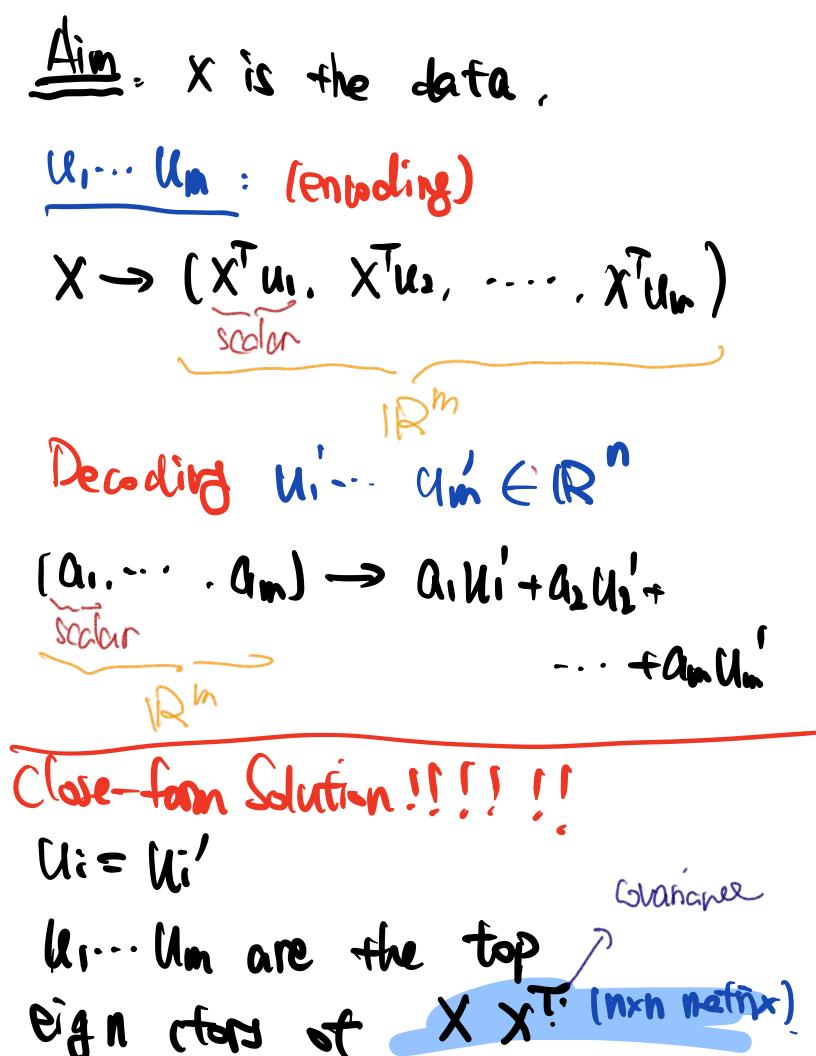
XT u

Ped number

P

UEIR

XT u: is the inner labor product



$$X = [X_1 \dots X_k] \in \mathbb{R}^{n \times k}$$

$$k = obsta, X_i, X_i \in \mathbb{R}^n$$

$$x = X_i \dots X_i \in \mathbb{R}^n$$

XXT is a metrix of size IRMXA

Fact 1 XXT is a symmetric metrix

Fact 1 Un are orthogonal.

UiTui = 0

U=[U1... Um]

Question! What is the projection of

deta metrix X to the space spancel

by u

Let's we the icfs that u is orthogral
$$\begin{cases} u_i^T u_i = 1 \\ u_i^T u_i = 0 \end{cases}$$

$$u^T u = \begin{bmatrix} u_i^T & u_i & u_i \\ u_i^T & u_i & u_i \\ u_i & u_i \end{cases}$$

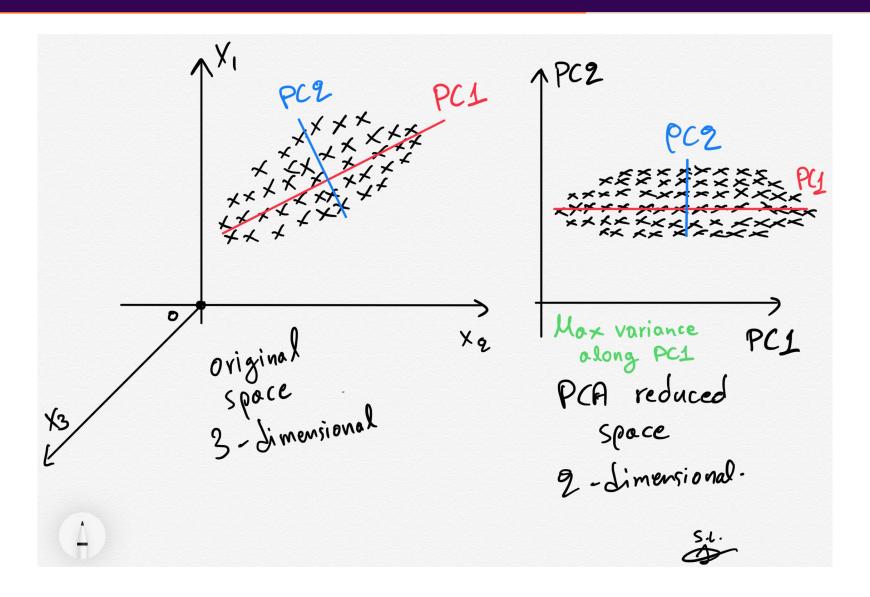
$$= \begin{bmatrix} 0 & 0 & --- & 0 \\ 0 & 0 & --- & 1 \end{bmatrix} = I_m$$

PCA

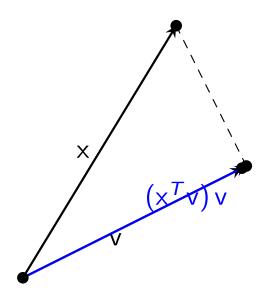
the projection that prejeces Nost of the information of your data is the projection to the top eigenspaces of the Covanake Metrix, largerf!

number of basis > bias - Vahane.

Principal Component Analysis (PCA)



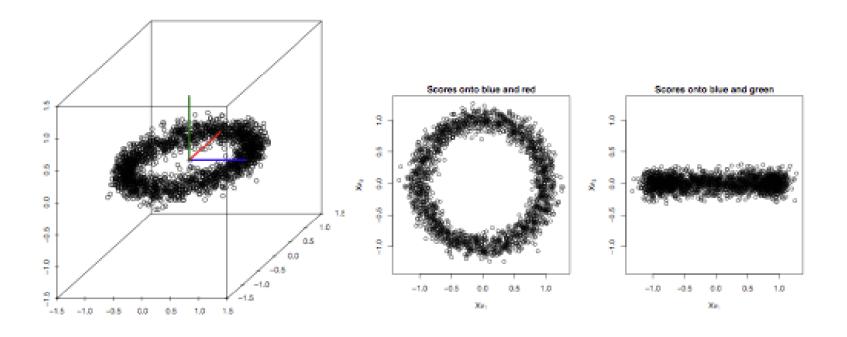
Projection



- $\square x^T v \in \mathbb{R}$: score
- \square $(x^T v) v \in \mathbb{R}^p$: projection

Not All Projection are the Same

Example: $X \in \mathbb{R}^{2000 \times 3}$, and $v_1, v_2, v_3 \in \mathbb{R}^3$ are the unit vectors parallel to the coordinate axes



Not all linear projections are equal! What makes a good one?

PCA: Preserve Most Information

We have n d-dimensional data points $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ and a parameter $k \in \{1, 2, \ldots, d\}$. We assume that the data is centered, meaning that $\sum_{i=1}^n x_i = 0$. (How to do that?)

<u>AIM.</u> Find directions that maximize the information preserved

The output of the method is defined as k orthonormal vectors v_1, v_2, \ldots, v_k — the "top k principal components" — that maximize the objective function :

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} (x_i \cdot v_j)^2.$$

$$(x^T v) = x^T x x$$

$$(x^T v) = x^T x x$$

Question: Why we want the principal components orthonormal?

Review: Projection Under Orthonormal Basis

Let $A = [v_1, \dots, v_k]$ where v_1, \dots, v_k are orthonormal. Remind. Least square solution: $A\beta \approx b$, then $\beta = (A^{\top}A)^{-1}A^{\top}b$ Then $A\beta = A(A^{\top}A)^{-1}A^{\top}b$

Review. Orthonormal means $A^{\top}A = I$

Check. Project b to span $\{v_1, \dots, v_k\}$ means $\langle v_1, b \rangle v_1 + \langle v_2, b \rangle v_2 + \dots + \langle v_k, b \rangle v_k$

Matrix Formulation

Matrix Formulation: Define $V \in \mathbb{R}^{d \times k}$ with columns v_1, \dots, v_k , representing the k principal components.

The total variance captured when projecting the data onto the subspace spanned by V is

$$\frac{1}{n}||XV||_F^2 = \operatorname{tr}\left(V^T\left(\frac{1}{n}X^TX\right)V\right) = \operatorname{tr}(V^TSV),$$

where $S = \frac{1}{n}X^TX$ is the covariance matrix.

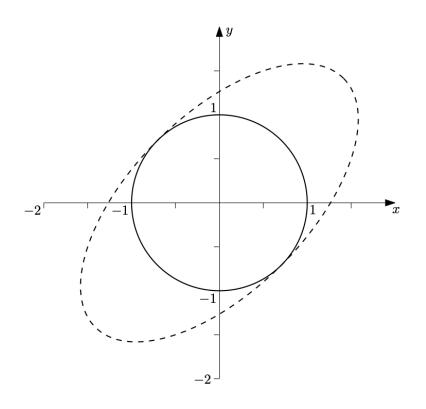
Note that $||A||_F^2 = \operatorname{tr}(A^T A)$ For A = XV, we have: $||XV||_F^2 = \operatorname{tr}((XV)^T (XV)) = \operatorname{tr}(V^T X^T XV)$. (for $\operatorname{tr}(AB) = \operatorname{tr}(BA)$)

$$\max_{V \in \mathbb{R}^{d \times k}} \operatorname{tr}(V^T S V)$$
 subject to $V^T V = I_k$.

Matrix Formulation

Covariance Matrix: Rotation on Principal Component

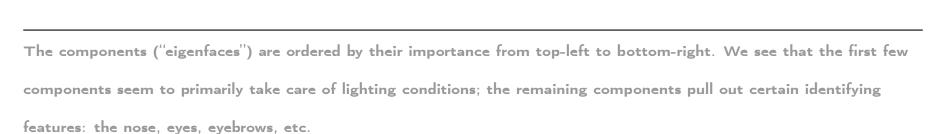
$$\begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}}_{\text{rotate back } 45^{\circ}} \cdot \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{stretch}} \cdot \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}}_{\text{rotate clockwise } 45^{\circ}}$$



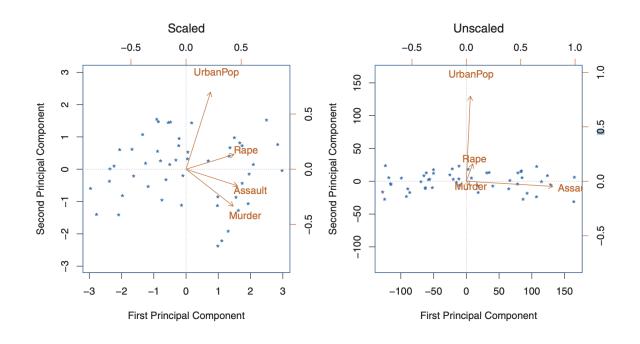
PCA as Top Eigenvectors

PCA boils down to computing the k eigenvectors of the covariance matrix $X^{T}X$ that have the largest eigenvalues.

Eigen-Face



Normalize Your Data



Murder, Rape, and Assault are reported as the number of occurrences per 100, 000 people, and UrbanPop is the percentage of the state's population that lives in an urban area. These four variables have variance 18.97, 87.73, 6945.16, and 209.5