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Simple Linear Regression



Linear Regression
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Yi = Bo + 51 Xi + €i, J

[ X has an arbitrary distribution,
possibly deterministic.

A If X =x, then Y = Gy + B1x + ¢,
with 8y, 81 being the *coefficients*,

and ¢ being the *noise* variable.
7 J
A E[g|X = x] =0, Var(e|X = x) =
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0'2.




Least Squares Estimators

One option to estimate the unknown quantities is to find the optimal fit | to
be precise here, minimize the mean squared error (MSE): minae
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Monte Carlo Methods

How to Estimate 7 7

[ Draw a square of side length 2 (from —1 to
+1) and inscribe a circle of radius 1.

[ Randomly sample the points within the

square.
[ Count how many points fall inside the circle.

[ The expectation of fraction of points in

the circle's area ~ wr? _
total points’ area (2r)2 4

the circle is

~ points in circle
1 Hence m~ 4 X ol o |
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We minimize in-sample, empirical MSE: ¢ e }
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. 1 ,
(Bo, 1) = arg(;?,ll?l) - ;(Yi — (bo + b1.Xi))".
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MSE(bo, b1)

Next. 3y, 31 has closed form solution!

How ?



How to find the Minimizer of a Function

How to find the of a function x* = arg min, f(x)?

Solve the equation Vf(x*) =0
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where cxy, s& are the sample covariance between X, Y and the sample
variance of X respectively. As a reminder,
1 < _ I
Cxy = Z;(Xi —X)(Yi —¥),sx = 2
1= 1=




How accurate is the Model?— Bias
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Statement: 53; is unbiased, i.e. E[3:1] = f1.




Model Fitting

A Find (30,31) that minimize the least square

Q= Z 60 + BIXI)) .

V

Vi

e Denote y; = Bo + B1x; as the fitted value;
e Denote ¢; = y; — y; as the residual.

Therefore, minimizing the least square can be understood as fitting y;'s to
minimize residuals as good as possible.



How accurate is the Model?— Variance
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Unconditioning on X

[ Bias apply the law of total expectation:
B[] = E[E[5: | X, ..., X)| = E[31] = 6.

[ Variance apply the law of total variance:

Var(5;) :E:Var(ﬁl | Xl,...,x,,)] +Var(E[Bl | Xl,...,x,,])

-2 2 1
=" 0—2] + Var(f1) = i E[ 2].
| NSy n | s
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Go Beyond Point Estimation

Fact. E[f(x)] = fo + B1x. and Var(f(x)) = < (1 n ﬂ) J

What is the the standard error of an estimator 7 se(/g’l) = —Z

>
\/I’ISX
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Exercise

[ What happens when the noise variance, o2, increases?

Bias =0 e 7 @c 4 wihe.

[ What happens when the number of samples, n, increases?

Bionzo  Ver = — v(--} ) "5, becne betfer:

[ What influences the variance of our predictions?

[ What happens when we predict at x that is very close to x? How about
very far? .

—— kg Vor
Flyx=5) (xi-%)
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How to Estimate o7

Using the simple linear regression model,
E[(Y — (8o + B1X))*] = o°.

Then, a natural estimator for o2 would be

n
o1

52 = =3 (¥ - OO

2_— 1 52 isan

Notice that this is a biased estimator. Moreover s

T
N

unbiased estimator of o2. (Later) zi

Next Lectud®
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Residual and Error

(residual) & = Y; — (Bo + B1X))
(noise) &; =Y — (Bo + B1Xi)
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e The sum of noise variables cannot equal zero all the time, because
n N\ 2
Var()_;_, i) = no*.
e The sum of residuals is *always* zero, i.e. > ;e =0.

e The sample correlation between the residuals and X;'s is also 0, i.e.
Z;’:l(X; — Y)e,- = 0.
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Assessing the Fit




Assessing the Fit

[ As in simple regression, we calculate
o fitted values: 9; = fo + fixi;
e residuals: e, = y; — yi;
e error sum of squares: SSE = >_7 _ &?;
e total sum of squares: SST = Y7 (vi — V)%
e regression sum of squares: SSR =7 (§i — ¥)°.

y =argminc Y (c — y;)? is the best constant fit of {y;}7_,! J
[ We can decompose SST as
D=9 => 0=+ vi—5)
SST SSR SSE
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R? Statistics and Correlation

R? (Coefficient of Determination):
SSR
2 Y Y
R* = ST where SSR = E (vi —y)°, SST = E (yi —v)°. J

2 (xi=X)(yi—Yy)
V2 (xi—%)2 X (vi—y)?’

R? = r?

then we have

Recall Pearson correlation coefficient: r =

gkip UoT REQWRED
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Prove R? — r?

Sincef3; = Z%&%)_(){S;m = r 2, we have SSR = (Z()i_(f)_();)_j))z. Thus,

R2 _ SSR (22X = X)(yi — 7))’ _ 2
SST > (xi —X%)* 2(vi —¥)? |

Clip WoT REQUIRED
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Error

2 _ 2

. n_ 4
Prove: s L

is an *unbiased* estimator of o2 J

CkIP  NOT REQUIRZP
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Y=t +bxee ‘

7= nox ( by 4bY « 4,‘0)

Pipeline of Machine Leatning




Log-Likelihood

The model looks similar,
Yi = PBo + 01 Xi + €,
with modified assumptions:
[ X has an arbitrary distribution, possibly deterministic.

A If X = x, then Y = By + B1x + ¢, with By, 81 being the coefficients, and ¢
being the noise variable.

3 (stronger) e ~ N(0,0?), and is independent of X.

[ (stronger) € is across observations.
y

Question. What is p(Yi[X;: bp, b1,5?)? Wi = bo+ by X €, (& N[0, s)
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Log-Likelihood

Given the data, the likelihood under this set of assumption is a function of
the unknown parameters, defined as

L(bo, by,s°) = f[p(Y-|X-- bo, by, 5%) = Hl \/21? exp{—%(yi — (bo + b1X,-))2}.
exP(a-tL) |
expla) exP(b) log(ab) = log(a) + log(b) |
log L(bo, b1, ) dﬁf&, bi,s 2):—g|og(27r)—glog52——(Y (bo+b1 Xi))>.
nox » @&c, % of sda tikefi hoool D‘f axch dofa
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Logistic regression

Step 1. Likelihood for a Logistic Binary Outcome:

For each observation y; € {0, 1} with probability p; for y; =1, the I|ke||hoodm|s & ek

. W li('.ﬁ
a.|w_pl 1 y:i“w&.t:o i I @ ”...“J
1

——7 using the logistic function. |
1+e 5 7 3

o Mot
Step 2. Log-Likelihood: of Jule

s e

where probability p; =

For n independent observations, the log-likelihood function is

=3 s e ) v (1- )|

=1

Step 3. Estimation:

Maximizing ¢(3) with respect to [ gives the maximum likelihood estimates,
leading to the logistic regression model.
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Gradient Descent

e Gradient Descent is an iterative optimization method to find local minima
of a function.
e The update ruleis x,11 = x, — aVf(x,), where « is the learning rate.

X0

0> 8-y



Il Conditioned Problems

e The function f(x1,x) = 10x7 + x3 has very different curvatures along x;
and x».

e |ts level sets are ellipses elongated along the x»-axis.

e With a fixed learning rate, gradient descent can overshoot in the steep x;

direction, leading to oscillatory (zigzag) behavior. > -
X4
W o X2 ‘?HK\I) = [Lé\l
H -
O 2




Newton Methods

y Newton's method is an iterative technique for
4 finding a root of a nonlinear equation F(x) = 0 via

x) Xpi1l = Xp — F’(Xn)_lF(Xn).

Xy, F (x) =0
9

Tangent line

Flxn) + Flien) - (x- Xn) =0
U Che lrere opproimtion

Yot = Xn= F )~ Eixn)

. N t ¢ *o
XWhat happens if one optlr%"i?em et boof -

f(Xl,XQ) = 1OX12 + X22?
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Homework

Loss

Distance

Gradient Descent: Loss
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Pipeline of Machine Learning
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