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Model Selection



Fitting a Polynomial Using Linear Regression

Consider fitting a polynomial of degree p to data {(xi , yi )}:
y = β0 + β1x + β2x

2 + · · ·+ βpx
p + ϵ.

Define new variables: z1 = x , z2 = x2, . . . , zp = xp. Then, the model
can be written as:

y = β0 + β1z1 + β2z2 + · · ·+ βpzp + ϵ,

which is linear in the parameters β0, β1, . . . , βp.


y1

y2
...
yn

 =


1 x1 x2

1 · · · xp1
1 x2 x2

2 · · · xp2
...

...
...

...
1 xn x2

n · · · xpn




β0

β1

β2
...
βp

+


ϵ1
ϵ2
...
ϵn

.
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Is More Feature Better? (Homework)
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Questions?

How to Select the Number of Features?
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Intuitive Understanding of Model Selection

• SSE is small, but prediction error can be large.

• We want to select models that generalize.
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Bias-Variance Trade-off
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First Idea: Cross-Validation

Hold a test set?
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Recall: Degree of Freedom

Fact 1. E
[ 1
n

∑n
i=1(y

′
i − ŷi )

2
]
= E

[ 1
n

∑n
i=1(yi − ŷi )

2
]
+ 2σ2

n df(ŷ).

Fact 2. df(ŷ linreg) = p

How to design a Model Selection algorithm?
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Model Selection Algorithms

penalize for larger d and/or larger SSE
Criterion Large-sample complexity penalization
MSE, r2

adj d

AIC, Cp 2d
BIC d log n

• r2
adj = 1 − MSE

MST = 1 − SSE
SST · n−1

n−(k+1) (larger is better).

• MSE = SSE
n−(k+1) (smaller is better).

• Mallow’s Cp: Cp = SSE
σ̂2 + (2d − n) (smaller is better),

• AIC: 1
n

[SSE
σ̂2 + 2d

]
(smaller is better)

• BIC: 1
n

[SSE
σ̂2 + d · log n

]
. (smaller is better)

Cp can be viewed as a special case of AIC for linear regression. AIC and BIC (for both, smaller is better) are much more

general than Cp and apply to many nonlinear models fit via maximum likelihood estimation (MLE).
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Discussion

❙ When comparing models with the same d , using Cp, r2
adj, r

2, MSE, AIC, or
BIC are all equivalent to selecting the model with the lowest training SSE.

❙ When comparing models with different d , using simply SSE for model
selection is usually not a good idea.

❙ Using Cp, r2
adj, r

2, MSE, AIC, or BIC may lead to different model selection

❙ For large data sets, CV often gives smaller selected models than any of the
analytical criteria.
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Analytical Criteria v.s. Cross-Validation

❐ Cross-validation (CV) can be used to evaluate and compare virtually any
set of models.

❙ CV applies to any type of model (linear, nonlinear, trees, neural networks,
etc)

❙ CV applies equally well to classification and regression (but for classification
you would use a different error measure than SSE)

❙ CV is generally the most reliable, because it involves no assumptions
(analytical criteria like Cp, AIC, BIC involve assumptions, such as no
influential observations or outliers, large sample sizes, etc)

❐ CV is too computationally expensive for the automated variable selection
methods. For these, we need the analytical criteria. But we can always use
CV to assess and compare a few final candidate best models.
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Stepwise and Subsets
Regression



Variable Selection

❙ Given a possibly large set of predictor variables {x1, x2, . . . , xk}, how to
decide which ones belong in the model?

❐ Including more predictors than needed is bad for explanatory, as well as
predictive, purposes.

❐ Could consider fitting one model with all k predictors and then looking at
their t-test P-values (why is this a bad approach?)

❙ Two common automated variable selection methods are
❐ Stepwise regression (good, and computationally feasible);
❐ Best subsets regression (best, only feasible for k < 50 or so).
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Forward Stepwise Regression

❐ Basic idea is to start with no predictors in the model and build the model
iteratively (in steps), one predictor at a time. On each step you:

❙ Find which one of the remaining individual predictors would most reduce the
SSE if it were added to the model.

❙ Use some criterion like AIC to decide whether the model is better with or
without that one predictor.

❙ If the criterion says to add that one predictor, you add it and go to the next
step; otherwise, you terminate the algorithm and take the best model to be
the current one.

❐ The original criterion for deciding whether the model is better with or
without the additional predictor was a partial F -test, and this is still used in
many software.

❐ AIC or Mallows’ Cp is usually considered preferable now.
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A Toy Example of 8 Variables

In the first iteration, we added predictor x2 and at the second iteration we
added predictor x5. Suppose we are at the third iteration to add variables.

❐ The current model contains {x2, x5} and we test the following six
combinations:

{x2, x5, x1} {x2, x5, x3} {x2, x5, x4}
{x2, x5, x6} {x2, x5, x7} {x2, x5, x8}

❐ Suppose {x2, x5, x1} has the smallest SSE. We denote it as SSE3. Let
SSE2 denote the SSE for the model {x2, x5}.

❐ We calculate AIC2 = n log(SSE2) + 2× 3 and AIC3 = n log(SSE3) + 2× 4.

❐ If AIC3 < AIC2, we add x1 to the model and proceed to the fourth
iteration. Otherwise, we terminate and take {x2, x5} as the final model.
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Forward vs. Backward vs. Forward/Backward

• Forward Stepwise: Start with no predictors in the model and add them
one-at-a-time.

• Backward Stepwise: Start with all k predictors in the model and remove
them one-at-a-time. At each step, the removed predictor is the one that
least increases the SSE after its removal. Stop removing according to the
same AIC or F -test criteria.

• Forward/Backward Stepwise (forward version): Start with no predictors
in the model and add them one-at-a-time. However, at each step, you can
consider removing one or more of the predictors that were added at a
previous step. Whether to add, remove, or stop is determined according to
the same AIC or F -test criteria.
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Example: Stepwise Regression

• pred_weight.txt contains data to predict person’s weight. We
demonstrate the forward/backward stepwise regression.

• The initial model is a constant model, i.e., weight ∼ 1.

• We add predictors one-by-one in each iteration. Meanwhile, in each
iteration, we check if any previously added predictors can be removed.
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Example: The First Iteration

• Which added predictor achieves the lowest SSE?
• Shall we add the predictor identified above to the model?
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Example: The Second Iteration

• Which added predictor achieves the lowest SSE?
• Shall we add the predictor identified above to the model?
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Example: The Third and Fourth Iteration

• Shall we continue the process or terminate?
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Questions and Discussions

• Stepwise regression is “fooled” by influential observations (just like other
tests of statistical significance of the coefficients are fooled), so this must
be taken into account.

• When you have many predictors and suspect that only a few may be
important, forward stepwise is preferable to backwards.

• When you suspect that most predictors may be important, backward
stepwise may be preferable.

• Suppose you have 50 rows of data, 75 predictor variables, and you are not
sure how many of the 75 are important. Would backwards or forwards
stepwise be a better choice in this case?
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Best Subsets Regression

Basic Idea: For p = 1, 2, . . . , k , find the best (or best 2 or 3) models that
contain exactly p predictors, a subset of {x1, x2, . . . , xk}.

❐ You can then choose the overall best model from among the best of each
size.

❐ How to quantify which models are “better”?
❙ For comparing models having the same p, this is easy: better = lower SSE.
❙ For comparing models having different p, you can use your favorite model

selection criterion (Cp, AIC, CV, etc.).
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Example: Best Subsets Regression

• We use pred_weight.txt data again. The leaps() function is useful for
best subsets regression.
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Questions and Discussions

❐ Best subsets with r2
adj as the criterion (use method = “adjr2”) would give a

5-predictor model with {gender, age, height, digit, NL} as the best model,
which is clearly too many predictors. In contrast, using Cp as the criterion
gives the 2-predictor model {gender, age} as the best model.

❐ The top three models in order of Cp are {gender, age}, {gender, age,
height}, and {gender, height}.

❐ These three models have similar Cp. What follow-up analyses would you do
to decide which is the best model?
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Follow-up Analysis After Best Subsets

❐ Variable gender is in all of the top models. We explore whether height or
age is the better predictor to include.

❐ We use PRESS to evaluate those models again.

Model Cp PRESS
{gender, age} 0.8 14858

{gender, height, age} 1.0 14582
{gender, height} 1.1 12720

{gender} 1.7 13232

❐ According to PRESS, {height, gender} is the best model.
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Why age Loses the Game?

❐ We try to fit a simple linear model weight ∼ gender and do some residual
plots.

❐ We distinguish the residuals according to gender. For male, the residual is
represented in blue and for female, the residual is represented in red.
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Stepwise v.s. Best Subsets Regression

❐ Computational (major advantage for stepwise):
❙ Stepwise is very fast computationally and can handle virtually any number of

predictors, even with large data sets.
❙ Best subsets is very slow even with the computational tricks. It cannot

handle more than k > 50 predictors, or so.

❐ Optimality of selected model (minor advantage for best subsets)
❙ Stepwise is a greedy optimization algorithm that does not necessarily find

best model of each size (for fixed size, best means lowest SSE), although it
usually does a pretty good job.

❙ Best subsets is guaranteed to find the best model of each size.

❐ Flexibility (major advantage for stepwise):
❙ Versions of stepwise are available for other models, like logistic regression.

Best subsets is restricted to linear regression models, because of the
computational challenges.
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Multicollinearity



Multicollinearity

Multicollinearity means that some of the predictors (or linear combinations of
them) are highly correlated with each other.

❐ We have already seen how multicollinearity causes problems in regression
(e.g., misleading t-tests, estimated coefficients that have the wrong sign).
It also compounds problems associated with leverage and influence (easier
to have high-leverage observations when multicollinearity is present) and
causes numerical problems.

❐ Multicollinearity is closely connected to variable selection:
• It makes variable selection ambiguous;
• Variable selection is one “solution” to multicollinearity, since it tends to omit

predictors that are correlated with included ones.
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Illustration of Multicollinearity

❙ We fit a model Y = β0 + β1x1 + β2x2 + ϵ.
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Questions and Discussions

❐ In the right figure on the previous slide, the multicollinearity between x1 and
x2 makes it nearly impossible to distinguish between their effects. This
means we cannot distinguish between β1 and β2, which translates to poor
estimation and large standard errors.

❐ Why is the situation depicted in the right figure more likely to be subject to
influential observations?

❐ If you are only interested in predicting the response (i.e., you are not
interested in distinguishing the effects of x1 and x2), AND you will not be
extrapolating/predicting the response at x values that fall outside the
relationship seen in the training data (i.e., off the x1 = x2 line in the right
figure), then multicollinearity may not be a problem.
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Mathematical Reason Why Multicollinearity Causes Problems

❐ Recall that we can represent data as a matrix X:

X =

1 x11 x12 . . . x15 . . . x1k
...

...
...

...
...

...
...

1 xn1 xn2 . . . xn5 . . . xnk

.
❐ Suppose the second and the fifth predictor variables are highly linearly

dependent.

❐ This says matrix X is “almost not full column rank”.

❐ When we solve the linear equations for the coefficients, i.e.,
(X⊤X)β̂ = X⊤Y, the solution is underdetermined—X⊤X is almost singular.
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Detecting Multicollinearity

❐ Inspect matrix scatter plots of predictors
(BEWARE: can miss multicollinearity if k > 2)

❐ Inspect correlation matrices of predictors
(BEWARE for same reason)

❐ Variance Inflation Factors (VIFs)
(the best way to detect multicollinearity)
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Pairwise Multicollinearity

• If you see high correlation (among predictors) in a matrix scatterplot, then
multicollinearity is present. However, if you do not see it, it may still be
present.

• Inspecting correlation matrices is subject to the same pitfall.

• Side note: It is common to standardize the predictors before fitting a model
(i.e., standardize each “column” to have zero mean and unit variance)

x̄j =
1
n

n∑
i=1

xij sample average of j-th predictor,

sxj =

√√√√ 1
n − 1

n∑
i=1

(xij − x̄j)2 sample std of j-th predictor,

x∗ij =
xij − x̄j
sxj

standardized j-th predictor.
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Correlation Matrix

• We define rxjxl =
1

n−1

∑n
i=1 x

∗
ij x

∗
il as the sample correlation coefficient

between xj and xl .

• Correlation matrix is to collect all the correlation coefficients between
pairwise predictor, i.e.,

R =


1 rx1x2 . . . rx1xk

rx2x1 1 . . . rx2xk
...

...
. . .

...
rxkx1 rxkx2 . . . 1

.
• Interpretation of correlation coefficients:

• −1 ≤ rxj xl ≤ 1 always;
• rxj xl = ±1 perfectly linearly related;
• rxj xl = 0 no (linear) relation.
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Example: Correlation Matrix

• In gas_mileage.csv data, we calculate the correlation matrix. Part of the
matrix is shown below.

34



Example: (Lurking) Multicollinearity

• barstock.csv contains 30 observed cases of 5 variables. Each row is the
weight, volume, height, width, and length of a roughly cube-shaped piece
of stock metal.

• We can find the correlation matrix as follows.
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Shrinkage



James-Stein Estimator

Used for estimating the mean vector θ = (θ1, . . . , θp) of a multivariate normal
distribution given an observation X ∼ N(θ, σ2Ip)

❐ Maximum likelihood estimator: The sample mean X

❐ James-Stein Estimator: Instead of using the MLE directly,
shrink it towards zero (Why?) to reduce the mean squared error (MSE)

θ̂JS =

(
1 − (p − 2)σ2

∥X∥2

)
X , for p ≥ 3

Notable Result: The James-Stein estimator dominates the MLE under
squared error loss when p ≥ 3
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Example: Risk Comparison for θ = 0, p = 3

MLE Estimator: R(0, θ̂MLE) = E∥X − 0∥2 = E∥X∥2 = 3.

James-Stein Estimator: θ̂JS =
(
1 − 1

∥X∥2

)
X .

Risk Calculation: R(0, θ̂JS) =
(
1 − 1

∥X∥2

)2
∥X∥2 = ∥X∥2 − 2 + 1

∥X∥2 .

❐ Since ∥X∥2 ∼ χ2
3:

• E [∥X∥2] = 3.
• For ν > 2, E

[
1

∥X∥2

]
= 1

ν−2 ; hence for ν = 3, E
[

1
∥X∥2

]
= 1.

R(0, θ̂JS) = 3 − 2 + 1 = 2.
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James–Stein as Penalized Least Squares

Penalized Objective Function
Consider the objective function

J(θ) = ∥X − θ∥2 + λ ∥θ∥2,

where X ∼ N(θ, Ip) and λ is a penalty parameter.

The minimizer of J(θ) is found by setting the derivative with respect to θ to
zero:

∂J(θ)

∂θ
= −2(X − θ) + 2λ θ = 0.

This yields θ̂ = 1
1+λ X . We take λ = p−2

∥X∥2−(p−2) .
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Regularized Linear Regression

• Basic idea: When fitting a regression model, instead of minimizing the SSE,
pick a small λ > 0 and minimize

n∑
i=1

(yi − β̂
⊤

xi )2 + λ

k∑
j=0

β2
j .

Note that we have added a 1 in each data point xi .

• Because the objective function is still quadratic in the β̂, there is a closed
form solution:

β̂ridge = (X⊤X + λI)−1X⊤Y.

• This is called “shrinkage” because
∥∥∥β̂ridge

∥∥∥
2
≤

∥∥∥β̂∥∥∥
2
.
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Implementing Ridge Regression

• Important: Standardize all predictors first.

• Choose a large initial λ (e.g., λ = n).

• Fit the ridge regression model.

• Reduce λ (i.e., reset λ → λ/1.5) and go to the previous step. Repeat until
λ ≈ 0.

• Choose the best value of λ by either:
• inspecting a plot of β̂ridge versus λ and choosing the smallest λ after which

β̂ridge stabilizes.
• Cp with the “model complexity” d replaced by the equivalent number of

fitted parameters trace(X[X⊤X + λI]−1X⊤).
• Generalized cross-validation (GCV), similar to AIC and Cp.
• Whatever criterion your software has (there are a few other analytical

criteria).
• As always, cross-validation (see Lab 2) can be used.
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Bias-Variance Trade-off
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Selecting λ
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LASSO

When fitting a regression model, instead of minimizing the SSE, pick a small
λ > 0 and minimize

n∑
i=1

(yi − β̂
⊤

xi )2 + λ

k∑
j=0

|βj |.

Why?
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Weight Decay

Try to run gradient descent for F (β) + λ

d∑
i=1

β2
i︸ ︷︷ ︸

:=∥β∥2
2

Gradient Descent gives βi = (1 − 2αλ)βi−1 − α∇F (βi−1)

Try to run gradient descent for F (β) + λ

d∑
i=1

|βi |︸ ︷︷ ︸
∥β∥1
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L2 VS L1
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New View of Gradient Descent

βi = βi−1 − α∇F (βi−1) is the solution to

argmin
β

F (βi−1) +∇F (βi−1)(β − βi−1) +
α

2
∥β − βi−1∥2

2︸ ︷︷ ︸
approximation to F (β)

Let’s go back to LASSO objective F (β)︸ ︷︷ ︸
smooth

+ λ

d∑
i=1

|βi |︸ ︷︷ ︸
non-smooth

, thus we can update βi as

argminβ F (βi−1) +∇F (βi−1)(β − βi−1) +
α

2
∥β − βi−1∥2

2︸ ︷︷ ︸
approximation to F (β)

+λ∥β∥1

• Call "Proximal Gradient Descent"
❐ Closed form! (Homework)
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Iterative Shrinkage Thresholding Algorithm (ISTA)

argminβ F (βi−1) +∇F (βi−1)(β − βi−1) +
α

2
∥β − βi−1∥2

2︸ ︷︷ ︸
approximation to F (β)

+λ∥β∥1

The minimization leads to the update:

βi = Sλ/α

(
βi−1 −

1
α
∇F (βi−1)

)
where Sθ(z) = sign(z)max(|z | − θ, 0) is the soft-thresholding operator.
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Soft/Hard Thresholding

Hard Thresholding is the proximal algorithm for F (β) + λ∥β∥0 where ∥β∥0

is the number of 0 coeficents in βi .
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Lp-norm Ball

Why L1 is so special?

Take IEMS 351: Optimization Methods in Data Science
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