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Simple Linear Regression



Linear Regression

Y: = Bo + B1Xi + i, )

(3 X has an arbitrary distribution,
possibly deterministic.

O If X = x, then Y = By + B1x + ¢,
with g, 31 being the *coefficients*,
and ¢ being the *noise* variable.

O Ele|X = x] =0, Var(e|X = x) =
. X 5
o°.




Least Squares Estimators

One option to estimate the unknown quantities is to find the optimal fit , to
be precise here, minimize the mean squared error (MSE):

(5o, 1) = arg, min BI(Y = (bo + b1 X)*)] ]

O How to access E?



Monte Carlo Methods

How to Estimate 7w 7

O Draw a square of side length 2 (from —1 to

+1) and inscribe a circle of radius 1.

(3 Randomly sample the points within the
square.

[ Count how many points fall inside the circle.

O The expectation of fraction of points in

the circle's area . wr? T

total points’ area "~ (2r)2 4

the circle is

4 % points in circle

O Hence 7~ total points



We minimize in-sample, empirical MSE:

n

~ ~

(Bo, f1) = arg _min 1 SV~ (bo + biX))2.

(bo,b1) N <

MSE(bo,b1)

Next. fo, A1 has closed form solution!

How ?



How to find the Minimizer of a Function

How to find the of a function x* = arg min, f(x)? ’

Solve the equation Vf(x*) =0




P =

where cxy, s are the sample covariance between X, Y and the sample

5x

variance of X respectively. As a reminder,

cxy:%i(x (Y —7), EZ X — %)2.

; n
i=1




How accurate is the Model?— Bias

51+ Z ’

Statement: Bl is unbiased, i.e. E[Bl] = f31.



Model Fitting

(3 Find (ﬁo,ﬁl) that minimize the least square

Q= Z — (Bo + B1xi))%.
_/_/
Vi
e Denote 9 = o + Bix; as the fitted value;
e Denote ¢ = y; — ¥ as the residual.

Therefore, minimizing the least square can be understood as fitting y;'s to
minimize residuals as good as possible.



How accurate is the Model?— Variance

Var(Bl) = Var <51 + % Z(Xi — x)s,-) ==
i=1

2
X = nsy
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Unconditioning on X

(3 Bias apply the law of total expectation:

B[] = E[E[y | Xa,... Xl | = E[52] = fu.

(3 Variance apply the law of total variance:

Var(51) :E[Var(ﬁl | xl,...,xn)} +Var(]E[Bl |x1,...,xn])

E{U;] + Var(8y) = (f]E{lz]

nsx Sx
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Go Beyond Point Estimation

Fact. E[f(x)] = o + B1x. and Var(f(x)) = = (1 n (X_Z;)Z) J

5%

What is the the standard error of an estimator ? se(51) =

g

> -
‘/”SX
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Exercise

(3 What happens when the noise variance, o2, increases?
(3 What happens when the number of samples, n, increases?
(3 What influences the variance of our predictions?

(3 What happens when we predict at x that is very close to x? How about
very far?
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How to Estimate o?

Using the simple linear regression model,
E[(Y — (o + £1X))’] = 0.

Then, a natural estimator for a2 would be

1o A
52 ==Y (Vi - F(X))>.
o ni:1(/ (Xi))

2 _ m =2 M

Notice that this is a biased estimator. Moreover s

unbiased estimator of 2. (Later)
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Residual and Error

(residual) e = Y; — (Bo + £1.Xi)
(noise) &; =Y — (Bo + S Xi)
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e The sum of noise variables cannot equal zero all the time, because
Var(}.7_, i) = no?.
e The sum of residuals is *always* zero, i.e. .7 ; & = 0.

e The sample correlation between the residuals and X;'s is also 0, i.e.
Z?:l(Xi — Y)e,- =0.
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Assessing the Fit




Assessing the Fit

(3 As in simple regression, we calculate
fitted values: y; = Bo + Pixi:
residuals: e = y; — Vi;

error sum of squares: SSE = Y7 | %

total sum of squares: SST = Y"7 . (vi — )%
regression sum of squares: SSR = >, (i — ¥)°.

y =argminc > i, (c — y;)? is the best constant fit of {y;}7_,! J

(3 We can decompose SST as

n n n

D=9 = 092+ > (i —5)

i=1 i=1 i=1

SST SSR SSE
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R? Statistics and Correlation

R? (Coefficient of Determination):

SSR o A =2 _ L c)\2
cor where SSR=3 (5 —y)°, SST=3 (v —7)

Recall Pearson correlation coefficient: r = ——2=0=00i=Y) " then we have
V=) T(yi—y)?

R*=r?

R? =




2

Prove R? = r?

Sincef; = 72%&2%;7) = r2, we have SSR = —(Z(g_(i)g_(’)_zy))z. Thus,

R2 — SSR Q- —x)(yi —}7))2 _ 2

= =r.

CSST - Xk — %) (v — ¥)?
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2

2 _ _n

Prove: s o

152 is an *unbiased* estimator of o2 J
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Pipeline of Machine Learning




Log-Likelihood

The model looks similar,
Yi = Bo+ B1Xi +¢i,
with modified assumptions:
(3 X has an arbitrary distribution, possibly deterministic.

 If X = x, then Y = By + B1x + ¢, with Bg, 51 being the coefficients, and ¢
being the noise variable.

[ (stronger) e ~ N(0,02), and is independent of X.

O (stronger) ¢ is across observations.

Question. What is p(Y;|X;; bo, b1, s%)?
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Log-Likelihood

Given the data, the likelihood under this set of assumption is a function of
the unknown parameters, defined as

n n 1 1
L(bo, b1,s%) = | | p(Yi|Xi; bo, b1, s%) = exp{ Y; — (b + b1 X; 2}.
(0 1 ) H ( ‘ 0, Y1 ) ’[[1@ 252( (0 1 ))

i=1

log(ab) = log(a) + log(b) J

. 1
log L(bo, b1, s2) % ¢(bo, by, s2) = ,g |og(27r)fg log 5272—52(\/,-7(1)0%1)(,-))2.
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Logistic regression

Step 1. Likelihood for a Logistic Binary Outcome:

For each observation y; € {0,1} with probability p; for y; = 1, the likelihood is
L(pi | yi) = p"(1 = pi) 7"

where probability p; = 1++
e

57 using the logistic function.

Step 2. Log-Likelihood:

For n independent observations, the log-likelihood function is
n

1) =Y [ytos( 1y ) + - ioe (1 )|

i=1

Step 3. Estimation:

Maximizing £(3) with respect to 5 gives the maximum likelihood estimates,
leading to the logistic regression model.
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Gradient Descent

e Gradient Descent is an iterative optimization method to find local minima
of a function.
e The update rule is x,11 = X, — aVf(x,), where « is the learning rate.

y

7
S

X0

N2
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Ill Conditioned Problems

e The function f(x1,x) = 10x2 + x5 has very different curvatures along x
and x».

e lts level sets are ellipses elongated along the x»-axis.

e With a fixed learning rate, gradient descent can overshoot in the steep x;
direction, leading to oscillatory (zigzag) behavior.

X2

iy




Newton Methods

y Newton's method is an iterative technique for

finding a root of a nonlinear equation F(x) = 0 via

X) Xpi1 = Xp — F'(Xa) " F(xn).

Tangent line

XWhat happens if one optimize
f(x1,x2) = 10x2 + x27?
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Homework

Gradient Descent: Loss Newton's Method: Loss
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Pipeline of Machine Learning
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