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Simple Linear Regression



Linear Regression
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ϵ1

Yi = β0 + β1Xi + εi ,

❐ X has an arbitrary distribution,
possibly deterministic.

❐ If X = x , then Y = β0 + β1x + ε,
with β0, β1 being the *coefficients*,
and ε being the *noise* variable.

❐ E[ε|X = x ] = 0, Var(ε|X = x) =

σ2.
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Least Squares Estimators

One option to estimate the unknown quantities is to find the optimal fit , to
be precise here, minimize the mean squared error (MSE):

(β0, β1) = arg min
(b0,b1)

E[(Y − (b0 + b1X )2)].

❐ How to access E?

• The data we may consider are {(X1,Y1), . . . , (Xn,Yn)}.
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Monte Carlo Methods

How to Estimate π ?

❐ Draw a square of side length 2 (from −1 to
+1) and inscribe a circle of radius 1.

❐ Randomly sample the points within the
square.

❐ Count how many points fall inside the circle.

❐ The expectation of fraction of points in

the circle is the circle’s area
total points’ area ≈ πr2

(2r)2 = π
4 .

❐ Hence π ≈ 4 × points in circle
total points .
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Find β0, β1

We minimize in-sample, empirical MSE:

(β̂0, β̂1) = arg min
(b0,b1)

1
n

n∑
i=1

(Yi − (b0 + b1Xi ))
2

︸ ︷︷ ︸
M̂SE(b0,b1)

.

Next. β̂0, β̂1 has closed form solution!

How ?
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How to find the Minimizer of a Function

How to find the Minimizer of a function x∗ = argminx f (x)?

Solve the equation ∇f (x∗) = 0

6



Find β0, β1

β̂1 =
cXY
s2
X

,

where cXY , s
2
X are the sample covariance between X ,Y and the sample

variance of X respectively. As a reminder,

cXY =
1
n

n∑
i=1

(Xi − x)(Yi − y), s2
X =

1
n

n∑
i=1

(Xi − x̄)2.

0 = xy − (y − β̂1x)x − β̂1x2

0 = cXY − β̂1s
2
X
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How accurate is the Model?– Bias

β̂1 = β1 +
1

ns2
X

n∑
i=1

(Xi − x)εi .

Statement: β̂1 is unbiased, i.e. E[β̂1] = β1.
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Model Fitting

❐ Find (β̂0, β̂1) that minimize the least square

Q =
n∑

i=1

(yi − (β̂0 + β̂1xi )︸ ︷︷ ︸
ŷi

)2.

• Denote ŷi = β̂0 + β̂1xi as the fitted value;
• Denote ei = yi − ŷi as the residual.

Therefore, minimizing the least square can be understood as fitting yi ’s to
minimize residuals as good as possible.
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How accurate is the Model?– Variance

Var(β̂1) = Var

(
β1 +

1
ns2

X

n∑
i=1

(Xi − x)εi

)
=

σ2

ns2
X

.
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Unconditioning on X

❐ Bias apply the law of total expectation:

E[β̂1] = E
[
E[β̂1 | X1, . . . ,Xn]

]
= E[β1] = β1.

❐ Variance apply the law of total variance:

Var(β̂1) = E
[
Var(β̂1 | X1, . . . ,Xn)

]
+ Var

(
E[β̂1 | X1, . . . ,Xn]

)
= E

[
σ2

ns2
X

]
+ Var(β1) =

σ2

n
E
[

1
s2
X

]
.
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Go Beyond Point Estimation

Fact. E[f̂ (x)] = β0 + β1x . and Var(f̂ (x)) = σ2

n

(
1 + (x−x)2

s2X

)
.

What is the the standard error of an estimator ? se(β̂1) =
σ√
ns2X

.
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Exercise

❐ What happens when the noise variance, σ2, increases?

❐ What happens when the number of samples, n, increases?

❐ What influences the variance of our predictions?

❐ What happens when we predict at x that is very close to x? How about
very far?
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How to Estimate σ?

Using the simple linear regression model,

E[(Y − (β0 + β1X ))2] = σ2. (convince yourself why.)

Then, a natural estimator for σ2 would be

σ̂2 =
1
n

n∑
i=1

(Yi − f̂ (Xi ))
2.

Notice that this is a biased estimator. Moreover s2 = n
n−2 σ̂

2 is an

unbiased estimator of σ2. (Later)
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Residual and Error

(residual) ei = Yi − (β̂0 + β̂1Xi )

(noise) εi = Yi − (β0 + β1Xi )
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Remark

• The sum of noise variables cannot equal zero all the time, because
Var(

∑n
i=1 εi ) = nσ2.

• The sum of residuals is *always* zero, i.e.
∑n

i=1 ei = 0.

• The sample correlation between the residuals and Xi ’s is also 0, i.e.∑n
i=1(Xi − x)ei = 0.

16



Assessing the Fit



Assessing the Fit

❐ As in simple regression, we calculate
• fitted values: ŷi = β̂0 + β̂1xi ;
• residuals: ei = yi − ŷi ;
• error sum of squares: SSE =

∑n
i=1 e

2
i ;

• total sum of squares: SST =
∑n

i=1(yi − ȳ)2;
• regression sum of squares: SSR =

∑n
i=1(ŷi − ȳ)2.

ȳ = argminc
∑n

i=1(c − yi )
2 is the best constant fit of {yi}ni=1!

❐ We can decompose SST as
n∑

i=1

(yi − ȳ)2︸ ︷︷ ︸
SST

=
n∑

i=1

(ŷi − ȳ)2︸ ︷︷ ︸
SSR

+
n∑

i=1

(yi − ŷi )
2

︸ ︷︷ ︸
SSE
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R2 Statistics and Correlation

R2 (Coefficient of Determination):

R2 =
SSR
SST

, where SSR =
∑

(ŷi − ȳ)2, SST =
∑

(yi − ȳ)2.

Theorem

Recall Pearson correlation coefficient: r =
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

∑
(yi−ȳ)2

, then we have

R2 = r2
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Prove R2 = r 2

Sinceβ̂1 =
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2 = r

sy
sx
, we have SSR = (

∑
(xi−x̄)(yi−ȳ))2∑

(xi−x̄)2 . Thus,

R2 =
SSR
SST

=
(
∑

(xi − x̄)(yi − ȳ))2∑
(xi − x̄)2

∑
(yi − ȳ)2

= r2.
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Error

Prove: s2 = n
n−2 σ̂

2 is an *unbiased* estimator of σ2
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Pipeline of Machine Learning



Log-Likelihood

The model looks similar,

Yi = β0 + β1Xi + εi ,

with modified assumptions:

❐ X has an arbitrary distribution, possibly deterministic.

❐ If X = x , then Y = β0 + β1x + ε, with β0, β1 being the coefficients, and ε

being the noise variable.

❐ (stronger) ε ∼ N(0, σ2), and is independent of X .

❐ (stronger) ε is independent across observations.

Question. What is p(Yi |Xi ; b0, b1, s
2)?
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Log-Likelihood

Given the data, the likelihood under this set of assumption is a function of
the unknown parameters, defined as

L(b0, b1, s
2) =

n∏
i=1

p(Yi |Xi ; b0, b1, s
2) =

n∏
i=1

1√
2πs2

exp

{
− 1

2s2 (Yi − (b0 + b1Xi ))
2
}
.

log(ab) = log(a) + log(b)

log L(b0, b1, s
2)

def
= ℓ(b0, b1, s

2) = −n

2
log(2π)−n

2
log s2− 1

2s2 (Yi−(b0+b1Xi ))
2.
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Logistic regression

Step 1. Likelihood for a Logistic Binary Outcome:
For each observation yi ∈ {0, 1} with probability pi for yi = 1, the likelihood is

L(pi | yi ) = p yi
i (1 − pi )

1−yi .

where probability pi =
1

1+e−βT xi
using the logistic function.

Step 2. Log-Likelihood:
For n independent observations, the log-likelihood function is

ℓ(β) =
n∑

i=1

[
yi log

(
1

1 + e−βT xi

)
+ (1 − yi ) log

(
1 − 1

1 + e−βT xi

)]
.

Step 3. Estimation:
Maximizing ℓ(β) with respect to β gives the maximum likelihood estimates,
leading to the logistic regression model.
/ No closed-form solution. 23



Gradient Descent

• Gradient Descent is an iterative optimization method to find local minima
of a function.

• The update rule is xn+1 = xn − α∇f (xn), where α is the learning rate.

x

y

x0
x1x2x3
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Ill Conditioned Problems

• The function f (x1, x2) = 10x2
1 + x2

2 has very different curvatures along x1

and x2.
• Its level sets are ellipses elongated along the x2-axis.
• With a fixed learning rate, gradient descent can overshoot in the steep x1

direction, leading to oscillatory (zigzag) behavior.

x1

x2

x0
x1

x2
x3
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Newton Methods

x

y

f (x)

Tangent line
xn

xn+1

Newton’s method is an iterative technique for
finding a root of a nonlinear equation F (x) = 0 via

xn+1 = xn − F ′(xn)
−1F (xn).

What happens if one optimize
f (x1, x2) = 10x2

1 + x2
2 ?
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Homework
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Pipeline of Machine Learning
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