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k-NN Regression (k = 1)

_ H two dife are

f(x) = v .
Cimiler, flan

’f> Here cufowe ¢
. Sheld nko be
o ° ° g”\: (Q’t‘ .
o . Xg_\) (]
° \/\/ o /‘ . ° °

~ X }




k-NN Regression (k = 10)
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Non-parametric Statistics
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“A precise and universally acceptable definition of the term ‘nonparametric’ is
not presently available. The viewpoint adopted in this handbook is that a
statistical procedure is of a nonparametric type if it has properties which are
satisfied to a reasonable approximation when some assumptions that are at

least of a moderately general nature hold.”
— The Handbook of Nonparametric Statistics
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Bias and Variance Trade-off

FIGURE 3.16. Plots of f (X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step func-
tion fit. Right: K =9 produces a much smoother fit.



Bias and Variance Trade-off

KNN: K=100

KNN: K=1
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k-NN Regression with Limited Data (k=3)




k-NN Regression with More Data

Use the same size of neighborhood, now we have 10 data in the circle

[ How is bais changing? How is variance changing?
[ How should we do bias-variance trade-off?
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k-NN Regression with More Data

Use the same size of neighborhood, now we have 10 data in the circle

[ How is bais changing? How is variance changing?
[ How should we do bias-variance trade-off?
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Local Kernel Smoothing: Nadaraya-Watson Estimator

TroN 27:1 Kn(x — x;) yi
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Curse of Dimensionality

11



Nonlinear Regression Models

Pamnetn ¢ Aﬁnack



Nonlinear Regression Model

liveer  Rebtionkip, Tiz fr €xi+8;

A general form of nonlinear regression model is Y; = g(x;; B) + €;, where

[ Y;: response for observation i; n~nlibeor ‘ck,:g.',,.kp
A x;: vector of predictors for observation i; 9.8 Yi= X p+ ¢
[ 3B: vector of model parameters;

[ g(x;; B): some parametric nonlinear function;

1 €;: zero-mean random error for observation 1.
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Example of Manufacturing Learning Curve

e Two facilities operate with (different) efficiency as a function of time.
e We denote Y as the relative efficiency of operation. The predictor variables
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e x> — number of weeks. \ﬁ - @0 * %X! v B( (QK?&%X))) te
Effi’ciencyA W\OD&‘ 4o olt:H:Ql-(’V\-{r a}{hl}b'{:;ﬁl
Bo+5 U

o |-~

R - — -

p— o -‘\0
o E“:'C"l

.

-

Facility A

> Week

13



Questions and Discussions

e For facility A, and the data looked like in the previous slide, how would you
model it?

e Facilities A and B have different asymptotic efficiencies, how would you
modify the model?

e If facilities A and B have different learning rates, how would you modify the
model?

asymptotic efficiencies, how could you do this? J co
OSYMPrtic - -
mpe-s '\_‘bf‘ﬁc‘-}

Hint: Play with the model Y = By + (3 exp(fBax2) + €.

e If the objective was to determine if the two facilities have different /\\ &P (- x)

N
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MLE for General Nonlinear Regression Model

Nonlinear model Y; = g(x;; B) +¢; with €; ~ N(0, o?).
—_——
=Hi

Now we view Xx; as deterministic, not random.

e Accordingly, the nonlinear model becomes Y; = u; + ¢;.
e Marginal pdf of Y; is f(yi; 3,0) = ——— exp(— 52z (yi — 1i)?).

210

What is the Max-likelihood Estimator?
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Maximizing Likelihood Function

Joint pdf (a.k.a. the likelihood function) of Yi,..., Y, is

1 1 «
f(Yi S, 0) — (2#)”/20” eXp <—M ()/i — ,ui)2>-

=1

y
Some inspection suggests that for 3, it suffices to
n n
min Y (yi — pi)® = min > (yi — i)’
A O f O
That is, the MLE of 3 for the general nonlinear regression model with i.i.d.
Gaussian errors (that are independent of x) is “nonlinear least squares” .
y
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Summary of Steps in General MLE

[ Write out the form of the statistical model that you are using to represent
the data.

[ Find the marginal distribution of each individual observation Y; (for

regression problems the x;'s are not treated as random, so you only need to
find the marginal distribution of the Y;'s given the x;'s).

[ From the marginal distributions in step (2), find the joint distribution
f(Y;0) of the entire set of data Y. Here 0 denotes all the parameters.
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R for Nonlinear Regression

e R has several built-in commands for nonlinear regression such as nlm and
nls (a little buggier than nlm).

e For the manufacturing learning curve example, we read data in MLC. csv.

e The following code snippet is for nonlinear regression on MLC. csv.

MLC<-read.table("MLC.csv",sep=",",header=TRUE)
x1<-MLCSLocation;x2<-MLCSWeek;y<-MLCSEfficiency

fn <- function(p) {yhat<-p[1l]l+p[2]*x1+p[4]*exp(p[3]1#*x2); sum((y-yhat)~22)}
out<-nlm(fn,p=c(1,0,-.5,-.1),hessian=TRUE)

theta<-outSestimatée " #parameter esthafzz

T wid
New>
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Example: Gaussian Distribution with Learned Variance

The likelihood function of a Gaussian distribution is given by:

A u(x), o(x)?) = L ex _ Ui = pla))”
P(yi | p(xi), o(xi)°) \/27TU(X,')2 p( 2 0(x;)2 )
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Another Example: Weibull Distribution

The likelihood function of a Weibull distribution is given by:

k /x k—1 —(x k
pk(xl)\):X(X) et

, where 1 > k > 0 is the shape parameter and A > 0 is the scale parameter.
y

Fact. f(y, \) attains its minimum at A = y.
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Non-parametric Statistical

Inference




Statistical Uncertainty in Supervised Learning

e With nonlinear regression models, the formulae for assessing statistical
uncertainty in linear regression (e.g., F-tests and t-tests for significance of
predictors, SEs and Cls for parameters, Pls and Cls for new observations,
etc.) do not apply directly.

e Question: Why might we want to calculate SEs, Cls/Pls, do hypothesis
tests, etc?

e For some nonlinear models, we can use approximate asymptotic analytical

results valid for sufficiently large sample size n to assess statistical
uncertainty.

e Fortunately, we have alternative computational approaches that apply to
any nonlinear model:

e Cross-validation for deciding which models are the best.
e Bootstrap resampling (or bootstrapping for short) for SEs and Cls on the
parameters and Cls and Pls on new observations.

21



Overview of Bootstrapping

Objective: Estimate the sampling distribution of 8 and quantities like SE(@)
that are derived from it.

[ You are given a sample of data of size n observations.

T You have estimated some parameter(s) 6 (call it 6).
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lllustration of Sampling from Known Distribution

AIM. estimate the mean of a Gaussian distribution and want to known the SEJ

of the estimate.

[ Generate say 10,000 samples, each of size n = 20, from an N(5.3,O.42)
distribution.

[ Calculate the averages {ysffr)n :j=1,...,10000} for the 10000 replicates.
A Take

1 10000 0)
SE(y) ~ v — _sim 27

where y.im is the average of )70)

sim*
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Idea: Bootstrap Sampling

Step:
Generate say 10,000 samples, each of size n = 20, from N(5.3,0.4°) is
pop;|;tion
impossible!
Idea. Bootstrap Sampling
Ideal Sampling Bootstrap Resampling
b etm
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If we know fy, we can generate new samples to recompute the statistic, and
take the sample variance of these estimators

fo
/

1000 i.i.d. 1000 i.i.d.
samples samples

q' Wt tw[xw;‘&-

—

1000 i.i.d. 1000 i.i.d.

samples samples
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Idea: use the observed samples zy, ..., zgyto generate n “new” samples, as if

they come from

1000 i.i.d. 1000 i.i.d. 1000 i.i.d.

resamples resamples resamples



Bootstrapping Overview Cont’'d

[ The bootstrap sampling approach: Draw a "bootstrap” sample as a

random sample of the same size n from the original sample of n
observations (with replacement), and calculate a @ for the bootstrap

sample.

[ Repeat a large number of times, each time drawing another bootstrap
sample (of size n) and calculating another 6 for that sample.

[ Then construct a histogram of all the 5'5, take their sample standard

AN

deviation to be an estimate of SE(8), etc.

Why this works: Consider making a pretend population that consists of your
original sample of n observations, copied over and over, an infinite number of
times. Each bootstrap sample is equivalent to drawing a random sample of

size n from this infinite pretend population.

27



lllustration of Bootstrapping

AIM. estimate the mean of an unknown distribution and want to known the J

SE of the estimate.

[ Generate say 10,000 samples, each of size n = 20, from the given observed
data (with replacement).

7 Calculate the averages {y(®) : b=1,...,10000} for the 10000 replicates.
(We think of y(®) just as the estimator 6.)

[ Take
1 10000
SE(y) ~ y(b) — )2

where y is the average of y(b).
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Bootstrapping in Nonlinear Regression

[ We have a sample of n observations {(y;,x;)}"_; of a response variable and
a set of predictor variables.

[ We fit a nonlinear regression model to the data to estimate a set of
parameters 6.

[ Let 0 denote one of the parameters of interest and § its estimate.

Objective: Estimate the sampling distribution of @, its standard error, a
confidence interval for 6, etc.

29



Steps of the Bootstrap Procedure

[ Generate a “bootstrap” sample (with replacement) of n observations from
{(vi,xi)}"_;. Denote the bootstrap sample by

{2 )y,

[ Fit the same type of regression model (with the same set of parameters 6
and parameter 6 of special interest) to the bootstrapped sample. Denote
the estimates for the bootstrapped sample by 6(?) and 9().

3 Pick a large number B (e.g., B = 10,000), and repeat Steps (1) and (2) a
total of B times, which produces

(615
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Steps of the Bootstrap Procedure Cont'd

T Construct a histogram of {#(®)}8__ and calculate

o 0= é Zf 1 o). average of all bootstrapped estimates.

e SE( \/B > 1(9(b) — 9) standard error of 0.
° Qa/z upper a/2 quantile.

® 0i_. /2 lower a/2 quantile.

o
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Some Output of Bootstrap

[ A crude 1 — « confidence interval for 6 is

0 — zo/2 - SE(B) < 0 < 0+ 2,2 - SE(0).
[ A better 1 — « confidence interval for 6 is

0 — (Bayp—0) <O <O+ (0—01_0,)

32
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Conformal Prediction

AlM.

[ Finite-sample coverage guarantees without distributional assumptions

[ Converting a point prediction algorithm into a prediction set
I Input: i.i.d. data pairs (X;, Y;) fori=1,....n
I Objective: Construct a prediction band C,(x) such that

P(Yoi1 € Go(Xns1)) > 11—«

/
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Key Idea: Using Ranks and Quantiles

Observation.the rank of Y,.1 is uniformly distributed over the values
1,2,...,n+ 1. This means that

P(Y,,H is among the [(1 — a)(n+ 1)] smallest of Yi,. .., Yn) = 1—q,

which is in turn equivalent to?

P(Y,,H is among the (1 — «)(n+ 1) smallest of Yi,..., Y,,) > 1-—a.

Y

> | —  fraction .+1 18 equally likely to occupy

any of the values

Yoo Yo Y5 Yy Y[ (1-a)nt1)) Yiui1)
34



Full Conformal Prediction

We havei.i.d. pairs {(X:, Y:)}7_1, where X; € X and Y; € V. We want to
construct a prediction set for Y,.1 given X, 1. Let f, be any regression
predictor trained on

(X17 Y1)7 (X27 Y2)7 SR (Xn7 Yn)
Our goal is to achieve (1 — a) coverage, i.e.,

P(Yn_|_1 < Cn(Xn_|_1)) Z 1— o

Why the Naive procedure ?

[ Compute the training residuals g; = Y; — f,,(X,-), i=1,2,...,n.
[ Let g, be an estimate of a suitable quantile of the absolute residuals, for
example the (1 — «) empirical quantile of

(A Define the prediction set for a new point x as

Calx) = [ Fal) = Gns o) + G- 55



Full Conformal Prediction

We havei.i.d. pairs {(X:, Y:)}7_1, where X; € X and Y; € V. We want to
construct a prediction set for Y,.1 given X, 1. Let f, be any regression
predictor trained on

(X17 Y1)7 (X27 Y2)7 SR (Xn7 Yn)
Our goal is to achieve (1 — a) coverage, i.e.,

P(Yn_|_1 < Cn(Xn_|_1)) Z 1— o

Full Conformal Prediction

[ Compute the training residuals g; = Y; — f W(Xi), i=1,2,...,n.

[ Let g, be an estimate of a suitable quantile of the absolute residuals, for
example the (1 — ) empirical quantile of {|g1\ 2|, - |gn|}
[ Define the prediction set for a new point x as

Colx) = [Flx) = Gn Fa6) + G- 56



Split Conformal Prediction

Full Conformal Prediction is computationally intractable! (why?)

Key Idea. Data Split

[ Proper Training Set (D;): Fit the point predictor f,,l (x)
[ Calibration Set (D,): Compute residuals
Ri=|Yi— fu(X)|, i€ D,

e Define quantile from calibration residuals:
Gn, = | (1 — a)(n2 + 1)]-th smallest residual

e Prediction set:
Colx) = | P (X) = Gnas Foa () +

e Guarantee: Ensures marginal coverage of at least 1 — «

37



Mathematical Formulation: Regression Case

Nonconformity Score

Neal

For a predictive model f and calibration data {(xi,yi)};=, define the

nonconformity score as:

AN

yi — f(xi)

Prediction Interval

Let g1, be the (1 — a)-quantile of {a;} <. For a new input x,.1, the

Q; —

prediction interval is given by:

{yeR: |y - f(Xn+1)| < Gi-af
This interval guarantees that the true y falls inside with probability at least
1— .
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Mathematical Formulation: Classification Case

Nonconformity Score

For a classification model, a common choice is:

aj =1—p(yi | ;)
where p(y; | x;) is the predicted probability for the true class.

Prediction Set

For a new example x,.1, the prediction set is defined as:

[(Xnt1) = {y cy: At O: zli(ly)} i > oz}

where a(y) is the nonconformity score computed if y were the true label.
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Advantages and Limitations

Advantages

e Finite-Sample Guarantees: Ensures valid coverage without asymptotic
approximations.

e Model-Agnostic: Can be applied on top of any predictive model.

Limitations

e Computational Cost: Some methods can be computationally intensive,
especially in the transductive setting.

e Loose Confidence Interval

e Assumptions: Relies on the exchangeability assumption which might not
hold in all cases.
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