Prof. Yiping Lu
IEMS 304: Statistical Learning for Data Analysis
April 14, 2025
Homework 2

This homework is to give a brief reminder of R, RStudio, and statistical topics covered in IEMS 303.

Note: The homework is scored out of 100 points. The problems add up to 90 points, while the remaining
ten points will be graded according to a writing rubric, given at the end of the assignment.

R/RStudio installation If you have not installed R and RStudio, follow the installation instructions
outlined in https://posit.co/download/rstudio-desktop/. You are strongly encouraged to use R
Markdown to integrate text, code, images and mathematics or you can you use the latex code we provide.

Question 1. Linear Regression with Missing Data We consider the standard regression model (we
consider we know the o)

(1) Y =B+ /X +e e~ N0 0%,

with X € R. In this exercise, 10% of the generated Y values are randomly set to zero. That is, if we
denote the observed response by Y, then

(2) v _ Y, with probability 0.9,
~ 10, with probability 0.1.

Exercise 1: Bias of the OLS Estimator. When we run OLS on the observed data Y, Can E[Y | X]
be written down as a linear function X7 Prove that the bias in the estimators is then given by

A B A B
BlaS(ﬁo) = Ogﬁo — 60 = —Tg, BlaS(51> = Ogﬁl 51 1(1]
This means both estimators are biased downward by 10% of the true parameter value.

Write down your answer in the sol environment for LaTex or using Rmarkdown for the homework.
Exercise 2: Log-Likelihood Formulation. To account for the zero-inflation, we use a likelihood that
reflects the two different ways an observation can occur. For each observation i, show that the likelihood

is given by:

0.1, if y; = 0,
L'i) = ;T -)2
(Bo, 1) 0.9- ! exp —(yl fo — i) ., ify #0.
V2mo? 202

What is the full log-likelihood for the dataset? What is the new objective function you written down for
the problem? What is the algorithm looks like?

You only need to complete one of the Question 2 or Question 3.
(Completing Question 3 will have 10 extra credit.)

Question 2. Bias and Variance Trade-off for Newton Method In this question, we use logistic
regression as an exmaple. We assume a logistic regression model with one predictor:

pi=o0(z) = , with z; = By + By,

1+e =
where p; is the probability that y; = 1 given z;. The log-likelihood for n independent observations is

n

0(Bo, 1) =

=1

yilogp; + (1 — ;) log(1 — p;) |-
1

https://posit.co/download/rstudio-desktop/

2

Exercise 1: Compute the Gradient and Hessian. To derive the gradient, differentiate the log-
likelihood with respect to ; (with j = 0,1). First note that:

apz aZz]-7 .] = Oa
1—p; and =
9, ~ PP, 9B; {x j=1.
Thus, using the chain rule, gg? = pi(1 — p;) z;j, where we define z;0 = 1 and x;; = w;.
J

Differentiating the log-likelihood yields % =3, B’T’ — }:z?} i Substituting the derivative of p; and
J 7 (3

simplifying gives

n

— pi] x;
65‘7 ZZ:l 7 Z]

Now you Wﬂl do the computation for the Hessian, we differentiate the gradient with respect to [:
8522;& =37, 8Bk {(y; — pi)z;} . Show that if X is the n x 2 design matrix with rows z; = (1,2;) and

p=(p1,-.,pn)", then
e the gradient is V/(B8) = X " (y — p),
e the hessian is H(f) = —X WX, where W is an n x n diagonal matrix with W;; = p;(1 — p;).
More generally, if X is the n x 2 design matrix with rows z; = (1,2;) and p = (p1,...,pn)", and
o%r
98,08,

Hint: Since y; does not depend on Sy, only p; does. Thus using the chain rule, we know that
()1)

—>r, (‘))”,;’ ;- Then using the earlier derivative, of -
Exercise 2 Complete the code. Using the prev1ous computation of gradient and hessian to complete
the Newton Method and gradient descent code for solving logisitic regression. If you successfully compelete

the code, you are able to generate the following figures. Write down your findings.

Gradient Descent; Loss Newton's Method: Loss

o _, o

N~ N~
2 5] 5 B
3 o _J 3 o

™ ™

o _ o

— I T I T T I —

0 200 400 600 800 1000 2 4 6 8 10 12 14
Iteration Iteration

Gradient Descent: ||beta - true_beta|| Newton's Method: ||beta - true_beta||

<
o = ° KX 00000000
o _] o o) o
& © _] & - \
n © @ ®
a o a < \ /o

© [[[[[[e [[e [[[[[

0 200 400 600 800 1000 2 4 6 8 10 12 14
Iteration Iteration

1
2l set .seed (123)
3
4

© 0 N O Ut

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1. Create a toy dataset

n <- 100 # number of observations
x1 <- rnorm(n)*10

x2 <- rnorm(n)

X <- cbind (1, x1, x2) # include intercept

True coefficients for our logistic model
true_beta <- c¢(0.5, 1, -1)

Logistic function
logistic <- function(z) 1 / (1 + exp(-z))

Compute the probabilities using the logistic function
p <- logistic(X %*% true_beta)

Generate binary response variable from a Bernoulli distribution
y <- rbinom(n, size = 1, prob = p)

2. Define the negative log-likelihood and its derivatives

nll <- function(beta, X, y) {

p <- logistic(X %x*% beta)
Negative log-likelihood (adding a small constant to avoid log(0))
-sum(y * log(p + 1e-8) + (1 - y) * log(l - p + 1e-8))
}
Gradient of the negative log-likelihood
grad_nll <- function(beta, X, y) {

#orrrrrnd
PUT Your Code here
#Forrrrrnd

}

Hessian of the negative log-likelihood

hess _nll <- function(beta, X, y) {

#orrrrrnd
PUT Your Code here
#orrrrnrnd

}

3. Solve using Gradient Descent

beta_gd <- rep(0, ncol(X)) # Initialize coefficients

1Ir <- 0.001 # Learning rate

56 num_iter <- 1000 # Number of iterations
57
58
59/ loss_gd <- numeric(num_iter) # Store loss values

60/dist_gd <- numeric(num_iter) # Store Euclidean distance to true_beta
61
62| for (i in 1l:num_iter) {

63 loss_gd[i] <- nll(beta_gd, X, y)

64| dist_gd[i] <- sqrt(sum((beta_gd - true_beta)~2))

65 # -

66 # o100l

67 # PUT Your Code here

68 # o1l

69 # The code would look like beta_gd <- 7

70 # -

71|}

72

B H e

74|# 4. Solve using Newton's Method

B\ e e e e

76| beta_newton <- rep(0, ncol(X)) # Initialize coefficients

77/num_iter newton <- 15 # Newton's method converges
quickly

78
79/loss_newton <- numeric(num_iter newton)
80| dist _newton <- numeric(num_iter newton)
81
g2(for (i in 1:num_iter newton) {

83 loss_newton[i] <- nll(beta_newton, X, y)

84/ dist_newton[i] <- sqrt(sum((beta_newton - true_beta) ~2))
85 grad <- grad_nll(beta_newton, X, y)

86/ H <- hess_nll(beta_newton, X, y)

87 ¥ -

88 # o0

89 # PUT Your Code here

90 #orrrrrnd

91 # The code would look 1like beta_newton <- 7
92 # ———————-

93| }

94

95| H e

96|# 5. Plot the Loss and Distance Curves
97| H# e e

98|# Set up a 2x2 plotting area
99| par (mfrow = c(2, 2))

100

101|# Gradient Descent Loss

102 plot(loss_gd, type = "1", col = "blue", lwd = 2,

103 main = "Gradient Descent: Loss", xlab = "Iteration", ylab = "Loss"

)
104 grid ()

105

106

107|plot (loss_newton, type = "b", col = "red", lwd = 2, pch = 19,

108 main = "Newton's Method: Loss", xlab = "Iteration", ylab = "Loss")

109| grid ()

110

111

112|plot (dist_gd, type = "1", col = "blue", lwd = 2,

113 main = "Gradient Descent: ||beta - true betall|", xlab = "Iteration
", ylab = "Distance")

14| grid ()

115

116

117|plot (dist_newton, type = "b", col = "red", lwd = 2, pch = 19,

118 main = "Newton's Method: ||beta - true_betal|", xlab = "Iteration"
, ylab = "Distance")

19| grid ()

LisTING 1. R code: Data generation, Newton’s method, and plotting

Question 3. Linear Regression with Censored Data Suppose the true (latent) model is linear:
(3) Y*=By+ /X +e, e~ N(00%).

However, instead of observing Y*, we observe

(4) Y = max{Y™,0}.

This is a censored (or Tobit) model where values below 0 are censored to 0.
Exercise 1: Bias of the OLS Estimator. Compute the Expectation. Even though the latent rela-
tionship is linear, show that the observed conditional expectation becomes

Bo + /i X
o

B | X1 = G+) (AL) 4o ,
which is not linear in X. Here ¢ and ® denote the standard normal PDF and CDF, respectively. Explain
why if one naively applies OLS to Y without accounting for the censoring, the estimated coefficients will
be biased.

Exercise 2: Log-Likelihood Formulation. The proper likelihood accounts for whether an observation
is censored or not. For each observation ¢, define u; = By + £1X;. Then the likelihood is given by

@(gf), itY; =0,
Li(ﬁmﬁla(j) =31 Ve s
gp(zg“z), itY; > 0.

g

What is the full log-likelihood ¢(fy, 81, 0) and the new loss function you have?
Exercise 3: Newton Method. We aim to use Newton method to minimize the nagtive log-likelihood
NLL(Bo, B1,0) = —€(Bo, 51, 0)., we need first to compute the hessian and gradient.

3 a) Gradient Derivation For non-censored observations (Y; > 0), the log-likelihood is ¢; = —log o —

%10g(27r) — % (why?) Differentiating with respect to 5; (with j =0, 1):
or; . Yi — pi Opi
853' N 0'2 85])

6

Since p; = Po + £1X;, g—[‘;é =1, ggi = X, the contribution to the gradient of the NLL (remember we

take the negative derivative) is

o Yi— O

o5, o 0p
Similarly, for censored observations (Y; = 0), the log-likelihood is ¢; = log ® <—’j;) (why?) Let z; = —E
o 1 p(z) Op

Then,using the same steps as before show that o5 = (provide your calculation to check
J

o P(z;) 0B;
my result) and the overall gradient of the NLL is '

INLLGh) - X B () o L) (1)

:Y; >0 i:Y;=0

3 b) Hessian Derivation for Non-censored observations (Y; > 0) For non-censored observations

(Y; > 0), show that the hessian is
non-cens __ 1 1
Hpomem = = (5.1) (1 x).

3 c) Hessian Derivation for Censored observations (Y; = 0) For censored observations, we've

showed the graident is 2% = —L9(z) 0 Qhow that the Hessian contribution is
0p; o ®(z;) 0B,

cens __ 1 1 SD(ZZ>
H™" =~ <X1> (1 Xi) Bz (qu)(zz) + ‘P(%’))
based on the following Fact.

Fact. If we define r(z;) = (‘ggjg. Then its derivative is r'(z;) = —g((;"))z <zi<I>(zi) + @(zi)) (The code for

computing r’(z;) is provided in the following R code.)

3 d) Complete the Newton Method’s Code. Complete the following code using Newton method
for NLL to do linear regression with censored data. If you successfully compelete the code, you are able
to generate the following figures. Write down your findings. (You can try different choices of n or other
hyperparameter in the code to see what you find.)

Iteration Loss: Newton vs OLS Baseline Censored Data: Fitted Lines Comparison
) . ~])
8 —e— Newton Loss — - - OLSfit
o B —— OLS Loss - - Log-likelihood fit .7
o
S S -
Y A
[(=3 g -
g = 1 B
3 -
£ 9 > ©o »
T 87 PR
f D S
5 < %
s} o
- o P
o (=g ISV | L s
B4 S .2
=1 N <.
S I -2
o} @—— 0 —— g — 00— g —0—o —0—g o M
z T T T T T T T T T T T T
2 4 6 8 10 -3 -2 -1 0 1 2 3
Iteration X

set.seed (123)

n <- 1000

betaO_true <- 2; betal_true <- 3; sigma <- 1

X <- rnorm(n)

epsilon <- rnorm(n, O, sigma)

Y star <- betaO_true + betal_true * X + epsilon

© 00 N O Ut s W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Y <- pmax(Y_star, 0)

nll <- function(params, X, Y, sigma) {
beta0 <- params[1]
betal <- params[2]
mu <- beta0 + betal * X

cens <- (Y == 0)
11 cens <- sum(log(pnorm(-mulcens] / sigma)))

noncens <- (Y > 0)

11 _noncens <- sum(-log(sigma) - 0.5 * log(2*pi) - ((Y[noncens] - mul
noncens])~2) / (2xsigma”2))
return(- (11 cens + 11 noncens))

+

grad_nll <- function(params, X, Y, sigma) {
beta0 <- params[1]
betal <- params [2]
mu <- betaO0 + betal * X

noncens <- (Y > 0)
cens <- (Y == 0)

grad_non_cens_0 <- - sum((Y[noncens] - mul[noncens]) / sigma~2)
grad_non_cens_1 <- - sum((Y[noncens] - mul[noncens]) * X[noncens] /
sigma~2)

z <- -mulcens] / sigma

Phi_z <- pnorm(z) + 1le-10

factor <- dnorm(z) / (sigma * Phi_z)
grad_cens_0 <- sum(factor)
grad_cens_1 <- sum(factor * X[cens])

grad0 <- grad_non_cens_0O + grad_cens_0
gradl <- grad_non_cens_1 + grad_cens_1

return(c(grad0, gradl))

59

60lhessian_nll <- function(params, X, Y, sigma) {

61/ betalO <- params[1]

62/ betal <- params[2]

63 mu <- beta0 + betal * X

64

65 H11 <- 0; H12 <- 0; H22 <- 0

66

67

68 mnoncens <- (Y > 0)

69| H11 <- H11 + sum(rep(l, sum(noncens)) / sigma~2)

70/ H12 <- H12 + sum(X[noncens] / sigma”2)

711 H22 <- H22 + sum((X[noncens]~2) / sigma”~2)

72

73

74 cens <- (Y == 0)

75 if (sum(cens) > 0){

76

77 rrrrred

78

79 rrrrrnd

80

81 /

82 rprime <- - (phi_z / (Phi_z72)) * (z * Phi_z + phi_z)

83

84| %}

85

86 H <- matrix(c(H11, H12, H12, H22), nrow = 2)

87| return (H)

ss| }

89

90

91

92

93 params _newton <- c(0, 0)

94lnum_iter newton <- 10

95/ loss_history_newton <- numeric(num_iter newton)

96

97| for (i in 1:num_iter newton) {

98| grad <- grad_nll(params_newton, X, Y, sigma)
Y

99 H <- hessian_nll(params_newton, X, Y, sigma)
100

101 rrrrrnd

102

103 rrrrrnd

104 <-

105
106
1071 loss_history_newton[i] <- nll(params_newton, X, Y, sigma)
108|

109| newton_est <- params_newton

110/ cat ("Newton's Method Estimates (BetaO, Betal):\n")
11| print (newton_est)

112
113
14| # — - m e e e

115|# OLS Estimation (ignoring censoring) as Baseline
16| # ——— - -

1170ls_model <- 1m(Y ~ X)

118/ 0ls _est <- coef(ols _model)

119 cat ("OLS Estimates (BetaO, Betal) :\n")

120/ print (ols_est)

121{loss_ols <- nll(ols _est, X, Y, sigma)

122| cat ("Negative Log-Likelihood Loss (OLS) :\n")

123/ print (loss_ols)

124
125|# —— - -

126/ # Plot: Newton Iteration Loss vs (OLS Baseline

12| # —— -

128 # Combined Loss Plot with Log-Scale on Y-Axis: Newton, Gradient Descent
, and OLS Baseline

129 plot (1:num_iter _newton, loss_history_newton, type='b', pch=16, col='
blue', log="y",

130 xlab="'Iteration', ylab='Negative Log-Likelihood Loss (log scale)',

131 main='Iteration Loss: Newton vs OLS Baseline')

132/ abline (h=1loss_ols, col='red', lwd=2, lty=2)

133 legend ("topright", legend=c("Newton Loss", "OLS Loss"),

134 col=c("blue", "red"), 1lty=c(1,1,2), pch=c(16, NA, NA))

135

36| # —m e e e

137|# Plot: Fitted Lines Comparison

B38| # —m e

139 plot (X, Y, pch=16, col='grey',

140 main='Censored Data: Fitted Lines Comparison',

141 xlab='X"', ylab='Y")

142| curve (ols_est [1] + ols_est[2]*x, add=TRUE, col='red', 1lwd=2, 1lty=2)

13| curve (newton_est [1] + newton_est[2]*x, add=TRUE, col='blue', lwd=2, 1ty
=2)

144| legend ("topleft", legend=c("OLS fit", "Log-likelihood fit"),

145 col=c("red","blue","purple"), 1lty=2, lwd=2)

Li1sTING 2. R code: Data generation, Newton’s method, and plotting

10

Rubric (10)

e The text is laid out cleanly, with clear divisions between problems and sub-problems. The writing
itself is well-organized, free of grammatical and other mechanical errors, and easy to follow.

e Questions which ask for a plot or table are answered with both the figure itself and the command
(or commands) use to make the plot. Plots are carefully labeled, with informative and legible titles,
axis labels.

e All quantitative and mathematical claims are supported by appropriate derivations, included in the
text, or calculations in code. Numerical results are reported to appropriate precision.

e Code is either properly integrated with a tool like R Markdown or included as a separate R file. In
the former case, both the knitted and the source file are included. In the latter case, the code is
clearly divided into sections referring to particular problems. In either case, the code is indented,
commented, and uses meaningful names.

e All parts of all problems are answered with actual coherent sentences, and never with raw computer
code or its output. For full credit, all code runs, and the Markdown file knits (if applicable).

	1. Question
	2. Question
	3. Question

