IEMS 304 Lecture 4: Model and Variable Selection, Shrinkage, and Multicollinearity

Yiping Lu yiping.lu@northwestern.edu

Industrial Engineering & Management Sciences Northwestern University

Model Selection

Fitting a Polynomial Using Linear Regression

Consider fitting a polynomial of degree p to data $\{(x_i, y_i)\}$:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \epsilon.$$

Define new variables: $z_1 = x$, $z_2 = x^2$, ..., $z_p = x^p$. Then, the model can be written as:

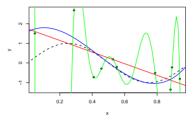
$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_p z_p + \epsilon,$$

which is linear in the parameters $\beta_0, \beta_1, \ldots, \beta_p$.

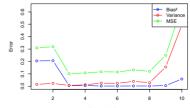
$$\begin{bmatrix} y_1\\y_2\\\vdots\\y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p\\1 & x_2 & x_2^2 & \cdots & x_2^p\\\vdots & \vdots & \vdots & \vdots & \vdots\\1 & x_n & x_n^2 & \cdots & x_n^p \end{bmatrix} \begin{bmatrix} \beta_0\\\beta_1\\\beta_2\\\vdots\\\beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1\\\epsilon_2\\\vdots\\\epsilon_n \end{bmatrix}$$

Is More Feature Better? (Homework)

Polynomial Regression Fits



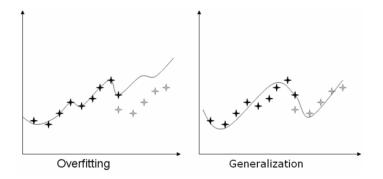
Bias–Variance Tradeoff



Polynomial Degree

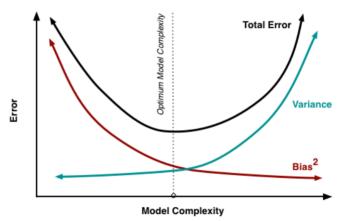
How to Select the Number of Features?

Intuitive Understanding of Model Selection



- SSE is small, but prediction error can be large.
- We want to select models that generalize.

Bias-Variance Trade-off



First Idea: Cross-Validation

Hold a test set?

Cross-Validation

Training Tra	aining Training	Training	Testing
--------------	-----------------	----------	---------

Training Training Trai	ning Testing	Training
------------------------	--------------	----------

Training Training	Testing	Training	Training
-------------------	---------	----------	----------

Training Testing	Training	Training	Training
------------------	----------	----------	----------

Testing	Training	Training	Training	Training
---------	----------	----------	----------	----------

Fact 1.
$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(y'_i-\hat{y}_i)^2\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2\right] + \frac{2\sigma^2}{n}\operatorname{df}(\hat{y}).$$

Fact 2. $\operatorname{df}(\hat{y}^{\text{linreg}}) = p$

How to design a Model Selection algorithm?

Model Selection Algorithms

penalize for larger d and/or larger SSE						
Criterion Large-sample complexity penalization						
MSE, $r_{\rm adj}^2$	MSE, r_{adj}^2 d					
MSE, r_{adj}^2 AIC, C_p BIC	AIC, C_p 2d					
BIC	BIC d log n					

•
$$r_{adj}^2 = 1 - \frac{MSE}{MST} = 1 - \frac{SSE}{SST} \cdot \frac{n-1}{n-(k+1)}$$
 (larger is better).

•
$$MSE = \frac{SSE}{n-(k+1)}$$
 (smaller is better).

• Mallow's
$$C_p$$
: $C_p = \frac{SSE}{\hat{\sigma}^2} + (2d - n)$ (smaller is better),

• AIC:
$$\frac{1}{n} \left[\frac{\text{SSE}}{\hat{\sigma}^2} + 2d \right]$$
 (smaller is better)

• BIC:
$$\frac{1}{n} \left[\frac{\text{SSE}}{\hat{\sigma}^2} + d \cdot \log n \right]$$
. (smaller is better)

 C_p can be viewed as a special case of AIC for linear regression. AIC and BIC (for both, smaller is better) are much more general than C_p and apply to many nonlinear models fit via maximum likelihood estimation (MLE).

- When comparing models with the same d, using C_p , r_{adj}^2 , r^2 , MSE, AIC, or BIC are all equivalent to selecting the model with the lowest training SSE.
- I When comparing models with different d, using simply SSE for model selection is usually not a good idea.
- I Using C_p , r_{adj}^2 , r^2 , MSE, AIC, or BIC may lead to different model selection
- For large data sets, CV often gives smaller selected models than any of the analytical criteria.

- □ Cross-validation (CV) can be used to evaluate and compare virtually any set of models.
 - CV applies to any type of model (linear, nonlinear, trees, neural networks, etc)
 - **I** CV applies equally well to classification and regression (but for classification you would use a different error measure than SSE)
 - CV is generally the most reliable, because it involves no assumptions (analytical criteria like C_p , AIC, BIC involve assumptions, such as no influential observations or outliers, large sample sizes, etc)
- CV is too computationally expensive for the automated variable selection methods. For these, we need the analytical criteria. But we can always use CV to assess and compare a few final candidate best models.

Stepwise and Subsets Regression

- Given a possibly large set of predictor variables $\{x_1, x_2, \ldots, x_k\}$, how to decide which ones belong in the model?
 - Including more predictors than needed is bad for explanatory, as well as predictive, purposes.
 - □ Could consider fitting one model with all *k* predictors and then looking at their *t*-test *P*-values (why is this a bad approach?)
- I Two common automated variable selection methods are
 - □ Stepwise regression (good, and computationally feasible);
 - **D** Best subsets regression (best, only feasible for k < 50 or so).

Forward Stepwise Regression

- Basic idea is to start with no predictors in the model and build the model iteratively (in steps), one predictor at a time. On each step you:
 - I Find which one of the remaining individual predictors would most reduce the SSE if it were added to the model.
 - I Use some criterion like AIC to decide whether the model is better with or without that one predictor.
 - I If the criterion says to add that one predictor, you add it and go to the next step; otherwise, you terminate the algorithm and take the best model to be the current one.
- The original criterion for deciding whether the model is better with or without the additional predictor was a partial *F*-test, and this is still used in many software.
- \square AIC or Mallows' C_p is usually considered preferable now.

In the first iteration, we added predictor x_2 and at the second iteration we added predictor x_5 . Suppose we are at the third iteration to add variables.

D The current model contains $\{x_2, x_5\}$ and we test the following six combinations:

 $\{x_2, x_5, x_1\} \quad \{x_2, x_5, x_3\} \quad \{x_2, x_5, x_4\} \\ \{x_2, x_5, x_6\} \quad \{x_2, x_5, x_7\} \quad \{x_2, x_5, x_8\}$

- □ Suppose $\{x_2, x_5, x_1\}$ has the smallest SSE. We denote it as SSE₃. Let SSE₂ denote the SSE for the model $\{x_2, x_5\}$.
- $\square \text{ We calculate AIC}_2 = n \log(SSE_2) + 2 \times 3 \text{ and AIC}_3 = n \log(SSE_3) + 2 \times 4.$
- □ If AIC₃ < AIC₂, we add x_1 to the model and proceed to the fourth iteration. Otherwise, we terminate and take $\{x_2, x_5\}$ as the final model.

- Forward Stepwise: Start with no predictors in the model and add them one-at-a-time.
- Backward Stepwise: Start with all *k* predictors in the model and remove them one-at-a-time. At each step, the removed predictor is the one that least increases the SSE after its removal. Stop removing according to the same AIC or *F*-test criteria.
- Forward/Backward Stepwise (forward version): Start with no predictors in the model and add them one-at-a-time. However, at each step, you can consider removing one or more of the predictors that were added at a previous step. Whether to add, remove, or stop is determined according to the same AIC or *F*-test criteria.

- pred_weight.txt contains data to predict person's weight. We demonstrate the forward/backward stepwise regression.
- The initial model is a constant model, i.e., weight \sim 1.
- We add predictors one-by-one in each iteration. Meanwhile, in each iteration, we check if any previously added predictors can be removed.

```
step(object, scope, scale = 0,
    direction = c("both", "backward", "forward"),
    trace = 1, keep = NULL, steps = 1000, k = 2, ...)
```

Example: The First Iteration

```
Start: AIC=205.9
weight ~ 1
```

	Df	Sum of Sq	RSS	AIC
+ gender	1	15232.5	11615	182.76
+ height	1	8968.4	17879	195.71
+ age	1	4034.2	22813	203.02
<none></none>			26847	205.90
+ digit	1	1260.7	25587	206.46
+ meat	1	868.7	25979	206.91
+ NL	1	313.6	26534	207.55
+ cell_phone	1	244.6	26603	207.63
+ fruit_veg	1	166.3	26681	207.72

- Which added predictor achieves the lowest SSE?
- Shall we add the predictor identified above to the model?

Example: The Second Iteration

Step: AIC=182.77
weight ~ gender

	Df	Sum of Sq	RSS	AIC
+ age	1	1223.6	10391	181.43
+ height	1	1088.7	10526	181.81
<none></none>			11615	182.76
+ NL	1	313.6	11301	183.94
+ meat	1	64.7	11550	184.60
+ fruit_veg	1	4.9	11610	184.75
+ cell_phone	1	3.8	11611	184.76
+ digit	1	0.4	11614	184.76
- gender	1	15232.5	26847	205.90

- Which added predictor achieves the lowest SSE?
- Shall we add the predictor identified above to the model?

Step: AIC=181.43
weight ~ gender + age

Step: AIC=181.18
weight ~ gender + age + height

	Df	Sum of Sq	RSS	AIC		Df	Sum	of	Sq	RSS	AIC
+ height	1	750.4	9640.8	181.18	<none></none>					9640.8	181.18
<none></none>			10391.3	181.43	- height	1		75(9.4	10391.3	181.43
+ NL	1	313.6	10077.6	182.51	– age	1		88	5.3	10526.1	181.81
– age	1	1223.6	11614.8	182.76	+ digit	1		404	1.7	9236.2	181.89
+ digit	1	50.1	10341.1	183.28	+ NL	1		200	9.1	9440.7	182.55
+ meat	1	36.2	10355.0	183.32	+ meat	1		33	3.1	9607.7	183.07
+ fruit_veg	1	34.8	10356.4	183.32	+ fruit_veg	1		20	5.4	9614.5	183.09
+ cell_phone	1	1.9	10389.4	183.42	+ cell_phone	1		3	3.5	9637.3	183.17
- gender	1	12421.9	22813.2	203.02	- gender	1		668!	5.4	16326.2	194.98

• Shall we continue the process or terminate?

- Stepwise regression is "fooled" by influential observations (just like other tests of statistical significance of the coefficients are fooled), so this must be taken into account.
- When you have many predictors and suspect that only a few may be important, forward stepwise is preferable to backwards.
- When you suspect that most predictors may be important, backward stepwise may be preferable.
- Suppose you have 50 rows of data, 75 predictor variables, and you are not sure how many of the 75 are important. Would backwards or forwards stepwise be a better choice in this case?

<u>Basic Idea</u>: For p = 1, 2, ..., k, find the best (or best 2 or 3) models that contain exactly p predictors, a subset of $\{x_1, x_2, ..., x_k\}$.

- You can then choose the overall best model from among the best of each size.
- □ How to quantify which models are "better"?
 - I For comparing models having the same p, this is easy: better = lower SSE.
 - For comparing models having different p, you can use your favorite model selection criterion (C_p , AIC, CV, etc.).

• We use pred_weight.txt data again. The leaps() function is useful for best subsets regression.

	size	Ср	height	gender	meat	fruit_veg	age	cell_phone	digit	NL
X1	2	1.727439	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
X1.1	2	16.681476	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
X2	3	0.806466	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
X2.1	3	1.128335	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
ХЗ	4	1.014981	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
X3.1	4	2.057747	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
X4	5	2.048960	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE
X4.1	5	2.537256	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
X5	6	3.098190	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE
X5.1	6	3.899458	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
X6	7	5.050088	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE
X6.1	7	5.090002	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE
Х7	8	7.008034	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE
X7.1	8	7.046338	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
X8	9	9.000000	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

Questions and Discussions

□ Best subsets with r_{adj}^2 as the criterion (use method = "adjr2") would give a 5-predictor model with {gender, age, height, digit, NL} as the best model, which is clearly too many predictors. In contrast, using C_p as the criterion gives the 2-predictor model {gender, age} as the best model.

□ The top three models in order of C_p are {gender, age}, {gender, age, height}, and {gender, height}.

 \square These three models have similar C_p . What follow-up analyses would you do to decide which is the best model?

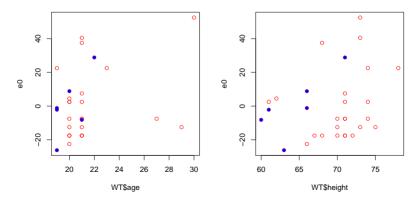
- □ Variable gender is in all of the top models. We explore whether height or age is the better predictor to include.
- \square We use PRESS to evaluate those models again.

Model	C_p	PRESS
$\{\text{gender, age}\}$	0.8	14858
$\{\text{gender, height, age}\}$	1.0	14582
$\{\text{gender, height}\}$	1.1	12720
$\{gender\}$	1.7	13232

 \square According to PRESS, {height, gender} is the best model.

Why age Loses the Game?

- \square We try to fit a simple linear model weight $\sim {\rm gender}$ and do some residual plots.
- □ We distinguish the residuals according to gender. For male, the residual is represented in blue and for female, the residual is represented in red.



- **Computational (major advantage for stepwise)**:
 - Stepwise is very fast computationally and can handle virtually any number of predictors, even with large data sets.
 - I Best subsets is very slow even with the computational tricks. It cannot handle more than k>50 predictors, or so.
- **D** Optimality of selected model (minor advantage for best subsets)
 - I Stepwise is a greedy optimization algorithm that does not necessarily find best model of each size (for fixed size, best means lowest SSE), although it usually does a pretty good job.
 - I Best subsets is guaranteed to find the best model of each size.
- □ Flexibility (major advantage for stepwise):
 - I Versions of stepwise are available for other models, like logistic regression. Best subsets is restricted to linear regression models, because of the computational challenges.

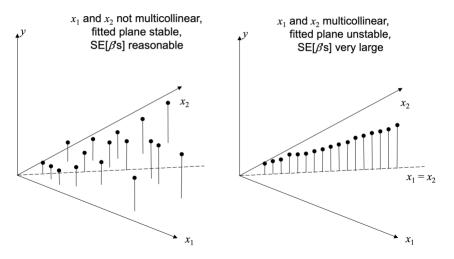
Multicollinearity

Multicollinearity means that some of the predictors (or linear combinations of them) are **highly correlated** with each other.

- We have already seen how multicollinearity causes problems in regression (e.g., misleading *t*-tests, estimated coefficients that have the wrong sign). It also compounds problems associated with leverage and influence (easier to have high-leverage observations when multicollinearity is present) and causes numerical problems.
- □ Multicollinearity is closely connected to variable selection:
 - It makes variable selection ambiguous;
 - Variable selection is one "solution" to multicollinearity, since it tends to omit predictors that are correlated with included ones.

Illustration of Multicollinearity

I We fit a model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$.



- □ In the right figure on the previous slide, the multicollinearity between x_1 and x_2 makes it nearly impossible to distinguish between their effects. This means we cannot distinguish between β_1 and β_2 , which translates to poor estimation and large standard errors.
- Why is the situation depicted in the right figure more likely to be subject to influential observations?
- □ If you are only interested in predicting the response (i.e., you are not interested in distinguishing the effects of x_1 and x_2), AND you will not be extrapolating/predicting the response at x values that fall outside the relationship seen in the training data (i.e., off the $x_1 = x_2$ line in the right figure), then multicollinearity may not be a problem.

Recall that we can represent data as a matrix X:

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{15} & \dots & x_{1k} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{n5} & \dots & x_{nk} \end{bmatrix}$$

- Suppose the second and the fifth predictor variables are highly linearly dependent.
- This says matrix X is "almost not full column rank".
- □ When we solve the linear equations for the coefficients, i.e., $(X^{\top}X)\hat{\beta} = X^{\top}Y$, the solution is underdetermined— $X^{\top}X$ is almost singular.

- Inspect matrix scatter plots of predictors (BEWARE: can miss multicollinearity if k > 2)
- Inspect correlation matrices of predictors (BEWARE for same reason)
- Variance Inflation Factors (VIFs) (the best way to detect multicollinearity)

Pairwise Multicollinearity

- If you see high correlation (among predictors) in a matrix scatterplot, then multicollinearity is present. However, if you do not see it, it may **still be present**.
- Inspecting correlation matrices is subject to the same pitfall.
- Side note: It is common to standardize the predictors before fitting a model (i.e., standardize each "column" to have zero mean and unit variance)

$$\begin{split} \bar{x}_{j} &= \frac{1}{n} \sum_{i=1}^{n} x_{ij} \quad \text{sample average of } j\text{-th predictor}, \\ s_{x_{j}} &= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})^{2}} \quad \text{sample std of } j\text{-th predictor}, \\ x_{ij}^{*} &= \frac{x_{ij} - \bar{x}_{j}}{s_{x_{j}}} \quad \text{standardized } j\text{-th predictor}. \end{split}$$

Correlation Matrix

- We define $r_{x_j x_l} = \frac{1}{n-1} \sum_{i=1}^n x_{ij}^* x_{il}^*$ as the sample correlation coefficient between x_j and x_l .
- Correlation matrix is to collect all the correlation coefficients between pairwise predictor, i.e.,

$$\mathsf{R} = \begin{bmatrix} 1 & r_{x_1 x_2} & \dots & r_{x_1 x_k} \\ r_{x_2 x_1} & 1 & \dots & r_{x_2 x_k} \\ \vdots & \vdots & \ddots & \vdots \\ r_{x_k x_1} & r_{x_k x_2} & \dots & 1 \end{bmatrix}.$$

- Interpretation of correlation coefficients:
 - $-1 \leq r_{x_j x_j} \leq 1$ always;
 - $r_{x_jx_l} = \pm 1$ perfectly linearly related;
 - $r_{x_j x_l} = 0$ no (linear) relation.

• In gas_mileage.csv data, we calculate the correlation matrix. Part of the matrix is shown below.

	Displacement	Hpower	Torque	Comp_ratio	Rear_axle_ratio
Displacement	1.000	0.945	0.989	-0.330	-0.632
Hpower	0.945	1.000	0.964	-0.292	-0.517
Torque	0.989	0.964	1.000	-0.326	-0.673
Comp_ratio	-0.330	-0.292	-0.326	1.000	0.374
Rear_axle_ratio	-0.632	-0.517	-0.673	0.374	1.000
Carb_barrels	0.659	0.772	0.653	-0.049	-0.205
Nospeeds	-0.781	-0.643	-0.746	0.494	0.843
Length	0.855	0.797	0.864	-0.258	-0.548
Width	0.801	0.718	0.788	-0.319	-0.434
Weight	0.946	0.883	0.943	-0.277	-0.542
Transtype	0.835	0.727	0.801	-0.368	-0.703

- barstock.csv contains 30 observed cases of 5 variables. Each row is the weight, volume, height, width, and length of a roughly cube-shaped piece of stock metal.
- We can find the correlation matrix as follows.

	volume	height	width	length
volume	1.000	0.369	0.548	0.738
height	0.369	1.000	-0.361	0.054
width	0.548	-0.361	1.000	0.182
length	0.738	0.054	0.182	1.000

Shrinkage

Used for estimating the mean vector $\theta = (\theta_1, \dots, \theta_p)$ of a multivariate normal distribution given an observation $X \sim N(\theta, \sigma^2 I_p)$

- **Maximum likelihood estimator:** The sample mean X
- James-Stein Estimator: Instead of using the MLE directly, shrink it towards zero (Why?) to reduce the mean squared error (MSE)

$$\hat{ heta}_{JS} = \left(1 - rac{(p-2)\sigma^2}{\|X\|^2}
ight) X, \quad ext{for } p \geq 3$$

Notable Result: The James-Stein estimator dominates the MLE under squared error loss when $p \ge 3$

Example: Risk Comparison for $\theta = 0$, p = 3

MLE Estimator:
$$R(0, \hat{\theta}_{MLE}) = E ||X - 0||^2 = E ||X||^2 = 3.$$

James-Stein Estimator: $\hat{\theta}_{JS} = \left(1 - \frac{1}{||X||^2}\right) X.$

Risk Calculation:
$$R(0, \hat{\theta}_{JS}) = \left(1 - \frac{1}{\|X\|^2}\right)^2 \|X\|^2 = \|X\|^2 - 2 + \frac{1}{\|X\|^2}$$

 $\square \text{ Since } \|X\|^2 \sim \chi_3^2:$

•
$$E[||X||^2] = 3$$

• For
$$\nu > 2$$
, $E\left[\frac{1}{\|X\|^2}\right] = \frac{1}{\nu - 2}$; hence for $\nu = 3$, $E\left[\frac{1}{\|X\|^2}\right] = 1$.

$$R(0, \hat{\theta}_{JS}) = 3 - 2 + 1 = 2.$$

Penalized Objective Function

Consider the objective function

$$J(\theta) = \|X - \theta\|^2 + \lambda \|\theta\|^2,$$

where $X \sim N(\theta, I_p)$ and λ is a penalty parameter.

The minimizer of $J(\theta)$ is found by setting the derivative with respect to θ to zero:

$$\frac{\partial J(\theta)}{\partial \theta} = -2(X - \theta) + 2\lambda \theta = 0.$$

This yields $\hat{\theta} = \frac{1}{1+\lambda} X$. We take $\lambda = \frac{p-2}{\|X\|^2 - (p-2)}$.

• Basic idea: When fitting a regression model, instead of minimizing the ${\rm SSE},$ pick a small $\lambda>0$ and minimize

$$\sum_{i=1}^{n} (y_i - \hat{\boldsymbol{\beta}}^{\top} \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{k} \beta_j^2.$$

Note that we have added a 1 in each data point x_i .

• Because the objective function is still quadratic in the $\hat{\beta}$, there is a closed form solution:

$$\hat{\boldsymbol{\beta}}_{\mathrm{ridge}} = (\mathsf{X}^{\top}\mathsf{X} + \lambda\mathsf{I})^{-1}\mathsf{X}^{\top}\mathsf{Y}.$$

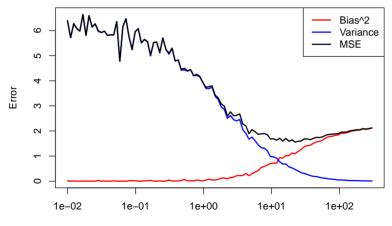
• This is called "shrinkage" because $\left\|\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}\right\|_{2} \leq \left\|\hat{\boldsymbol{\beta}}\right\|_{2}.$

Implementing Ridge Regression

- Important: Standardize all predictors first.
- Choose a large initial λ (e.g., $\lambda = n$).
- Fit the ridge regression model.
- Reduce λ (i.e., reset $\lambda \to \lambda/1.5$) and go to the previous step. Repeat until $\lambda \approx 0$.
- Choose the best value of λ by either:
 - inspecting a plot of $\hat{\beta}_{ridge}$ versus λ and choosing the smallest λ after which $\hat{\beta}_{ridge}$ stabilizes.
 - C_p with the "model complexity" d replaced by the equivalent number of fitted parameters trace(X[X^TX + λ I]⁻¹X^T).
 - Generalized cross-validation (GCV), similar to AIC and C_p .
 - Whatever criterion your software has (there are a few other analytical criteria).
 - As always, cross-validation (see Lab 2) can be used.

Bias-Variance Trade-off

Bias–Variance Trade–off for Ridge Regression (Multiple Regression)

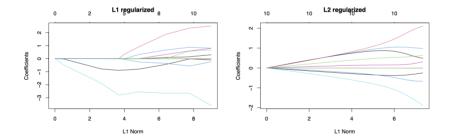


Selecting λ

LASSO

When fitting a regression model, instead of minimizing the ${\rm SSE},$ pick a small $\lambda>0$ and minimize

$$\sum_{i=1}^{n} (\mathbf{y}_i - \hat{\boldsymbol{\beta}}^{\top} \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{k} |\beta_j|.$$

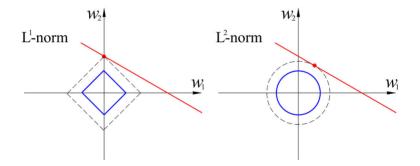


Weight Decay

Try to run gradient descent for
$$F(\beta) + \lambda \sum_{\substack{i=1 \\ \cdots = \|\beta\|_2^2}}^{d} \beta_i^2$$

Gradient Descent gives $\beta_i = (1 - 2\alpha\lambda)\beta_{i-1} - \alpha\nabla F(\beta_{i-1})$

Try to run gradient descent for
$$F(\beta) + \lambda \sum_{\substack{i=1 \\ \|\beta\|_1}}^{d} |\beta_i|$$



New View of Gradient Descent

$$\beta_{i} = \beta_{i-1} - \alpha \nabla F(\beta_{i-1}) \text{ is the solution to}$$

$$\arg\min_{\beta} \underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2} \|\beta - \beta_{i-1}\|_{2}^{2}}_{\text{approximation to } F(\beta)}$$
Let's go back to LASSO objective
$$\underbrace{F(\beta)}_{\text{smooth}} + \lambda \underbrace{\sum_{i=1}^{d} |\beta_{i}|}_{\text{non-smooth}}, \text{ thus we can update } \beta_{i} \text{ as}$$

$$\arg\min_{\beta} \underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2} \|\beta - \beta_{i-1}\|_{2}^{2}}_{\text{approximation to } F(\beta)}$$

- Call "Proximal Gradient Descent"
- □ Closed form! (Homework)

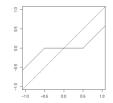
Iterative Shrinkage Thresholding Algorithm (ISTA)

$$\arg\min_{\beta} \underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2} \|\beta - \beta_{i-1}\|_{2}^{2}}_{\text{approximation to } F(\beta)} + \lambda \|\beta\|_{1}$$

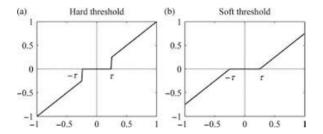
The minimization leads to the update:

$$\beta_i = S_{\lambda/\alpha} \Big(\beta_{i-1} - \frac{1}{\alpha} \nabla F(\beta_{i-1}) \Big)$$

where $S_{\theta}(z) = \operatorname{sign}(z) \max(|z| - \theta, 0)$ is the soft-thresholding operator.

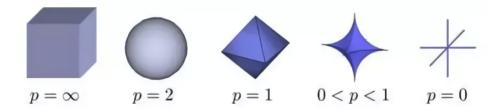


Soft/Hard Thresholding



Hard Thresholding is the proximal algorithm for $F(\beta) + \lambda \|\beta\|_0$ where $\|\beta\|_0$ is the number of 0 coeficients in β_i .

Why L_1 is so special?



Take IEMS 351: Optimization Methods in Data Science