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Iteration 1: Initialization & Forced Assignment

µ1

µ2

Cluster A

Cluster B

Assignment Summary (Iteration 1):

• µ1 = (1, 4.5) gets: all Cluster B points (6 pts) + ambiguous point (2.5, 2.5) [total 7 pts].

• µ2 = (4.5, 1) gets: all Cluster A points (6 pts) + ambiguous point (3, 3) [total 7 pts].

Updated centroids (computed as the mean):

µ′
1 =

( 30+2.5
7 , 30+2.5

7

)
≈ (4.643, 4.643)

µ′
2 =

( 6.3+3
7 , 6.3+3

7

)
≈ (1.329, 1.329) 4



Iteration 2: Reassignment

µ′
1

µ′
2

Reassignment (Iteration 2):

• (2.5, 2.5) switches from µ1 to µ′
2 (closer to (1.329, 1.329)).

• (3, 3) switches from µ2 to µ′
1 (closer to (4.643, 4.643)).

New centroids:

µ′′
1 =

( 30+3
7 , 30+3

7

)
=

( 33
7 , 33

7

)
≈ (4.714, 4.714)

µ′′
2 =

( 6.3+2.5
7 , 6.3+2.5

7

)
=

( 8.8
7 , 8.8

7

)
≈ (1.257, 1.257) 5



Iteration 3: Convergence

µ′′
1

µ′′
2

Convergence: With centroids µ′′
1 ≈ (4.714, 4.714) and µ′′

2 ≈ (1.257, 1.257), all data
points are now correctly grouped according to their true clusters.
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k−means as Optimization

k−means aims to minimize the total within cluster (square) distance

min
{Cj},{µj}

k∑
j=1

∑
x∈Cj

∥x − µj∥2

k−means as alternating direction optimization algorithm

❐ Assignment: Assign each x to its nearest µj (minimizes distance).

❐ Update: Recompute µj as the mean of Cj (minimizes variance).

14



Wrong k can be Problematic
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How to Select k: Elbow Effect
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Elbow Method for Selecting k
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Distance Matters
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Spectral Clustering
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Spectral Clustering

We first represent data as a weighted graph G (V ,E ) with weights wij .

Consider the Dirichlet form,
1
2

∑
i,j

wij

(
f (i)− f (j)

)2
= f TLf , (Why?)

where L is the graph Laplacian defined as L = D −W (where D is the degree
matrix).

A C

B

D E

F

0.2

What would happen if we minimizing this form?
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Quadratic Function as a Quadratic Form

vTAv =
(
x y

)(3 2
2 2

)(
x

y

)
= 3x2 + 2xy + 2xy + 2y2 = 3x2 + 4xy + 2y2.
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Why is the Dirichlet Form Equal to f TLf ?

Consider the Dirichlet form:
1
2

∑
i,j

wij

(
f (i)− f (j)

)2
=

1
2

∑
i,j

wij

[
f (i)2 − 2f (i)f (j) + f (j)2

]
.

❐ terms involving f (i)2:
1
2

(∑
i,j

wij f (i)
2 +

∑
i,j

wij f (j)
2
)

=
∑
i

f (i)2
∑
j

wij =
∑
i

di f (i)
2.

❐ The cross term simplifies to:

−
∑
i,j

wij f (i)f (j).

1
2

∑
i,j

wij

(
f (i)− f (j)

)2
=
∑
i

di f (i)
2 −

∑
i,j

wij f (i)f (j).

At the same time,

f TLf =
∑
i

di f (i)
2 −

∑
i,j

wij f (i)f (j), where L = D −W ,

Why?

The key insight is that the symmetry of wij allows us to neatly collect the
double-sum terms into the degree matrix D and the weighted adjacency W ,
yielding the quadratic form f TLf .
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Understanding the Dirichlet Form

Definition
The Dirichlet form on a graph is defined as:

1
2

∑
i,j

wij(f (i)− f (j))2 = f TLf .

• It sums the squared differences of the function values f (i) over every edge,
weighted by wij .

• A small value of f TLf indicates that neighboring nodes (with high similarity
wij) have similar function values.

• Minimizing the Dirichlet form under constraints leads to smooth functions
on the graph, thus revealing inherent cluster structure.
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Computing the Graph Laplacian

A C

B

D E

F

0.2

Step 1: Define the Matrices

• Weighted Adjacency Matrix W :
For each edge (i , j), w(i , j) = 1
except for the edge between C and
D where w(C ,D) = 0.2.

• Degree Matrix D: Diagonal with
dA = 2, dB = 2, dC = 2.2, dD =

2.2, dE = 2, dF = 2

Step 2: Compute the Graph
Laplacian

L = D −W

=


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 2.2 −0.2 0 0
0 0 −0.2 2.2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

.
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Computing the Graph Laplacian

A C

B

D E

F

What is the smallest eigenvalue/eigenvectors of the graph laplacian?
What would happen if we have l-connected component
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Spectral Clustering

max f ⊤Lf s.t. f ⊤1 = 0, ∥f ∥2 = 1

Then run a k−means on the spectral clustering representation f . (homework)
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Graph
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Dimension Reduction



Principal Component Analysis (PCA)
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Projection

v

x

(xT v) v

❐ xT v ∈ R : score

❐ (xT v) v ∈ Rp : projection
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Not All Projection are the Same
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PCA: Preserve Most Information

We have n d-dimensional data points x1, x2, . . . , xn ∈ Rd and a parameter
k ∈ {1, 2, . . . , d}. We assume that the data is centered, meaning that∑n

i=1 xi = 0. (How to do that?)

AIM. Find directions that maximize the information preserved
The output of the method is defined as k orthonormal vectors v1, v2, . . . , vk
— the “top k principal components” — that maximize the objective function :

1
n

n∑
i=1

k∑
j=1

(
xi · vj

)2
.

Question: Why we want the principal components orthonormal?
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Review: Projection Under Orthonormal Basis

Let A = [v1, · · · , vk ] where v1, · · · , vk are orthonormal. Remind. Least square
solution: Aβ ≈ b, then β = (A⊤A)−1A⊤b Then Aβ = A(A⊤A)−1A⊤b

Review. Orthonormal means A⊤A = I

Check. Project b to span{v1, · · · , vk} means

⟨v1, b⟩v1 + ⟨v2, b⟩v2 + · · ·+ ⟨vk , b⟩vk
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Matrix Formulation

Matrix Formulation: Define V ∈ Rd×k with columns v1, . . . , vk , representing
the k principal components.

The total variance captured when projecting the data onto the subspace
spanned by V is

1
n
∥XV ∥2

F = tr

(
V T

(
1
n
XTX

)
V

)
= tr(V TSV ),

where S = 1
nX

TX is the covariance matrix.

Note that ∥A∥2
F = tr(ATA) For A = XV , we have:

∥XV ∥2
F = tr

(
(XV )T (XV )

)
= tr(V TX⊤XV ). (for tr(AB) = tr(BA))

max
V∈Rd×k

tr(V TSV ) subject to V TV = Ik .
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Matrix Formulation
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Covariance Matrix: Rotation on Principal Component

(
3
2 − 1

2
1
2

3
2

)
=

(
1√
2

− 1√
2

1√
2

1√
2

)
︸ ︷︷ ︸
rotate back 45◦

·

(
2 0
0 1

)
︸ ︷︷ ︸

stretch

·

(
1√
2

1√
2

− 1√
2

1√
2

)
︸ ︷︷ ︸

rotate clockwise 45◦
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PCA as Top Eigenvectors

PCA boils down to computing the k eigenvectors of the covariance matrix
X⊤X that have the largest eigenvalues.
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Eigen-Face

The components (“eigenfaces”) are ordered by their importance from top-left to bottom-right. We see that the first few

components seem to primarily take care of lighting conditions; the remaining components pull out certain identifying

features: the nose, eyes, eyebrows, etc.
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Normalize Your Data

Murder, Rape, and Assault are reported as the number of occurrences per 100, 000
people, and UrbanPop is the percentage of the state’s population that lives in an
urban area. These four variables have variance 18.97, 87.73, 6945.16, and 209.5
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