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Recall. a statistical procedure is of a nonparametric type if it has properties
which are satisfied to a reasonable approximation when some-assumptions
that are at least of a moderately general nature hold.
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Neural Networks

e Clever original idea and memorable name — became very popular in the
1980s and 1990s.

e They have evolved to have less resemblance to how the human brain
processes information (but better effectiveness at modeling nonlinear
relationships in complicated data sets).

e To fit a neural network model (and all of the other black-box models), the
training data must be available in the same format as for linear/logistic
regression:

e A 2D array of observations.

e Each column is a different variable; each row a different case.

e One column is the response variable and the other columns are any number
of predictor variables.

e The neural network hidden variables (h's) are internal variables that you do
not enter or even care about.



Basic Building Block: Neuron
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e Input: x = [X1,X2,X3,+1]T ‘ -

e Output: hy, p(x) = o(w'x) = J(Z wjx; + b)
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Activation Function

1
14-exp(—2z)

[ Sigmoid (logistic) function: o(z) =

A tanh function: o(z) = 2’;‘;8135&3

[ ReLU function (most commonly used in deep learning): o(z) = max{0, z}

Activation Functions
4

tanh

357 —— - sigmoid

sHo rectified linear




Two-Layer Neural Network

Consider supervised Learning: x = (x1, X2, x3,+1) = y

h1
ho
— h(z)
h3
Layer 2
+1 Wx +b .
Input Layer 1 \Ilc W'l Wiy \NQ
[ Hidden Units: — Wy iy Wy,
hy :@VT/IFQ T Wioxo T Wizxs T buy) Way Wy W31

hy = o(wa1x1 + WasXo + Wazx3 + b1o)

h3 = o(wa1x1 + w3axa + wazxz + bi3)
) OUtpUtZ h(X) = O'(Vlhl + vwho + v3hs + b2)



In a Matrix Form

e
he ()
—_—
+1 Layer 3
Layer 2
ho(x) = Wao(Wao(Wix + by) + ba) + bs J
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Fitting A Neural Network Model

[ Standardize predictors via

where Xx; and s,; are sample mean and standard deviation of the j-th
predictor variable.

[ Also standardize the response. Or instead, if using sigmoid output
activation function, scale response to interval [0, 1] via
Yi = Ymin
Yi = :
Ymax — Ymin
Why do we need to do this rescaling for a sigmoid output activation

function?



Fitting A Neural Network Model Cont'd

[ Choose network architecture

e number of hidden layers,

e number of neurons in each hidden layer,

e output activation function (usually linear or logistic),
e other options and tuning parameters.

[ Software estimates parameters to minimize (nonlinear LS with shrinkage):

Z(y,- — he(xi))? + X - regularization(6).
i=1
Regularization is often based on heuristics and X is a user-chosen parameter.



How to find the best parameter?

Gradient Descent for training neural networks! J
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Chain Rule Recap

ex.  4ig=dx Hrg) = Cmb_x)
£exy =Sia (x)

Chain Rule Reminder

For a composite function_f(g(x)), the chain rule states that

ar _ dr  dg
the dx dg dx’ J
Yoy "V,
ot ler

In neural networks, this principle is applied layer by layer during
backpropagation.
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Forward Pass in a Simple Neuron

Model Description:
Consider a neuron with the following computations:

z=wx, a=o(z), L=1L(a),

where o(z) is the activation function.

Diagram of the Forward Pass:

@—»@—»z:wx—>a:a(z)—>L(a)
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Backpropagation: Computing Gradients

Gradient Computation:

To update the weight w, the gradient is computed as:
oL JL 0da 0z

ow 0Oa 0z ow

lllustrative Diagram:
The dashed arrows represent the flow of gradients during backpropagation.

oL
o'(z) da
I
i :
| I
v Y

@—»@—»z:wx—>aza(z)—>L(a)

X - ———»
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Backpropagation in Multiple Layers

Multi-layer Neural Network:

Consider a network with one input layer, two hidden layers, and one output
layer:
x =z = ) 5 722 5 52 5 ZB8) 4 508 —

Chain Rule Application:

For instance, the gradient for weight w(? in the second layer is:
oL oL  0a® 9z83) 9a2)  9z(2)
ow® 92 020 9@ 9z dw@)
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Backpropagation

oz
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Gradient Vanishing Problem

~ ¥ [ ;‘
What is Gradient Va)ishing?
In deep neural networks, the gradients are computed by
multiplying many small derivatives . When these values are less than 1, their
product may shrink ekponentially as they propagate backwards through the

H oda| Hew Ko exdedd
Mitigation Techdqucsesé:eu' <‘ ,‘\‘\QM H"] VOM.ISM \

71 Use activation functions such as RelLU.

layers.

1 Apply normalization methods (e.g., batch normalization).

71 Use network architectures like residual networks (ResNets) to improve

gradient flow.

16



Layer Normalization

Layer normalization normalizes the inputs across the features of a single data J

sample.

For a vector of activations x = (x1, X2, ..., X,), it is computed as:
. Xi— [
I Y
Vo2 +e

where 1 and o2 are the mean and variance of x, and € is a small constant for

numerical stability.
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Residual Connections in Neural Networks

Residual connections allow a neural network to learn an identity mapping by
adding the input directly to the output of a set of layers.

Motivation: They help mitigate the vanishing gradient problem, enabling the
training of very deep networks. J

Key ldea: Instead of learning a direct mapping, the network learns the

residual:
y = F(x,{W}) +x

where:

e X is the input,

o F(x,{W;}) represents the residual mapping.
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Regression Tree




Structure of a Regression Tree

A final fitted regression tree model divides the predictor (x) space by
successively splitting into rectangular regions and modeling the response (Y)
as constant over each region.

This can be schematically represented as a “tree’™

[ each interior node of the tree indicates on which predictor variable you split

and where you split.

3 each terminal node (a.k.a. leaf) represents one region and indicates the
value of the predicted response in that region.

To use a fitted regression tree to predict a new case, you start at the root
node and follow the splitting rules down to a leaf.
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lllustration of Regression Tree

The following slide illustrates a fitted tree model for an example, in which the
objective is to predict college GPA (the response) as a function of highschool
rank and ACT score (two predictors).
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Mathematical Representation of Regression Tree

We can denote a tree model as

M
y = Z cml{x € Rn},
m=1

where

[ M: total number of regions.

[ R,,: m-th region.

1 xe€ R,

A 1{x € Ry}: indicator function = .
0 x¢ Ry

3 c,,: constant value over R,.

21
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Questions and Discussions

[ What kind of functional x — Y relationships can you capture with a
regression tree model structure?

an NoY i‘er{)fewf’ C (e‘u@f‘ -{?um{iw\

[ Can a regression tree represent-a-linear relationship? Can it represent-a
linear relationship as efficiently as a neural network? QXC‘A(‘H\/ ) hﬂ‘ Ottn

[ Which type of model — neural network or regression tree — oy\[uf
I is more interpretable? C S
I is easier to fit? {_{

[ Given a specified set of regions, how would you estimate the coefficients
{Cm : m:1,2,7M}7
e moon of <le dota lleg (w vepion Qm,
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Fitting a Regression Tree

[ Fitting the model entails growing the tree one node at a time.

I At each step, the single best next split {(which predictor and where to split)
is the one that gives the biggest reduction in SSE.

I The fitted or predicted response over any region is simply the average
response over that region. The errors used to calculate the SSE are the
response values minus the fitted values.

I Stop splitting when reduction in SSE with the next split is below a specified
threshold, all node sizes are below a threshold, etc.

I Most algorithms overfit then prune back branches.

30 50 =

20 - R © & o 20 | g o o 0

Steroid Level
O
Steroid Level
(@]

10 o 10F o© ©
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The Constructed Regression Tree

Node 1:
Is Age < 137
Yes } iNo
Node 2: Node 3:
Is Age < 107 Is Age < 147
Yes 'l' ¢ No Yes ¢ i No
Node 4: Leaf 3: Leaf 4: Leaf 5:
Is Age < 97 10=Age<13 13 =Age <14 14 = Age < 25
Yesi *No
Leaf 1: Leaf 2:
8 =Age <9 9=Age<10
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How to Calculate SSE

e For a given set of splits Ry, ..., Ry, we have

Cm = average{yi|x; € Rn} = — Z Vi
X,ER

N,, = number of points X;i € R,

SSE= 3" S Y (e

m=1x;€R,,
e Note that for x; € Rj, _)7,' = 6j.
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Pruning Branches

[ Pruning a branch means that we collapse one of the internal nodes into a
single terminal node.

4

Pruning the tree means that we prune a number of branches.

(A Pruning algorithms in software will usually optimally prune back a tree in a
manner that minimizes SSE + AM , where M (complexity measure) and
SSE are for the pruned tree. The'best value for X\ is determined via CV.

[ There is a nice computational trick (“weakest link pruning”) that allows this
optimal pruning to be done very fast.
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Example: Predicting Strength in Concrete Data

[ Implementing a regression tree in R uses rpart library. Useful commands are
rpart.control(), rpart(), prune(), etc.

library(Crpart)
control<-rpart.control(minbucket = 5, cp = 0.0001,

maxsurrogate = @, usesurrogate = 0, xval = 10)
CRT.tr<-rpart(Strength ~ .,CRT, method = "anova", control = control)
plotcp(CRT.tr) #plot of CV rAZ2 vs. size
printcp(CRT.tr) #same info is in CRT.tr$cptable
#prune back to optimal size, according to plot of CV 1-rA2
CRT.trl<-prune(CRT.tr, cp=0.0015) #approximately the best size pruned

29



Example: Error v.s. Size of Tree

size of tree

1 6 12 19 25 33 39 45 54 62 69 76 82 89 96 103 111
LOLCEE ettt ettt ettt et

1.0

X-val Relative Error
0.6
|

0.4

TR e e e ee e e e e e e e e e e e e e e ee e e ee e ee e e e e e e e e e e e e e e ee e e ee e e e e e e e e e e e e e e
Inf 0.021 0.007 0.0026 0.0015 0.0011 7e-04 5e-04 0.00028 0.00012

cp 30



Example: Interpreting Error v.s. Tree Size

1 The horizontal broken line is the lowest 1 — r2, plus one SE.

[ A common strategy is to choose the best size of the tree, or equivalently
the best complexity parameter cp, as the left-most value below the
horizontal broken line (around size = 50 in the previous slide).

3 Or simply choosing the best size or cp as the one with minimum 1 — r2,

usually gives the model with the best predictive power (albeit larger than
using the rule above).
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Example: The Pruned Tree

Cemen

Age

Cemen]< 255.2

13.08
n=111

20.44
n=62

10.5

27.79
n=57

Age‘< 21
t
< 354.5 Cement< 355.9
Water>=183.1
Ag%< 5
27.92
n=36 32.86 46.66
n=28 n=30
Cement< 164.8 Water>=183.1
Slag<|170.1
Slag<|115.5 Waterp=176 61.55 74.3
n=76 n=18
40.43 54.61 n—;5
14.71 30 Slag<[47.65 n=41 n=19
n=33 n=93
CAgg Cemeni< 265.5 Cemen{< 203.3
21.17 32.85 37.44 46.82 35.66 46.43 iﬁ;?
n=17 n=126 n=70 n=A? n=33 n=58 A



Numerical Assessment of Variable Importance

(A For a visual assessment of the importance of each predictor in a tree,
inspect the tree graph. The importance of x; is reflected by how many
times it appears in internal nodes, how close they are to the root node, and
the length of the branch for that split.

O For a numerical measure of the importance of x;, sum the reductions in
deviance for each internal node for which the split is based on the same
predictor X;.

[ The “deviance” is —2log(likelihood). For a nonlinear regression model
with normal errors, the deviance is SSE. Thus, we can get the deviance from
the $frame object of the rpart output or from a textual print of the tree.
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Alternative R Package

e We can also use tree package to fit a regression tree.

e Works very similar to rpart() command.

library(tree)

control = tree.control(nobs=nrow(CPUS), mincut = 5,
minsize = 10, mindev = 0.002)

#default 1s mindev = 0.01, which only gives a 10-node tree

cpus.tr <- tree(logl@(perf) ~ .,CPUS[2:8],control=control)
cpus.tr

summary(cpus.tr)
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Example: Predicting CPU Performance

e We use 7 predictor variables to predict the performance measure of CPUs.

e An “overly large” tree is plotted as follows.

mmax

cachl< 27

< 6100

mmax K 1750

chmax < 3.5 mmax K 2500

r_‘ ‘ chmax < 4.5

0.97 1.20 1.30

syct £ 19Gsyct € 80.5

1.20 1.40 1.40 1.50

cach

syct £ 360

chmin < 5.5 | mmax s

<0.

1.30
5 mmin ¥ 3550

1.50

chmin

:

[ ]
“ 1.90 2.10

1.80 1.70

mmax 9

£ 28000

cach £ 96.5

cach|< 56

£ 11240 ‘ ‘ chmax < 48

chma

2.30
K <14

1.80 r

2.00

:

2.20

2.30
mmin < 12000

ik

2.50 2.70
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Example: Prune the Tree

24.000 1.400 0.720 0.410 0.230 0.190 0.098

o _
ﬂ-
o _
o
o
C
O
S
o _
3 &

/

size
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Example: Best Tree

cach=< 27
mmax K 6100 mmax $ 28000
mmax kK 1750 syct £ 360 cach £ 96.5 cach|< 56
chmin < 5.5 | mmax £ 11240 | r_‘
1.09 143 | 1.28 r_‘ 2.32 227 2.67
cach|< 0.5
1.97 1.83 214
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Questions and Discussions

(1 What is the best size tree for the CPUS example?

[ Provide an interpretation of which predictor variables are most important.
[ Do there appear to be any interactions between mmax and cach?

[ Why must minsize be at least twice mincut?

[ To grow the initial tree larger (it is better to overgrow the initial tree, then
prune it back) you can decrease minsize, mincut and/or mindev.
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Classification Tree




Classification Tree Overview

[ Fitting and using classification trees with a K-category response is similar
to fitting and using regression trees.

3 For classification trees, we model pp,(x) =P[Y = m|x](m=1,2,..., M) as
constant over each region.

[ Compare to regression trees, for which we model E[Y|x] as constant over

each region.

[ At each step in the fitting algorithm, the best next split is the one that
most reduces some criterion measuring the “impurity” within the regions.
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Some Technical Details

[ In the region R,,, the fitted class probabilities and best class prediction are
R 1
Pm.,k = N— Z ]l()/i — k),
m xi€Rm

Km = arg max P, m.
k

[ Some common impurity measures:
I misclassification error: anﬂzl D icr, Lyi # km);
. e . M K A A
I Giniindex: >~ N> 0 Pmi(1 — p’l”k);
I deviance: —25°M N S°F - Bk log((Pm k).
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CART (Classification and Regression Tree) Algorithm

Call Ry the entire space. Consider the first step:

[ Define regions R, R> from splitting on variable j at value s:
R1:{X€Rpi)<j§S}, RQZ{XERP:)(]'>S}
[ We **greedily** choose j, s by minimizing the misclassification error

argmin([l = Pe, (Ry)] -1 = Pe; (R2)]),

where ¢y, ¢, are the most common class in Ry, R> respectively.

The general algorithm then repeats steps (1) and (2) for every new region.
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Example to lllustrate the Notations

e Suppose we have K = 4 classes, and the predictors for N,, = 100 training
cases fall into a particular region R,,. For those 100 cases, suppose we have

the following breakdown of the number of cases with response value that
fell into the four categories.

Class, k # obsvns with b
Y in Class k m.k
1 10
2 20
3 65
4 5

e What is pp,  for k =1,...,47
e What is k,?
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Another Example for lllustration

e Suppose we only have K = 2 classes and the training data is as follows.
Where would the first split that minimizes the misclassification rate be?

2Ji

2 +— ° ° ° o 0o 0o® © o omoo

] o esee me®@ ® o000 e o ®

v
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Example: Predicting Glass Type

e Data in fgl.txt are the same as the FGL data in the MASS package.
e There are 214 cases, with 9 predictor variables and a categorical response.
e Each row contains the results of an analysis of a fragment of glass

e “type’ is the response, one of six different glass types: window float glass
(WinF: 70 rows), window non-float glass (WinNF: 76 rows), vehicle window
glass (Veh: 17 rows), containers (Con: 13 rows), tableware (Tabl: 9 rows)
and vehicle headlamps (Head: 29 rows).

e Eight of the predictors are the chemical composition of the fragment, and
the ninth (RI) is the refractive index.

e The objective is to train a predictive model to predict the glass type based
on a fragment of the glass, for forensic purposes.
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Example: Try a Binary Classification First

e There are originally 6 categories in the glass type. We consider WinF and
WinNF as one type and all the others as another type.

size of tree

1 2 3 7 11 20 23
| | | | | | |

1.2

1.0

X-val Relative Error
0

5

I I [ [ I [ I
Inf 0.23 0.055 0.025 0.018 0.012 0.0031

cp
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Example: Pruned Binary Classification Tree

Mg 2695

Othar Win

e What is the best tree size?

e Which predictors appear to be the most important?
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Pros and Cons of Tree Models

e Pros:

almost as flexible as neural networks

highly interpretable (at least with simple trees)

built-in variable importance measure for each predictor
automatically discards irrelevant predictors

insensitive to monotonic transformation or outliers in predictors
computationally efficient to fit

can easily handle response variable of more than 2 categories

can handle missing predictor values

e Cons:

poor at representing linear behavior; results in non-smooth response surface;
and predictive power usually not as good as neural networks
high variance/instability of fitted tree
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