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Simple Linear Regression



Linear Regression

x

y

f (x)

(1, y1) (2, y2)

(3, y3) (4, y4)

ω1

Yi = ε0 + ε1Xi + ϑi ,

✁ X has an arbitrary distribution,
possibly deterministic.

✁ If X = x , then Y = ε0 + ε1x + ϑ,
with ε0,ε1 being the *coe!cients*,
and ϑ being the *noise* variable.

✁ E[ϑ|X = x ] = 0, Var(ϑ|X = x) =

ϖ2.
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Least Squares Estimators

One option to estimate the unknown quantities is to find the optimal fit , to
be precise here, minimize the mean squared error (MSE):

(ε0,ε1) = arg min
(b0,b1)

E[(Y → (b0 + b1X )2)].

✁ How to access E?

• The data we may consider are {(X1,Y1), . . . , (Xn,Yn)}.
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Monte Carlo Methods

How to Estimate ϱ ?

✁ Draw a square of side length 2 (from →1 to
+1) and inscribe a circle of radius 1.

✁ Randomly sample the points within the
square.

✁ Count how many points fall inside the circle.

✁ The expectation of fraction of points in
the circle is the circle’s area

total points’ area ↑ ωr2

(2r)2 = ω
4 .

✁ Hence ϱ ↑ 4 ↓ points in circle
total points .
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Find ω0, ω1

We minimize in-sample, empirical MSE:

(ε̂0, ε̂1) = arg min
(b0,b1)

1
n

n∑

i=1

(Yi → (b0 + b1Xi ))
2

︸ ︷︷ ︸
⊋MSE(b0,b1)

.

Next. ε̂0, ε̂1 has closed form solution!

How ?
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How to find the Minimizer of a Function

How to find the Minimizer of a function x→ = argminx f (x)?

Solve the equation ↔f (x→) = 0
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Find ω0, ω1

ε̂1 =
cXY
s2
X

,

where cXY , s2
X are the sample covariance between X ,Y and the sample

variance of X respectively. As a reminder,

cXY =
1
n

n∑

i=1

(Xi → x)(Yi → y), s2
X =

1
n

n∑

i=1

(Xi → x̄)2.

0 = xy → (y → ε̂1x)x → ε̂1x2

0 = cXY → ε̂1s
2
X
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How accurate is the Model?– Bias

ε̂1 = ε1 +
1

ns2
X

n∑

i=1

(Xi → x)ϑi .

Statement: ε̂1 is unbiased, i.e. E[ε̂1] = ε1.
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Model Fitting

✁ Find (ε̂0, ε̂1) that minimize the least square

Q =
n∑

i=1

(yi → (ε̂0 + ε̂1xi )︸ ︷︷ ︸
ŷi

)2.

• Denote ŷi = ω̂0 + ω̂1xi as the fitted value;
• Denote ei = yi → ŷi as the residual.

Therefore, minimizing the least square can be understood as fitting yi ’s to
minimize residuals as good as possible.
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How accurate is the Model?– Variance

Var(ε̂1) = Var

(
ε1 +

1
ns2

X

n∑

i=1

(Xi → x)ϑi

)
=

ϖ2

ns2
X

.
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Unconditioning on X

✁ Bias apply the law of total expectation:

E[ε̂1] = E
[
E[ε̂1 | X1, . . . ,Xn]

]
= E[ε1] = ε1.

✁ Variance apply the law of total variance:

Var(ε̂1) = E
[
Var(ε̂1 | X1, . . . ,Xn)

]
+ Var

(
E[ε̂1 | X1, . . . ,Xn]

)

= E
[
ϖ2

ns2
X

]
+ Var(ε1) =

ϖ2

n
E
[

1
s2
X

]
.
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Go Beyond Point Estimation

Fact. E[f̂ (x)] = ε0 + ε1x . and Var(f̂ (x)) = ε2

n

(
1 + (x↑x)2

s2X

)
.

What is the the standard error of an estimator ? se(ε̂1) =
ε↗
ns2X

.
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Exercise

✁ What happens when the noise variance, ϖ2, increases?

✁ What happens when the number of samples, n, increases?

✁ What influences the variance of our predictions?

✁ What happens when we predict at x that is very close to x? How about
very far?
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How to Estimate ε?

Using the simple linear regression model,

E[(Y → (ε0 + ε1X ))2] = ϖ2. (convince yourself why.)

Then, a natural estimator for ϖ2 would be

ϖ̂2 =
1
n

n∑

i=1

(Yi → f̂ (Xi ))
2.

Notice that this is a biased estimator. Moreover s2 = n
n↑2 ϖ̂

2 is an

unbiased estimator of ϖ2. (Later)
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Residual and Error

(residual) ei = Yi → (ε̂0 + ε̂1Xi )

(noise) ϑi = Yi → (ε0 + ε1Xi )
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Remark

• The sum of noise variables cannot equal zero all the time, because
Var(

∑n
i=1 ϑi ) = nϖ2.

• The sum of residuals is *always* zero, i.e.
∑n

i=1 ei = 0.

• The sample correlation between the residuals and Xi ’s is also 0, i.e.∑n
i=1(Xi → x)ei = 0.
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Assessing the Fit



Assessing the Fit

✁ As in simple regression, we calculate
• fitted values: ŷi = ω̂0 + ω̂1xi ;
• residuals: ei = yi → ŷi ;
• error sum of squares: SSE =

∑n
i=1 e

2
i ;

• total sum of squares: SST =
∑n

i=1(yi → ȳ)2;
• regression sum of squares: SSR =

∑n
i=1(ŷi → ȳ)2.

ȳ = argminc
∑n

i=1(c → yi )2 is the best constant fit of {yi}ni=1!

✁ We can decompose SST as
n∑

i=1

(yi → ȳ)2

︸ ︷︷ ︸
SST

=
n∑

i=1

(ŷi → ȳ)2

︸ ︷︷ ︸
SSR

+
n∑

i=1

(yi → ŷi )
2

︸ ︷︷ ︸
SSE
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R2
Statistics and Correlation

R2 (Coe!cient of Determination):

R2 =
SSR
SST

, where SSR =
∑

(ŷi → ȳ)2, SST =
∑

(yi → ȳ)2.

Theorem

Recall Pearson correlation coe!cient: r =
∑

(xi↑x̄)(yi↑ȳ)↗∑
(xi↑x̄)2

∑
(yi↑ȳ)2

, then we have

R2 = r2
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Prove R2 = r 2

Sinceε̂1 =
∑

(xi↑x̄)(yi↑ȳ)∑
(xi↑x̄)2 = r sy

sx
, we have SSR = (

∑
(xi↑x̄)(yi↑ȳ))2∑

(xi↑x̄)2 . Thus,

R2 =
SSR
SST

=
(
∑

(xi → x̄)(yi → ȳ))2∑
(xi → x̄)2

∑
(yi → ȳ)2

= r2.
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Error

Prove: s2 = n
n↑2 ϖ̂

2 is an *unbiased* estimator of ϖ2
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Pipeline of Machine Learning



Log-Likelihood

The model looks similar,

Yi = ε0 + ε1Xi + ϑi ,

with modified assumptions:

✁ X has an arbitrary distribution, possibly deterministic.

✁ If X = x , then Y = ε0 + ε1x + ϑ, with ε0,ε1 being the coe!cients, and ϑ

being the noise variable.

✁ (stronger) ϑ ↘ N(0,ϖ2), and is independent of X .

✁ (stronger) ϑ is independent across observations.

Question. What is p(Yi |Xi ; b0, b1, s2)?
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Log-Likelihood

Given the data, the likelihood under this set of assumption is a function of
the unknown parameters, defined as

L(b0, b1, s
2) =

n∏

i=1

p(Yi |Xi ; b0, b1, s
2) =

n∏

i=1

1↗
2ϱs2

exp


→ 1

2s2 (Yi → (b0 + b1Xi ))
2

.

log(ab) = log(a) + log(b)

log L(b0, b1, s
2)

def
= ς(b0, b1, s

2) = →n

2
log(2ϱ)→n

2
log s2→ 1

2s2 (Yi→(b0+b1Xi ))
2.

22



Logistic regression

Step 1. Likelihood for a Logistic Binary Outcome:
For each observation yi ≃ {0, 1} with probability pi for yi = 1, the likelihood is

L(pi | yi ) = p yi
i (1 → pi )

1↑yi .

where probability pi =
1

1+e→ωT xi
using the logistic function.

Step 2. Log-Likelihood:
For n independent observations, the log-likelihood function is

ς(ε) =
n∑

i=1

[
yi log


1

1 + e↑ϑT xi


+ (1 → yi ) log


1 → 1

1 + e↑ϑT xi

]
.

Step 3. Estimation:
Maximizing ς(ε) with respect to ε gives the maximum likelihood estimates,
leading to the logistic regression model.
! No closed-form solution. 23







Gradient Descent

• Gradient Descent is an iterative optimization method to find local minima
of a function.

• The update rule is xn+1 = xn → φ↔f (xn), where φ is the learning rate.

x

y

x0
x1x2x3
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Ill Conditioned Problems

• The function f (x1, x2) = 10x2
1 + x2

2 has very di"erent curvatures along x1

and x2.
• Its level sets are ellipses elongated along the x2-axis.
• With a fixed learning rate, gradient descent can overshoot in the steep x1

direction, leading to oscillatory (zigzag) behavior.

x1

x2

x0
x1

x2x3
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Newton Methods

x

y

f (x)

Tangent line
xn

xn+1

Newton’s method is an iterative technique for
finding a root of a nonlinear equation F (x) = 0 via

xn+1 = xn → F ↓(xn)
↑1F (xn).

What happens if one optimize
f (x1, x2) = 10x2

1 + x2
2?
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Homework
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Pipeline of Machine Learning
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