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Data Model

❐ There are p variables, X1,X2, . . . ,Xp. The variables can have arbitrary
distributions, possibly deterministic. In particular, they may or may not be
dependent. *Notation:* The single X refers to the collection of all these p

variables.

❐ There is a scalar response variable Y = β0 +
∑p

i=1 βiXi + ε, for some
constants β0, . . . , βp. Therefore there are p + 1 coefficients.

❐ The noise variable ε has E[ε|X = x ] = 0 and Var(ε|X = x) = σ2, and is
uncorrelated across observations.

In matrix form,

Yn×1 = Xn×(p+1)β(p+1)×1 + εn×1.
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Matrix View
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Data Model
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Least Square

Following the least-squares procedure, we solve for the estimator of β by
minimizing the MSE:

M̂SE =
1
n
(Y − Xβ)T(Y − Xβ)

=
1
n
(YTY − 2βTXTY + βTXTXβ)

0 set
= ∇β̂M̂SE = −2XTY + 2XTXβ̂

β̂ = (XTX)−1XTY

In addition, the in-sample MSE is σ̂2 = 1
neTe, the mean squared *residuals*.
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Matrix View
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Bias and Variance

❐ Expectation: β̂ is unbiased, i.e. E[β̂|X] = β.

❐ Variance: Var(β̂|X) = σ2(XTX)−1
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In-Sample MSE

σ̂2 = σ2

n (n − (p + 1))
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Degree of Freedom

Suppose that we observe

yi = r(xi ) + ϵi , i = 1, . . . , n,

where the errors ϵi , i = 1, . . . , n are uncorrelated with common variance
σ2 > 0. Now consider the fitted values ŷi = r̂(xi ), i = 1, . . . , n from a
regression estimator r̂ . We define the degrees of freedom of r̂ as

df(ŷ) =
1
σ2

n∑
i=1

Cov(ŷi , yi ).

Fact. E
[ 1
n

∑n
i=1(y

′
i − ŷi )

2
]
= E

[ 1
n

∑n
i=1(yi − ŷi )

2
]
+ 2σ2

n df(ŷ).
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Example

• Simple average estimator: consider ŷave = (ȳ , . . . , ȳ), where
ȳ = 1

n

∑n
i=1 yi . Then

df(ŷave) =
1
σ2

n∑
i=1

Cov(ȳ , yi ) =
1
σ2

n∑
i=1

σ2

n
= 1,

i.e., the effective number of parameters used by df(ŷave) is just 1, which
makes sense.

• Identity estimator: consider ŷ id = (y1, . . . , yn). Then

df(ŷ id) =
1
σ2

n∑
i=1

Cov(yi , yi ) = n,

i.e., ŷ id uses n effective parameters, which again makes sense.
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Degree of Freedom for Linear Prediction (NOT REQUIRED)

df(ŷ linreg) = p

df(ŷ linreg) =
1
σ2 tr

(
Cov

(
X (XTX )−1XT y , y

))
=

1
σ2 tr

(
(XTX )−1XT Cov(y , y)

)
= tr

(
X (XTX )−1XT

)
= tr

(
XTX (XTX )−1) = p
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tr(AB) = tr(BA)
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Accessing the Fit



Accessing the Fit

❐ As in simple regression, we calculate
• fitted values: ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik ;
• residuals: ei = yi − ŷi ;
• error sum of squares: SSE =

∑n
i=1 e

2
i ;

• total sum of squares: SST =
∑n

i=1(yi − ȳ)2;
• regression sum of squares: SSR =

∑n
i=1(ŷi − ȳ)2.

❐ We still have the decomposition

SST = SSR + SSE.
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r 2 for Multiple Regression

• We can still look at r2 = SSR
SST = 1 − SSE

SST ;

• In multiple regression, r2 is called coefficient of multiple determination.
It still represents the proportion of variability in response that is accounted
for by its linear dependence on the set of predictors;

• Mathematically, r2 is equivalent to the square of the sample correlation
coefficient between Y and Ŷ ;

• Beware: r2 is artificially high when n ̸≫ k because of overfitting — use
something called “adjusted r2” instead (coming up soon).
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Fitting a Polynomial Using Linear Regression

Consider fitting a polynomial of degree p to data {(xi , yi )}:
y = β0 + β1x + β2x

2 + · · ·+ βpx
p + ϵ.

Define new variables: z1 = x , z2 = x2, . . . , zp = xp. Then, the model
can be written as:

y = β0 + β1z1 + β2z2 + · · ·+ βpzp + ϵ,

which is linear in the parameters β0, β1, . . . , βp.


y1

y2
...
yn

 =


1 x1 x2

1 · · · xp1
1 x2 x2

2 · · · xp2
...

...
...

...
1 xn x2

n · · · xpn




β0

β1

β2
...
βp

+


ϵ1
ϵ2
...
ϵn

.
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Is More Feature Better? (Homework)
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Definition of r 2
adj

• Recall

r2 = 1 − SSE
SST

= 1 −
SSE
n−1
SST
n−1

;

• Define the “mean squares” corresponding to the “sum of squares”:

MSE =
SSE

n − (k + 1)
,

MST =
SST
n − 1

;

• For multiple regression, instead of r2 you should look at "adjusted r2":

r2
adj = 1 − MSE

MST
= 1 − SSE

SST
· n − 1
n − (k + 1)

.
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Statistical Inference



Statistical Inference on Coefficients

❐ A regression fit can seem practically significant (high r2) without being
statistically significant, and vice-versa.

❐ Three common tests of whether individual parameters or groups of
parameters differ from zero are

• A t-test of whether βj = 0 is essentially testing whether including/excluding
the individual predictor xj in the model significantly changes the SSE.

• For example, the t-test for β1 compares the following two models:

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ,

Y = β0 + +β2x2 + · · ·+ βkxk + ϵ.
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t-test

H0 : βj = c v.s. H1 : βj ̸= c
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t-tests on Individual Coefficients

In order to develop a t-test on individual coefficients, we need the following
statistical facts regarding the distribution of the estimated parameters β̂j for
j = 0, 1, . . . , k :

❐ For j = 0, 1, . . . , k , β̂j ∼ N(βj , σ
2vjj), where vjj denotes the (j + 1)-th

diagonal element of V = (X⊤X)−1.

❐ That is, β̂j is normally distributed with mean E[β̂j ] = βj and standard
deviation SD(β̂j) = σ

√
vjj .

❐ Thus, a measure of precision in estimating βj is

SE(β̂j) = s
√
vjj ,

where s2 = MSE = SSE
n−(k+1) .

Fact. β̂j−βj

SE(β̂j )
∼ tn−(k+1).
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t-tests on Individual Coefficients Cont’d

To test

H0 : βj = c v.s. H1 : βj ̸= c

for some specified constant c , e.g., c = 0.

❐ A two-sided 1 − α confidence interval for βj is

β̂j ± tn−k−1,α/2 · SE(β̂j).

❐ Use test statistic

tj =
β̂j − c

SE(β̂j)
.

❐ Reject H0 if

|tj | > tn−(k+1),α/2 or c not in the confidence interval.
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Example: t-tests on All the Predictors

• We fit a multiple linear model on all 11 predictors.

Almost all predictors are not statistically important?
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Example: t-tests on Two Predictors

• We fit a multiple linear model on only two predictors: Rear_axle_ratio and
Weight.

• Why Weight becomes much more significant?
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Prediction



Using the Model for Prediction

• For a fixed set of predictor values (x∗1 , x
∗
2 , . . . , x

∗
k ) for a new case, two

“future” things on which we may want to make inferences are:
• actual response: Y ∗ = β0 + β1x

∗
1 + · · ·+ βkx

∗
k + ϵ;

• response mean: µ∗ = E[Y ∗] = β0 + β1x
∗
1 + · · ·+ βkx

∗
k .

• The best point prediction/estimate is the same for both and is obvious
(plug the predictors and the estimated coefficients into the model).

• If we want an interval that represents the uncertainty in the
prediction/estimate, we use either:

• A confidence interval (CI) on µ∗ (considers uncertainty in the β’s) , or
• A prediction interval (PI) on Y ∗

(considers uncertainty in the β’s and in ϵ) .
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Example: Predicting Property Value

• property_value.txt contains home sales prices and nine other
characteristics (taxes, lot size, living space, age, etc.) for a sample of 24
houses. The objective is to predict the sales price as a function of the other
characteristics.

• We only use taxes to predict sales price.
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Questions and Discussions

• Which is the PI and which is the CI in the previous figure?

• What is the interpretation of the PI?

• What is the interpretation of the CI?

• If someone is putting their house up for sale and wants to know the high
end of the range for which it might sell, would the response PI or CI be
more relevant?

• What is the relationship between the CI on µ∗ versus a CI on one of the
coefficients?

• How are the CI and PI calculated?
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The Statistical View of Y ∗

• For fixed x∗, we write

Y ∗ = β0 + β1x
∗
1 + · · ·+ βkx

∗
k︸ ︷︷ ︸

µ∗

+ϵ ∼ N(µ∗, σ2).

• In vector notation, we have Y ∗ = (x∗)⊤β + ϵ.

• Point estimate of µ∗ is (x∗)⊤β̂.
• Point estimate of Y ∗ is (x∗)⊤β̂. (The same as the previous one).
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Calculating a CI on µ∗ and PI on Y ∗

• Two sources of uncertainty in future Y ∗:
(1) Don’t know true β0, . . . , βk ;
(2) Don’t know future ϵ.

• To quantify (1), we use the fact Var((x∗)⊤β̂︸ ︷︷ ︸
µ̂∗

) = σ2(x∗)⊤(X⊤X)−1x∗.

• To quantify (2), we use Var(ϵ) = σ2.

• Hence, we derive
• two-sided 100(1 − α)% PI for Y ∗:

µ̂∗ ± tn−(k+1),α/2 · s
√

1 + (x∗)⊤(X⊤X)−1x∗.

• two-sided 100(1 − α)% CI for µ∗:

µ̂∗ ± tn−(k+1),α/2 · s
√

(x∗)⊤(X⊤X)−1x∗.

Here, s2 is sample variance of Y .
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Example: PI on Property Value

• We consider two predictors taxes and baths.

• Let’s predict a new home price with x∗1 = 7 and x∗2 = 1.5, i.e., taxes = 7
and baths = 1.5.

• After fitting the model, we find a point estimate

µ̂∗ = 10.042 + 7 ∗ 2.713 + 1.5 ∗ 6.164 = 38.279.

• To find a 95% PI, we first find the data matrix

X =

1 5.02 1
1 4.54 1
...

...
...


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Example: PI on Property Value Cont’d

• We calculate X⊤X as

X⊤X =

 1.12 −0.04 −0.69
−0.04 0.03 −0.13
−0.69 −0.13 1.30

.
• Next, we calculate

(x∗)⊤(X⊤X)−1x∗ = 0.146.

• Meanwhile, we find s = 2.79 and tn−(k+1),α/2 = 2.08.

• Lastly, the PI is

µ̂∗ ± tn−(k+1),α/2 · s
√

1 + (x∗)⊤(X⊤X)−1x∗ = [32.06, 44.50].
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Example: R Computed PI
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Categorical Predictors



Handling Categorical Predictor Variables

• Represent the binary predictor by defining a single 0/1 indicator (dummy)
variable.

• Use the resulting dummy variable in your regression model.

• We denote the response variable as Y , e.g., weight of a person. There are
two predictor variables:

• x1 as the height, and
• x2 as the gender.

• We typically redefine x2 = 0/1 indicator variable, where 1 represents male
and 0 represents female.

• Then response is written as

Y = ( β0 + β2x2︸ ︷︷ ︸
Intercept for male

) + β1x1 + ϵ.

• Note that we have c = 2 categories for x2, which we have represented with
c − 1 = 1 dummy variables.

32



Frame Title

• For a nominal predictor with c categories, create c − 1 0/1 indicator
(dummy) variables.

• We denote the response variable as Y , e.g., weight of a person. There are
two predictor variables:

• x1 as the height, and x2 as the country.
• Suppose there are 4 countries. We arbitrarily choose a base category (e.g.,

Canada) and create c − 1 = 3 binary indicator predictors:

x2 =

{
1 US

0 o.w.
, x3 =

{
1 Mexico

0 o.w.
, x4 =

{
1 China

0 o.w.

y x1 x2 x3 x4

y1 x11 1 0 0 if from US
y2 x21 0 0 0 if from Canada
y3 x31 0 1 0 if from Mexico
y4 x41 0 0 1 if from China 33



Interpretation of Model

• From the previous slide, we have a model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ϵ.

• We examine the model for each country:

Y =


β0 + β1x1 Canada

β0 + β2 + β1x1 US

β0 + β3 + β1x1 Mexico

β0 + β4 + β1x1 China

.

• Net effect: A different intercept for each category.

• How would you depict the model graphically?
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Why Not Use c Dummy Variables

• Suppose we had defined

x5 =

{
1 Canada

0 o.w.
.

• Then the model becomes

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ϵ.

• For each country, we have

Y =


β0 + β5 + β1x1 Canada

β0 + β2 + β1x1 US

β0 + β3 + β1x1 Mexico

β0 + β4 + β1x1 China

.

Why is this problematic?
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Handling Categorical Predictors in R

• In R, any predictor of class “factor” is automatically treated as a categorical
predictor, even if the factor levels are labeled as numbers. R internally
converts the factor into a set of 0/1 dummy variables (i.e., you just enter
the predictor as a single column of class factor).

• You may still want to manually convert the categorical predictor to c − 1
0/1 dummy variables in the following R situations:

• stepwise regression: R’s step() command will add/drop entire categorical
predictors. If you manually convert to 0/1 dummy variables, you can
add/drop individual levels of a categorical predictor;

• best subsets regression: R’s leaps() command cannot handle categorical
predictors. You must manually convert to 0/1 dummy variables.
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Example: Converting Age into Categories

• We predict weight using age and gender in pred_weight.txt. Initially, age
variable takes integer values. We convert it into a categorical variable
accordingly to three ranges, namely, (18, 20], (20, 21] and (21, 30].

• The fitted coefficients are as follows
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Questions and Discussions

• In the previous fitted linear model, what is the form of the regression model
that was fit, and what age category did R use as the base category?

• How do you interpret the two age coefficients that were produced? Do they
seem to make sense?
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Interaction



What if Slopes Differ in Different Categories?

• If we suspected the Y v.s. x1 relationship for the four categories may look
like the following, what terms could we add to the model to represent this?
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Interactions Between Categorical and Quantitative Predictors

• Adding interactions between x1 and the dummy variables, the model for our
earlier weight example becomes

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4

+ β12x1x2 + β13x1x3 + β14x1x4 + ϵ.

• We evaluate according to different countries

Y =


β0 + β1x1 Canada

(β0 + β2) + (β1 + β12)x1 US

(β0 + β3) + (β1 + β13)x1 Mexico

(β0 + β4) + (β1 + β14)x1 China

.

• This allows for different slopes and/or intercepts for each predictor category.
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Example: Handling Interactions in R

• Using pred_weight.txt data again, we add an interaction term:

weight ∼ height + gender + height × gender.

• The fitted coefficients are as follows

• How can we explain the result of individual coefficient t-test? How we
interpret the coefficient of the interaction term?
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General Comments and Discussions

• In a model relating y to the quantitative predictors, using indicator
variables for the categorical predictors can account for different intercepts
(and different slopes if interaction terms are included) in each category.

• Using indicator variables is more efficient than fitting separate models in
each category if we suspect that some of the parameters are common
across categories.

• We can pick and choose which parameters are common and use all the data
to estimate the common values.

• This is especially important if we have multiple categorical variables with
many categories each.

• Multiple categorical predictors, each with many categories, are extremely
common in “analytics” problems. Regression and classification trees
(coming up later) are very good at handling this.
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Interactions between Quantitative Predictors

• An interaction between two quantitative predictors is interpreted
analogously to an interaction between a qualitative and quantitative
predictor: The slope of y w.r.t. one predictor depends on the level of the
other predictor.

• Example: Study of the effect of point-of-sales and TV add expenditures on
locality sales. The variables are

• y : locality sales;
• x1: point-of-sales add expenditure;
• x2: TV add expenditure.

• The model is

Y = β0 + β1x1 + β2x2 + β12x1x2 + ϵ

= (β0 + β2x2)︸ ︷︷ ︸
Intercept for fixed x2

+ (β1 + β12x2)︸ ︷︷ ︸
Slope for fixed x2

x1.
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Reinforcement and Interference Interactions

44



Leverage and influence



Sensitive to Outlier
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Outlier

New regression line
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Illustration of How One Observation Can Be Influential

• Suppose the objective is to predict the weight (y) of a person, based on
their gender (x1) and height (x2). Imagine a third axis coming out of the
page to represent y .
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Leverage and Influence

• Suppose we have n multivariate observations {(yi , xi ) : i = 1, 2, . . . , n}, and
denote the predictors for the i-th observation by xi = [1, xi1, xi2, . . . , xik ]⊤;

• Any “unusual” xi is called a high-leverage observation;

• Any {yi , xi} that significantly changes the estimated coefficients is called
an influential observation, i.e.,

• define β̂(i) = estimated coefficients if delete the i-th observation;
• {yi , xi} is high influential if β̂(i) − β̂ is “large”.

Which is high leverage? Which is high influence?
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Measuring Leverage

• Define H = X(X⊤X)−1X⊤, where, as usual X = [x1, x2, . . . , xn]⊤.

• Denote the i-th diagonal element of H as

hii = [H]ii = x⊤i (X
⊤X)−1xi ,

which is the measure of leverage for xi .

• Average leverage should be 1
n

∑n
i=1 hii =

k+1
n .

• Common rule-of-thumb: xi flagged when hii >
2(k+1)

n .
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Understanding Leverage

The fitted (predicted) values are:ŷ = Xβ̂ = X(X⊤X)−1X⊤︸ ︷︷ ︸
H

y. Thus, the fitted

value ŷi (the i-th element of ŷ) is given by:

ŷi =
n∑

j=1

hijyj ,
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Measuring Influence

• Recall that β̂(i) is the estimated coefficients if we delete i-th row {yi , xi} of
data.

• A common measure of influence is

Di =
(β̂(i) − β̂)⊤(X⊤X)−1(β̂(i) − β̂)

(k + 1)s2 = Cook’s distance

• If Di is large, the i-th observation changes β̂ significantly.

• Rules of thumb for flagging an observation as influential:
(1) Di > 1, which is standard, but perhaps too conservative;
(2) Di > 4/n, which translates some well-known criterion, but perhaps too

liberal.
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Relation Between Leverage and Influence

• Fact: Var(ei ) = σ2(1 − hii ).

• We define the “standardized residuals” as

e∗i =
ei

SE(ei )
=

ei

s
√

1 − hii
.

• A surprising and useful result Di =
1

k+1
hii

1−hii
(e∗i )

2.

• This tells us that the influence of the i-th observation depends on two
things:
(1) leverage of the i-th observation, and
(2) residual of the i-th observation.
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Example: Use Handy R Built-in Functions

• We can use methods function to show various post-fit regression analyses.
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Example: High Influence and Leverage Data

• Can we identify and explain some high influence (or leverage) data points?
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Example: Residual and Influence/leverage Plots
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Residual Diagnostics



What is Residual Diagnostics?

Regression diagnostics refers to checking for pitfalls, problems, and violations
of the underlying assumptions that are corrupting the model and/or that
should be accounted for to improve the model. These include (but not
limited):

❐ unusual observations that are influencing the fit

❐ nonlinearities that should be accounted for additional important predictors
that should be included in the model

❐ strong departures from normality and the constant variance assumption
(mild departures are OK)
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Plot of Residuals Versus Fitted Values

Perhaps the most useful residual plot. Good for checking for nonlinearity and
non-constant variance.
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Simple Example of Nonconstant Variance

• We denote x =length of animal and y =weight of animal.

• Typical data for a sample of 500 animals look like

• We fit a cubic polynomial to these data, what would a plot of the residuals
versus fitted values look like?

57



Example: Tire Wear Fitted Plots

• We use mileage to predict tire wear.
• We fit two models: 1) simple linear model and 2) quadratic model.
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Example: Residual Plots — Linear Model
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Example: Residual Plots — Quadratic Model
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Discussion

❐ Nonlinearities are usually much more visible in the residuals than in the raw
data.

❐ What is the relationship between the plots of ei versus xi and of ei versus ŷi
for the linear model? What is the relationship between the plots of ei versus
xi and of ei versus ŷi for the quadratic model or, more generally, if there is
more than one predictor variable?

❐ Has the quadratic model captured the nonlinearity, or is some other
nonlinear model perhaps necessary? Where is the quadratic fit the poorest?

❐ Are the errors normally distributed?
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