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Clustering

Image
Databases

Goal of clustering:
Divide objects into groups and objects within a group
are more similar than those outside the group.

aEEEEaE
[ o - e
B e =T B
LS =
mEEE=E
B S G b
EEEEEE



Iteration 1: Initialization & Forced Assignment

Cluster B

Assignment Summary (lteration 1):

e 1 = (1,4.5) gets: all Cluster B points (6 pts) + ambiguous point (2.5,2.5) [total 7 pts].
e 1> = (4.5,1) gets: all Cluster A points (6 pts) + ambiguous point (3,3) [total 7 pts].

Updated centroids (computed as the mean):
ph = (30125 304253 (4,643, 4.643)

ph = (8343 0313 ~ (1.329, 1.329)



Iteration 2: Reassignment
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Reassignment (lteration 2):

® (2.5,2.5) switches from 3 to p (closer to (1.329,1.329)).
o (3,3) switches from > to pj (closer to (4.643,4.643)).

New centroids:
py = (322, 3083 = (3B 33) (4714, 4.714)
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Iteration 3: Convergence

Convergence: With centroids uf ~ (4.714,4.714) and pf ~ (1.257,1.257), all data
points are now correctly grouped according to their true clusters.
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k—means

» Initialize k cluster centers, {c?, c?, ..., c¥}, randomly
¢ Do

« Decide the cluster memberships of each data point, x¢, by
assigning it to the nearest cluster center (cluster assignment)

, , i 112
n(i) = argminj=y,_y ||x* — /||
¢ Adjust the cluster centers (center adjustment)
. 1 .
C} e T Ty T Y ) Z xl
I{i:m (@) = j} .

im(i)=j

¢ While any cluster center has been changed



k—means

K-Means step 1
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k—means

K-Means step 2
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k—means

K-Means step 3
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k—means

K-Means step 4
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k—means

K-Means step 5
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k—means as Optimization

k—means aims to minimize the total within cluster (square) distance

k
. 2
min X — H
{cj},{m}z 2 =l

Jj=1 xe(;

k—means as alternating direction optimization algorithm

(3 Assignment: Assign each x to its nearest y; (minimizes distance).

O Update: Recompute p; as the mean of C; (minimizes variance).
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g k can be Problematic
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How to Select k: Elbow Effect

Gaussian Mixture Data Elbow Method for Selecting k
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Distance tters

Clustering is subjective

What is considered similar/dissimilar?

Clustering is subjective
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Spectral Clustering




Spectral Clustering

K-means Spectral clustering
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Spectral Clustering

We first represent data as a weighted graph G(V, E) with weights wj;.

Consider the Dirichlet form,
1 . ) 2
> W)~ FG)) = 7L, ()

]

where L is the graph Laplacian defined as L = D — W (where D is the degree

matrix).

What would happen if we minimizing this form? J
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Quadratic Function as a Quadratic Form

3 2
viAv = (x y) (2 2) (X) = 3x2 4 2xy + 2xy + 2y? = 3x% + 4xy + 2)°.
y
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Why is the Dirichlet Form Equal to f"Lf?

Consider the Dirichlet form:

wau )= FG)) = 5 0w [FGY? —26()FG) + 7).

iJ

(3 terms involving £(i)?:
%(Z W,'jf(/)2 4 Z lef(j)2> (3 The cross term simplifies to:
o —

= wif(DF()
= (i) ZW,, de i
72% — f(J de ZW,J

At the same time,

T _ .
FTLf = de ZW,, (j), where L=D — W, "



Understanding the Dirichlet Form

Definition

The Dirichlet form on a graph is defined as:

= Z wi(F(i) — F(j))? = fT LF.

o |t sums the squared differences of the function values (i) over every edge,
weighted by w;;.
o A small value of fTLf indicates that neighboring nodes (with high similarity

w;;) have similar function values.

e Minimizing the Dirichlet form under constraints leads to smooth functions
on the graph, thus revealing inherent cluster structure.
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Computing the Graph Laplacian

Step 1: Define the Matrices

Step 2: C te the Graph
e Weighted Adjacency Matrix W: P ompute the Lrap

Laplacia
For each edge (i,)), w(i,j) =1 placian
except for the edge between C and I—D-Ww
D where W(C7 D) =0.2. 2 -1 i1 o o o
—1 2 —1 o o o
e Degree Matrix D: Diagonal with e D
dA = 27 dB = 27 dC = 22) dD = g 2 g :: —21 _21

2.2, dg = 2,dp =2
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Computing the Graph Laplacian

What is the smallest eigenvalue/eigenvectors of the graph laplacian?
What would happen if we have /-connected component ’
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Spectral Clustering

maxf Lf st f11=0,|fl=1 J

Then run a k—means on the spectral clustering representation f. ( )
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Data points

epsilon-graph, epsilon=0.3
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Dimension Reduction




Principal Component Analysis (PCA)
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O xTv € R : score

3 (x"v)v € RP : projection
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Not All Projection are the Same

Example: X € R2?000%3  3nd vy, v, v3 € R? are the unit vectors
parallel to the coordinate axes

Seares o s and e Scoens oo Shes and gren

Not all linear projections are equal! What makes a good one?

29



PCA: Preserve Most Information

We have n d-dimensional data points x1,%o, . ..,x, € RY and a parameter
k €{1,2,...,d}. We assume that the data is centered, meaning that
n
> im1xi = 0. ( )
AIM. Find directions that maximize the information preserved
The output of the method is defined as k vectors vy, Vo, . .., Vi
— the “top k principal components’ — that maximize the objective function :
1 n k )
n 2 2l wi)
i=1 j=1

Question: Why we want the principal components orthonormal?
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Review: Projection Under Orthonormal Basis

Let A=[vq, -, vk] where vq,--- | v, are orthonormal. Remind. Least square
solution: AB ~ b, then B = (ATA)"1ATb Then A3 = A(ATA)"ATH J

Review. Orthonormal means ATA =/

Check. Project b to span{vy,--- , vk} means
<V1,b>V1—|—<V2,b>V2+-'~+<Vk7b>Vk ’
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Matrix Formulation

Matrix Formulation: Define V € R9*k with columns vy, ..., vy, representing

the k principal components.

The total variance captured when projecting the data onto the subspace

spanned by V is
%||XV||,2: = tr<VT(’::XTX) v) =tr(VTSV),

where S = %XTX is the covariance matrix.

max tr(V'SV) subjectto VTV =I.
VeRdxk
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Matrix Formulation
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Covariance Matrix: Rotation on Principal Component

3 1 1 1 2 0 1 1

2 2| — [+Vv2 V2 V2 V2

1 3=\ 1 01 11

22 V2 V2 V2 V2
rotate back 45° stretch rotate clockwise 45°

Yy
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PCA as Top Eigenvectors

PCA boils down to computing the k eigenvectors of the covariance matrix
X T X that have the largest eigenvalues. ’
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Eigen-Face

The components (“eigenfaces’) are ordered by their importance from top-left to bottom-right. We see that the first few
components seem to primarily take care of lighting conditions; the remaining components pull out certain identifying

features: the nose, eyes, eyebrows, etc
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Normalize Your Data

Scaled Unscaled
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, , and are reported as the number of occurrences per 100, 000
people, and is the percentage of the state's population that lives in an

urban area. These four variables have variance 18.97, 87.73, 6945.16, and 209.5
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