IEMS 304 Lecture 5: Non-linear and Non-parametric Regression

Yiping Lu yiping.lu@northwestern.edu

Industrial Engineering & Management Sciences Northwestern University

k-NN Regression (k = 1)

 $\widehat{f}(x) = y_{(1)}$

k-NN Regression (k = 10)

"A precise and universally acceptable definition of the term 'nonparametric' is not presently available. The viewpoint adopted in this handbook is that a statistical procedure is of a nonparametric type if it has properties which are satisfied to a reasonable approximation when some assumptions that are at least of a moderately general nature hold."

- The Handbook of Nonparametric Statistics

Bias and Variance Trade-off

FIGURE 3.16. Plots of $\hat{f}(X)$ using KNN regression on a two-dimensional data set with 64 observations (orange dots). Left: K = 1 results in a rough step function fit. Right: K = 9 produces a much smoother fit.

Bias and Variance Trade-off

k-NN Regression with Limited Data (k=3)

k-NN Regression with More Data

Use the same size of neighborhood, now we have 10 data in the circle

- □ How is bais changing? How is variance changing?
- □ How should we do bias-variance trade-off?

k-NN Regression with More Data

Use the same size of neighborhood, now we have 10 data in the circle

- □ How is bais changing? How is variance changing?
- □ How should we do bias-variance trade-off?

Local Kernel Smoothing: Nadaraya-Watson Estimator

$$\widehat{f}(x) = \frac{\sum_{i=1}^{n} K_h(x-x_i) y_i}{\sum_{i=1}^{n} K_h(x-x_i)}$$

Curse of Dimensionality

Nonlinear Regression Models

A general form of nonlinear regression model is $Y_i = g(x_i; \beta) + \epsilon_i$, where

- \square Y_i : response for observation i;
- \square x_i: vector of predictors for observation *i*;
- $\square \beta$: vector of model parameters;
- \Box $g(x_i; \beta)$: some parametric nonlinear function;
- \Box ϵ_i : zero-mean random error for observation *i*.

We will see shortly that if the random errors are Gaussian and independent of x, the MLE of β is just nonlinear least squares.

Example of Manufacturing Learning Curve

- Two facilities operate with (different) efficiency as a function of time.
- We denote Y as the relative efficiency of operation. The predictor variables are
 - $x_1 = \begin{cases} 1, & \text{facility B (modern)} \\ 0, & \text{facility A (old)} \end{cases}$;
 - $x_2 =$ number of weeks.

- For facility A, and the data looked like in the previous slide, how would you model it?
- Facilities A and B have different asymptotic efficiencies, how would you modify the model?
- If facilities A and B have different learning rates, how would you modify the model?
- If the objective was to determine if the two facilities have different asymptotic efficiencies, how could you do this?

Hint: Play with the model $Y = \beta_0 + \beta_3 \exp(\beta_2 x_2) + \epsilon$.

MLE for General Nonlinear Regression Model

Nonlinear model
$$Y_i = \underbrace{g(\mathsf{x}_i; \beta)}_{:=\mu_i} + \epsilon_i$$
 with $\epsilon_i \sim \mathsf{N}(0, \sigma^2)$.

Now we view x_i as deterministic, not random.

- Accordingly, the nonlinear model becomes $Y_i = \mu_i + \epsilon_i$.
- Marginal pdf of Y_i is $f(y_i; \beta, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(y_i \mu_i)^2\right)$.

What is the Max-likelihood Estimator?

Maximizing Likelihood Function

oint pdf (a.k.a. the likelihood function) of
$$Y_1, \ldots, Y_n$$
 is

$$f(y; \beta, \sigma) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu_i)^2\right).$$

We want to
$$\max_{\beta,\sigma} f(y;\beta,\sigma) = \max_{\beta,\sigma} \frac{1}{\sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu_i)^2\right).$$

Some inspection suggests that for β , it suffices to

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \mu_i)^2 = \min_{\beta} \sum_{i=1}^{n} (y_i - \mu_i)^2. \qquad \underline{\text{log-likelihood}}$$

That is, the MLE of β for the general nonlinear regression model with i.i.d. Gaussian errors (that are independent of x) is "nonlinear least squares".

How to compute β ? Optimization!

- Write out the form of the statistical model that you are using to represent the data.
- □ Find the marginal distribution of each individual observation Y_i (for regression problems the x_i 's are not treated as random, so you only need to find the marginal distribution of the Y_i 's given the x_i 's).
- □ From the marginal distributions in step (2), find the joint distribution $f(Y; \theta)$ of the entire set of data Y. Here θ denotes all the parameters.

If tractable, find an analytical expression for the θ that maximizes the likelihood $f(Y; \theta)$. Otherwise, use numerical optimization software to minimize $-\log f(Y; \theta)$.

- R has several built-in commands for nonlinear regression such as nlm and nls (a little buggier than nlm).
- For the manufacturing learning curve example, we read data in MLC.csv.
- The following code snippet is for nonlinear regression on MLC.csv.

```
MLC<-read.table("MLC.csv",sep=",",header=TRUE)
x1<-MLC$Location;x2<-MLC$Week;y<-MLC$Efficiency
fn <- function(p) {yhat<-p[1]+p[2]*x1+p[4]*exp(p[3]*x2); sum((y-yhat)^2)}
out<-nlm(fn,p=c(1,0,-.5,-.1),hessian=TRUE)
theta<-out$estimate #parameter estimates</pre>
```

Example: Gaussian Distribution with Learned Variance

The likelihood function of a Gaussian distribution is given by:

$$P(y_i \mid \mu(x_i), \sigma(x_i)^2) = \frac{1}{\sqrt{2\pi \sigma(x_i)^2}} \exp\left(-\frac{(y_i - \mu(x_i))^2}{2 \sigma(x_i)^2}\right)$$

$$\ell(\mu, \sigma^{2}) = \sum_{i=1}^{n} \log P(y_{i}|\mu(x_{i}), \sigma(x_{i})^{2})$$

= $\sum_{i=1}^{n} \left(-\frac{1}{2} \log(2\pi) - \frac{1}{2} \log(\sigma(x_{i})^{2}) - \frac{(y_{i} - \mu(x_{i}))^{2}}{2\sigma(x_{i})^{2}} \right)$
= $-\frac{n}{2} \ln(2\pi(x_{i})) - \underbrace{\frac{n}{2} \ln(\sigma(x_{i})^{2})}_{\text{sparse regularization}} - \underbrace{\sum_{i=1}^{n} \frac{(y_{i} - \mu(x_{i}))^{2}}{2\sigma(x_{i})^{2}}}_{\text{weighted } \ell_{2} \text{ loss}}$

Another Example: Weibull Distribution

The likelihood function of a Weibull distribution is given by:

$$p_k(x|\lambda) = rac{k}{\lambda} \Big(rac{x}{\lambda}\Big)^{k-1} e^{-(x/\lambda)^k}$$

, where 1 > k > 0 is the shape parameter and $\lambda > 0$ is the scale parameter.

$$\log p_k(y|\lambda(x)) = -(y/\lambda(x))^k - k \log \lambda(x) +$$

$$\underbrace{\log(ky^{k-1})}$$

not dependent on the prediction $\lambda(x)$

<u>Fact.</u> $f(y, \lambda)$ attains its minimum at $\lambda = y$.

Non-parametric Statistical Inference

Statistical Uncertainty in Supervised Learning

- With nonlinear regression models, the formulae for assessing statistical uncertainty in linear regression (e.g., *F*-tests and *t*-tests for significance of predictors, SEs and CIs for parameters, PIs and CIs for new observations, etc.) do not apply directly.
 - Question: Why might we want to calculate SEs, CIs/PIs, do hypothesis tests, etc?
- For some nonlinear models, we can use approximate **asymptotic analytical results** valid for sufficiently large sample size n to assess statistical uncertainty.
- Fortunately, we have alternative **computational approaches** that apply to any nonlinear model:
 - Cross-validation for deciding which models are the best.
 - **Bootstrap resampling** (or **bootstrapping** for short) for SEs and CIs on the parameters and CIs and PIs on new observations.

Objective: Estimate the sampling distribution of $\hat{\theta}$ and quantities like $SE(\hat{\theta})$ that are derived from it.

\square You are given a sample of data of size *n* observations.

D You have estimated some parameter(s) θ (call it $\hat{\theta}$).

Problem: <u>Hypothetically</u>, if we knew the form of the population distribution, we could consider using simulation to draw many random samples (each of size *n*) from the population and calculate a different $\hat{\theta}$ for each sample. We could construct a histogram of all the $\hat{\theta}$'s and take their sample standard deviation to be an estimate of $SE(\hat{\theta})$. But what if we do not know the form of the population distribution?

 $\underline{\text{AIM.}}$ estimate the mean of a Gaussian distribution and want to known the SE of the estimate.

- □ Generate say 10,000 samples, each of size n = 20, from an N(5.3, 0.4²) distribution.
- \square Calculate the averages $\{\bar{y}_{\rm sim}^{(j)}: j=1,\ldots,10000\}$ for the 10000 replicates. \square Take

$$\mathrm{SE}(\bar{y})\approx \sqrt{\frac{1}{10000-1}\,\sum_{j=1}^{10000}(\bar{y}_{\mathrm{sim}}^{(j)}-\bar{y}_{\mathrm{sim}})^2},$$
 where \bar{y}_{sim} is the average of $\bar{y}_{\mathrm{sim}}^{(j)}$.

Idea. Bootstrap Sampling

Idea:

If we know f_{θ} , we can generate new samples to recompute the statistic, and take the sample variance of these estimators

Realisitic

Idea: use the observed samples $z_1, ..., z_n$ to generate n "new" samples, as if they come from

Bootstrapping Overview Cont'd

- □ The **bootstrap** sampling approach: Draw a "bootstrap" sample as a random sample of the same size *n* from the original sample of *n* observations (with replacement), and calculate a $\hat{\theta}$ for the bootstrap sample.
- □ Repeat a large number of times, each time drawing another bootstrap sample (of size *n*) and calculating another $\hat{\theta}$ for that sample.
- **D** Then construct a histogram of all the $\hat{\theta}$'s, take their sample standard deviation to be an estimate of $SE(\hat{\theta})$, etc.

Why this works: Consider making a pretend population that consists of your original sample of n observations, copied over and over, an infinite number of times. Each bootstrap sample is equivalent to drawing a random sample of size n from this infinite pretend population.

 $\underline{\text{AIM.}}$ estimate the mean of an unknown distribution and want to known the SE of the estimate.

- □ Generate say 10,000 samples, each of size n = 20, from the given **observed** data (with replacement).
- □ Calculate the averages $\{\bar{y}^{(b)} : b = 1, ..., 10000\}$ for the 10000 replicates. (We think of $\bar{y}^{(b)}$ just as the estimator $\hat{\theta}$.)

🗖 Take

$$\mathrm{SE}(\bar{y}) pprox \sqrt{rac{1}{10000-1} \sum_{j=1}^{10000} (\bar{y}^{(b)} - \bar{y})^2},$$

where \bar{y} is the average of $\bar{y}^{(b)}$.

- □ We have a sample of *n* observations $\{(y_i, x_i)\}_{i=1}^n$ of a response variable and a set of predictor variables.
- \square We fit a nonlinear regression model to the data to estimate a set of parameters θ .
- \square Let θ denote one of the parameters of interest and $\widehat{\theta}$ its estimate.

Objective: Estimate the sampling distribution of $\hat{\theta}$, its standard error, a confidence interval for θ , etc.

- □ Generate a "bootstrap" sample (with replacement) of *n* observations from $\{(y_i, x_i)\}_{i=1}^n$. Denote the bootstrap sample by $\{(y_i^{(b)}, x_i^{(b)})\}_{i=1}^n$.
- □ Fit the same type of regression model (with the same set of parameters θ and parameter θ of special interest) to the bootstrapped sample. Denote the estimates for the bootstrapped sample by $\hat{\theta}^{(b)}$ and $\hat{\theta}^{(b)}$.
- Pick a large number B (e.g., B = 10,000), and repeat Steps (1) and (2) a total of B times, which produces

$$\{\widehat{\theta}^{(b)}\}_{b=1}^B.$$

Steps of the Bootstrap Procedure Cont'd

 \square Construct a histogram of $\{\widehat{\theta}^{(b)}\}_{b=1}^B$ and calculate

- $\overline{\hat{\theta}} = \frac{1}{B} \sum_{b=1}^{B} \widehat{\theta}^{(b)}$: average of all bootstrapped estimates.
- $SE(\widehat{\theta}) = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\widehat{\theta}^{(b)} \overline{\widehat{\theta}})}$: standard error of $\widehat{\theta}$.
- $\hat{\theta}_{\alpha/2}$: upper $\alpha/2$ quantile.
- $\widehat{\theta}_{1-\alpha/2}$: lower $\alpha/2$ quantile.

□ A crude
$$1 - \alpha$$
 confidence interval for θ is
 $\widehat{\theta} - z_{\alpha/2} \cdot \operatorname{SE}(\widehat{\theta}) \leq \theta \leq \widehat{\theta} + z_{\alpha/2} \cdot \operatorname{SE}(\widehat{\theta}).$
□ A better $1 - \alpha$ confidence interval for θ is
 $\widehat{\theta} - (\widehat{\theta}_{\alpha/2} - \widehat{\theta}) \leq \theta \leq \widehat{\theta} + (\widehat{\theta} - \widehat{\theta}_{1-\alpha/2}).$

Conformal Prediction

AIM.

 $\hfill\square$ Finite-sample coverage guarantees without distributional assumptions

 $\hfill\square$ Converting a point prediction algorithm into a prediction set

- I Input: i.i.d. data pairs (X_i, Y_i) for i = 1, ..., n
- **I** Objective: Construct a prediction band $\widehat{C}_n(x)$ such that

$$P(Y_{n+1} \in \widehat{C}_n(X_{n+1})) \ge 1 - \alpha$$

Note: Trivial solutions (Why?) exist, but the goal is to develop nontrivial, adaptive methods

Key Idea: Using Ranks and Quantiles

<u>Observation</u>.the rank of Y_{n+1} is uniformly distributed over the values 1, 2, ..., n+1. This means that $P\left(Y_{n+1} \text{ is among the } \left[(1-\alpha)(n+1)\right] \text{ smallest of } Y_1, ..., Y_n\right) = 1-\alpha$, which is in turn equivalent to¹ $P\left(Y_{n+1} \text{ is among the } (1-\alpha)(n+1) \text{ smallest of } Y_1, ..., Y_n\right) \geq 1-\alpha$.

Accordingly, by defining $q_n =$ the $[(1 - \alpha)(n + 1)]$ -th smallest of Y_1, \ldots, Y_n , we have precisely achieved the desired property. via $Y_{n+1} \leq$ the $[(1 - \alpha)(n + 1)]$ -th order statistic of Y_1, \ldots, Y_n .

Full Conformal Prediction

We have i.i.d. pairs $\{(X_t, Y_t)\}_{t=1}^n$, where $X_t \in \mathcal{X}$ and $Y_t \in \mathcal{Y}$. We want to construct a prediction set for Y_{n+1} given X_{n+1} . Let \hat{f}_n be any regression predictor trained on

 $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n).$

Our goal is to achieve (1 - $\alpha)$ coverage, i.e.,

$$P(Y_{n+1} \in C_n(X_{n+1})) \geq 1 - \alpha.$$

Why the Naive procedure Fails?

- **D** Compute the training residuals $\widehat{g}_i = Y_i \widehat{f}_n(X_i), \quad i = 1, 2, ..., n.$
- □ Let \hat{q}_n be an estimate of a suitable quantile of the absolute residuals, for example the (1α) empirical quantile of

 $\{|\widehat{g}_1|, |\widehat{g}_2|, \ldots, |\widehat{g}_n|\}.$

 \square Define the prediction set for a new point x as

$$C_n(x) = \left[\widehat{f}_n(x) - \widehat{q}_n, \ \widehat{f}_n(x) + \widehat{q}_n \right].$$
 35

Full Conformal Prediction

We have i.i.d. pairs $\{(X_t, Y_t)\}_{t=1}^n$, where $X_t \in \mathcal{X}$ and $Y_t \in \mathcal{Y}$. We want to construct a prediction set for Y_{n+1} given X_{n+1} . Let \hat{f}_n be any regression predictor trained on

 $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n).$

Our goal is to achieve (1 – lpha) coverage, i.e.,

$$P(Y_{n+1} \in C_n(X_{n+1})) \geq 1 - \alpha.$$

Full Conformal Prediction

D Compute the training residuals $\hat{g}_i = Y_i - \hat{f}_n(X_i), \quad i = 1, 2, ..., n.$

(-i means delete i-th data while training)

- □ Let \hat{q}_n be an estimate of a suitable quantile of the absolute residuals, for example the (1α) empirical quantile of $\{|\hat{g}_1|, |\hat{g}_2|, \dots, |\hat{g}_n|\}$.
- $\hfill\square$ Define the prediction set for a new point x as

$$C_n(x) = \left[\widehat{f_n}(x) - \widehat{q_n}, \ \widehat{f_n}(x) + \widehat{q_n} \right].$$

Split Conformal Prediction

Full Conformal Prediction is computationally intractable! (why?)

Key Idea. Data Split

D Proper Training Set (D_1): Fit the point predictor $\hat{f}_{n_1}(x)$

Calibration Set (*D*₂**):** Compute residuals

$$R_i = |Y_i - \widehat{f}_{n_1}(X_i)|, \quad i \in D_2$$

• Define quantile from calibration residuals:

$$q_{n_2} = \lceil (1-lpha)(n_2+1)
ceil$$
-th smallest residual

• Prediction set:

$$\widehat{C}_n(x) = \left[\widehat{f}_{n_1}(x) - q_{n_2}, \ \widehat{f}_{n_1}(x) + q_{n_2}\right]$$

- Guarantee: Ensures marginal coverage of at least $1-\alpha$

Mathematical Formulation: Regression Case

Nonconformity Score

For a predictive model \hat{f} and calibration data $\{(x_i, y_i)\}_{i=1}^{n_{cal}}$, define the nonconformity score as:

$$\alpha_i = \left| y_i - \widehat{f}(x_i) \right|$$

Prediction Interval

Let $\hat{q}_{1-\alpha}$ be the $(1-\alpha)$ -quantile of $\{\alpha_i\}_{i=1}^{n_{cal}}$. For a new input x_{n+1} , the prediction interval is given by:

$$\{y \in \mathbb{R} : \left|y - \widehat{f}(x_{n+1})\right| \le \widehat{q}_{1-\alpha}\}$$

This interval guarantees that the true y falls inside with probability at least $1 - \alpha$.

Nonconformity Score

For a classification model, a common choice is:

$$\alpha_i = 1 - p(y_i \mid x_i)$$

where $p(y_i | x_i)$ is the predicted probability for the true class.

Prediction Set

For a new example x_{n+1} , the prediction set is defined as:

$$\Gamma(x_{n+1}) = \left\{ y \in \mathcal{Y} : \frac{\#\{i : \alpha_i \ge \alpha(y)\} + 1}{n_{\mathsf{cal}} + 1} > \alpha \right\}$$

where $\alpha(y)$ is the nonconformity score computed if y were the true label.

Advantages

- Finite-Sample Guarantees: Ensures valid coverage without asymptotic approximations.
- Model-Agnostic: Can be applied on top of any predictive model.

Limitations

- **Computational Cost:** Some methods can be computationally intensive, especially in the transductive setting.
- Loose Confidence Interval
- Assumptions: Relies on the exchangeability assumption which might not hold in all cases.