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Abstract

In this paper, we establish a novel connection between the metric entropy growth
and the embeddability of function spaces into reproducing kernel Hilbert/Banach
spaces. Metric entropy characterizes the information complexity of function spaces
and has implications for their approximability and learnability. Classical results
show that embedding a function space into a reproducing kernel Hilbert space
(RKHS) implies a bound on its metric entropy growth. Surprisingly, we prove
a converse: a bound on the metric entropy growth of a function space allows
its embedding to a Lp−type Reproducing Kernel Banach Space (RKBS). This
shows that the Lp−type RKBS provides a broad modeling framework for learnable
function classes with controlled metric entropies.Our results shed new light on the
power and limitations of kernel methods for learning complex function spaces.

1 Introduction

Learning a function from its finite samples is a fundamental science problem. A recent emerging trend
in machine learning is to use Reproducing Kernel Hilbrt/Banach Spaces (RKHSs/RKBSs) [1, 2, 3, 4,
5] as a powerful framework for studying the theoretical properties of neural networks[6, 7, 8, 9, 10]
and other machine learning models. The RKBS framework offers a principled approach to numerical
implementable parametric representation via the representer theorem[11, 12, 13], characterizing the
hypothesis spaces induced by neural networks[14, 15, 16] and study the generalization properties
[17, 18, 19]. The Reproducing Kernel Banach Space (RKBS) framework offers a flexible and general
approach to characterize complex machine learning estimators. However, most of the construction
and statistical analysis in the literature focuses on and is based on the structure of Lp-type RKBS,
i.e., the feature space is specifically embedded into an Lp space. In this paper, we aim to answer the
following questions for general machine learning problems:

Can Lp−type Reproducing Kernel Banach Spaces offer a general enough framework for machine
learning studies? Which spaces can be embedded into a Lp−type ?
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Surprisingly, we provide an affirmative answer to the previous questions. We demonstrate that every
function class learnable with a polynomial number of data points with respect to the excess risk can
be embedded into a Lp-type Reproducing Kernel Banach space. This result indicates that Lp-type
Reproducing Kernel Banach spaces constitute a powerful and expressive model class for machine
learning tasks.

To show this, we link the learnability and metric entropy [20] with the embedding to the reproducing
Kernel Banach Space. Metric entropy quantifies the number of balls of a certain radius required to
cover the hypothesis class. A smaller number of balls implies a simpler hypothesis class, which in
turn suggests better generalization performance. Conversely, a larger number of balls indicates a more
complex hypothesis class, potentially leading to over-fitting or poor generalization. Classical results
show that embedding a function space into a reproducing kernel Hilbert space implies a polynomial
bound on its metric entropy growth [21, 22].

Our main result demonstrates that if the growth rate of a Banach hypothesis space’s metric entropy
can be bounded by a polynomial function of the radius of the balls, then the hypothesis space can
be embedded into a Lp-type Reproducing Kernel Banach space for some 1 ≤ p ≤ 2. This result
indicates that if a function space can be learned with a polynomially large dataset with respect to
the learning error, then it can be embedded into a p-norm Reproducing Kernel Banach Space. Thus,
Reproducing Kernel Banach Spaces provide a powerful theoretical model for studying learnable
datasets.

1.1 Related Works

Reproducing Kernel Hilbert Space and Reproducing Kernel Banach Space A Reproducing
kernel Banach space (RKBS) is a space of functions on a given set Ω on which point evaluations are
continuous linear functionals. For example, the space of R-valued, bounded continuous functions
C0(Ω) on some metric space Ω is also a Reproducing Kernel Banach Space. Finally, the space ℓ∞(Ω)
of all bounded functions f : Ω → R equipped with the supremum norm is also a Reproducing Kernel
Banach Space. A formal definition is given below.
Definition 1. A reproducing kernel Banach space B on a prescribed nonempty set X is a Banach
space of certain functions on X such that every point evaluation functional δx, x ∈ X on B is
continuous, that is, there exists a positive constant Cx such that

|δx(f)| = |f(x)| ≤ Cx∥f∥B for all f ∈ B.

Note that in all RKBS B on Ω norm-convergence implies pointwise convergence, that is, if (fn) ⊂ B
is a sequence converging to some f ∈ B in the sense of ∥fn − f∥B → 0, then fn(x) → f(x) for all
x ∈ Ω. Note that in the special case with the norm ∥ · ∥B being induced by an inner product, the
space is called a Reproducing Kernel Hilbert Space (RKHS).

Compared to Hilbert spaces, Banach spaces possess much richer geometric structures, which are
potentially useful for developing learning algorithms. For example, in some applications, a norm from
a Banach space is invoked without being induced from an inner product. It is known that minimizing
about the ℓp norm in Rd leads to sparsity of the minimizer when p is close to 1.

As in the case of RKHS, a feature map (which is the Reproducing kernel in Hilbert space) can also
be introduced as an appropriate measurement of similarities between elements in the domain of the
function. To see this, [4, 3, 6] provides a way to construct the Reproducing Kernel Banach Spaces
via feature map. In this construction, the reproducing kernels naturally represents the similarity of
two elements in the feature space.

Construction of a Reproducing Kernel Banach Space
For a Banach space W , let [·, ·]W : W ′ ×W → R be its duality pairing. Suppose there exist
an nonempty set Ω and a corresponding feature mappings Φ : Ω → W ′,. We can construct a
Reproducing Kernel Banach Space as

B := {fv(x) := [Φ(x), v]W : v ∈ W, x ∈ Ω}

with norm∥fv∥B := inf{∥v∥W : v ∈ W with f = [Φ(·), v]W}.

2



In [6], the relation between the feature map construction and the RKBS has been established in the
following theorem.
Theorem 1 (Proposition 3.3[6]). A space B of function on Ω is a RKBS if and only if there is a
Banach space W and a feature map Φ : Ω → W ′ such that B is constructed by the method above.

As discussed in [6], the feature maps are generally not unique, and the relation between the Banach
space W and the RKBS B is presented in the following technique remark:
Remark. The RKBS B is isometrically isomorphic to the quotient space W/N , where

N = {v ∈ W : fv = 0}

Lp-type Reproducig Kernel Banach Space For a probability measure space
(Ω,M, µ), the space Lp(µ) for 1 ≤ p < ∞ is defined as Lp(µ) ={
f : Ω → R

∣∣∣∣ f is measurable and
∫
X
|f |p dµ < ∞

}
. It is known that, under proper assumptions,

the Reproducing Kernel Hilbert Space [22] can be characterized in two equivalent feature spaces: ℓ2
and L2(µ).

In this paper, our focus lies in the generalization of the L2 characterization of the RKHS to the RKBS,
i.e., the Lp-type Reproducing Kernel Banach space, defined as follows:
Definition 2 (Lp−type Reproducing Kernel Banach Space). If the feature space W is given by
W = Lp(µ) for some measure µ, then we call the constructed Reproducing Kernel Banach Space as
Lp−type.

Example 1 (Reproducing Kernel Hilbert Space). L2−type Reproducing Kernel Banach Space is a
Reproducing Kernel Hilbert Space.

Example 2 (Barron Space [23, 24, 16, 25, 26]). Barron space is used to characterize the approx-
imation properties of shallow neural networks from the point of view of non-linear dictionary
approximation. Let X be a Banach space and D ⊂ X be a uniformly bounded dictionary, i.e.
D is a subset such that suph∈D ∥h∥X = KD < ∞. Barron space is concerned with approximat-
ing a target function f by non-linear n-term dictionary expansions, i.e. by an element of the set
Σ(D) =

{∑n
j=1 ajhj : hj ∈ D

}
. The approximation is non-linear since the elements hj in the

expansion will depend upon the target function f . It is often also important to have some control
over the coefficients aj . For this purpose, we introduce the sets

Σp
M (D) =


n∑

j=1

ajhj : hj ∈ D, n ∈ N,

(
n∑

i=1

|ai|p
) 1

p

≤ M


[8] showed that the Barron space Σ1

M (D) can be represented as a L1−type RKBS. Furthermore,
we will show later on that Σ1

M (D) can be embeded into a Reproducing Kernel Hilbert Space with a
weak assumption on the dictionary.

Learnability and Metric Entropy The metric entropy [20, 27, 28] indicates how precisely we can
specify elements in a function class given a finite mount of bits information and it is closely related
to the approximation by stable non-linear methods [29]. Metric entropy is quantified as the log of the
covering number, which counts the minimum number of balls of a certain radius needed to cover
the space. In information theory, metric entropy is the natural characterization of the complexity of
a function class. [30, 31, 32] showed that a concept class is learnable with respect to a fixed data
distribution if and only if the concept class is finitely coverable (i.e., there exists a finite ϵ cover for
every ϵ > 0) with respect to the distribution. In this paper, we extend this result to concept classes that
can be learned with a polynomially large dataset with respect to the learning error. We demonstrate
that the growth speed of the metric entropy of such concept classes can also be polynomially bounded.

1.2 Contribution

In this paper, we aim to establish connections between Lp-type RKBS and function classes that can
be learned efficiently with a polynomially large dataset with respect to the learning error. Specifically,

3



it is shown that such classes have metric entropies enjoys a power law relationship with the covering
radius and can be embedded into an Lp-type reproducing kernel Banach space (RKBS). Classical
results indicate that the ability to embed a hypothesis space into a reproducing kernel Hilbert space
(RKHS) implies a metric entropy decay rate (Steinwart, 2000), which in turn suggests learnability.
Our novel contribution is establishing a converse connection between the metric entropy and the type
of a Banach space. We demonstrate that concept classes whose metric entropy can be polynomially
bounded lead to the embedding into Lp-type RKBSs. These results highlight the generality of using
Lp-type RKBSs as prototypes for learnable function classes and are particularly useful because
bounding the metric entropy of a function class is often straightforward. Several illustrative examples
are provided in Section 4.

2 Preliminary

Type and Cotype of a Banach Space The type and cotype of a Banach space are classification s of
Banach spaces through probability theory. They measure how far a Banach space is from a Hilbert
space. The idea of type and cotype emerged from the work of J. Hoffmann-Jorgensen, S. Kwapien, B.
Maurey and G. Pisier in the early 1970’s. The type of a Banach space is defined as follows
Definition 3 (Banach Space of Type-p ). A Banach space B is of type p for p ∈ [1, 2] if there exist a
finite constant C ≥ 1 such that for any integer n and all finite sequences (xi)

n
i=1 ∈ Bn we have(

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
p

B

) 1
p

≤ C

(
n∑

i=1

∥xi∥pB

) 1
p

where ε is a sequence of independent Rademacher random variables, i.e., P (εi = −1) = P (εi =
1) = 1

2 and E[εiεm] = 0 for i ̸= m and Var[εi] = 1. The sharpest constant C is called type p
constant and denoted as Tp(B).
Definition 4 (Banach Space of Cotype-q). A Banach space B is of cotype q for q ∈ [2,∞] if there
exist a finite constant C ≥ 1 such that(

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
q

B

) 1
q

≥ 1

C

(
n∑

i=1

∥xi∥qB

) 1
q

,

if 2 ≤ q < ∞ for any integer n and all finite sequences (xi)
n
i=1 ∈ Bn. The sharpest constant C is

called cotype q constant and denoted as Cq(B).

The previous work [33] utilizes the following Kwapien’s Theorem to charaterize whether there exists
a RKHS H with a bounded kernel such that certain Banach space E ⊂ H . As a result, it was shown
that typical classes of function spaces described by the smoothness have a strong dependence on the
underlying dimension: the smoothness s required for the space E needs to grow proportionally to
the underlying dimension in order to allow for the embedding to a RKHS H .
Theorem 2 (Kwapien’s Theorem [34, 35]). For a Banach space E, id : E → E being Type 2 and
Cotype 2 is equivalent to E being isomorphic to a Hilbert Space

The relation of the type of a Banach space and Lp can be characterized by the following Theorem:
Theorem 3 (Lemma 11.18 in [36], corollary of Pietsch Domination Theorem and Maurey-Pisier
Theorem). Consider type−p (1 < p ≤ 2) Banach Space X which is a closed subspace of L1(µ)
for some measure µ, then for any 1 < r < p there exists isomorphic embedding u : X → Lr(ν)
(isomorphic to a subspace of Lr(ν)) for some probability ν.

Covering Number and Metric Entropy Covering number and metric entropy measure the size
of the hypotheses space on which we work. For many machine learning problems, a natural way to
measure the size of the set is via the number of balls of a fixed radius δ > 0 required to cover the set.
Definition 5 (δ−Covering Number for metric space (X , d) [27]). Consider a metric space (X , d)
where d is the metric for space X . Let δ ≥ 0. A δ-covering or δ-net of metric space (X , d) is a set
of elements of X given by {θ1, . . . , θN} ⊆ X where N = N(δ), such that for any θ ∈ X , there
exists i ∈ [N ] such that d(θ, θi) ≤ δ. The δ-covering number of (X , d), denoted as N(δ,X , d), is
the smallest cardinality of all δ-covering.
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We can define a related measure—more useful for constructing our lower bounds—of size that is
related to the number of disjoint balls of radius δ > 0 that can be placed into the set

Definition 6 (δ-Packing numbers for metric space (X , d)). A δ-packing of (X , d) is a set of elements
of X given by {θ1, . . . , θM} ⊆ X where M = M(δ), such that for all i ̸= j, d(θi, θj) > δ. The
δ-packing number of (X , d), denoted as M(δ,X , d), is the largest cardinality of all δ-packing set.

The following lemma showed that the packing and covering numbers of a set are in fact closely
related:

Lemma 1 (Lemma 4.3.8 [37]). For any δ > 0, M(2δ,X , d) ≤ N(δ,X , d) ≤ M(δ,X , d)

The metric entropy, which is defined as log of the covering number, indicate how precisely we can
specify elements in a function class given fixed bits of information.

Definition 7. The metric entropy of (X , d) is defined as logN(δ,X , d).

3 Main Results

In recent literature, reproducing kernel Banach spaces (RKBS) have been gaining interest for the
analysis of neural networks. Moreover, RKBS also offers a versatile and comprehensive framework
for characterizing complex machine learning estimators. However, the majority of the constructions
and statistical analyses in the literature are concentrated on and based on the structure of Lp-type
RKBS, specifically embedding the feature space into an Lp space. However, we still do not know
whether Lp-type RKBS is a flexible enough modeling. In this paper, we consider the following
questions:

Question. Given a RKBS E of functions from Ω → R, does there exist an Lp−type RKBS
Bp on X with the embeddings E ↪→ Bp ↪→ F = L∞(Ω), where L∞(Ω) denotes the space
of all the pointwise bounded function on Ω.

Recently, the question was studied in [33] for the case p = 2. The authors showed that there exists
no Reproducing Kernel Hilbert Space H with a bounded kernel such that the space of all bounded,
continuous functions from Ω to R satisfies C(Ω) ⊂ H. At the same time, the smoothness required
for the space E needs to grow proportionally to the underlying dimension in order to allow for
embedding into an intermediate RKHS H.

In the literature, one way to describe the “size” of a RKBS is by means of denseness in a surrounding
space F and universal consistency can be established for kernel-based learning algorithms if universal
kernels are used, [38, 22]. However, universal consistency does not mean that the problem can be
efficiently learned. To precisely approximate arbitrary continuous functions, having a large RKHS
norm is sufficient but may lead to a large sample complexity requirement [39, 40].

Surprisingly, we show the following connection between the sample complexity and the embedding
to Lp−type RKBS :

All the polynomially learnable RKBS can be embeded to a Lp−type RKBS.

We first demonstrate the relationship between metric entropy and embedding in the following theorem,
and subsequently establish the connection between metric entropy and sample complexity in Section
5. The significance of this result lies in the fact that estimating metric entropy is considerably more
straightforward in practice than finding the embedding. For instance, the metric entropies of all
classical Sobolev and Besov finite balls in Lp or Sobolev spaces are well-known.
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Theorem 4. Given a bounded domain Ω ∈ Rd, a RKBS E of functions on Ω, and F = ℓ∞(Ω)
on Ω , which means the embedding id : E → F is a compact embedding. If the growth of
metric entropy can be bounded via

EF
E (δ) := logN(δ, {x ∈ E : ∥x∥E ≤ 1}, ∥ · ∥F ) ≤ δ−p, p ≥ 2.

Then for any s > p, there exist a Ls−type RKBS Bs, such that

E ↪→ Bs ↪→ F .

Related Work A series of earlier works [41, 42, 43, 44, 45] providedthe metric entropy control of
the convex hull in a type-p Banach space which showed that a type-p Banach space always has metric
entorpy control. [46] showed that a Banach space is of weak type p if and only if it is of entropy
type p′ with 1/p′ + 1/p = 1. All type-p Banach space is weak type-p [47]. Thus our work showed a
stronger result than [46].

3.1 Proof Sketch

A sketch of the proof of metric entorpy bound to embedding is given below.

1. We first bound the Rademacher norm Eϵi
1
n ∥
∑n

i=1 ϵixi∥F of the Banach space E via
generalizations of the Massart’s lemma and Dudley’s chaining theorem to general Banach
space.

2. We provide a novel lemma which shows that type of a Banach space can be inferred from
the estimation of Rademacher norm Eϵi

1
n ∥
∑n

i=1 ϵixi∥F
3. Using the isomorphism between the Banach space Ê = (E, ∥ · ∥F ) and subspace of Ls′(µ)

to construct the feature mapping of the Ls−type RKBS.

To be more specific,given p > 2, for any s > p, our proof takes on the following pathway:

Type s′ Ls-type RKBSMetric entropy control δ−p

where 1 < s′, p′ < 2 such that 1/s+1/s′ = 1/p+1/p′ = 1. The detailed proof can be found in the
appendix.

Metric Entropy Bound leads to bound of the Rademacher norm We generalize the Dudley’s
Chaining Theorem to abstract Banach space, so that we can show a n− 1

p decay of the Rademacher
norm Eϵi

1
n ∥
∑n

i=1 ϵixi∥F based on the assumption that log EF
E (δ).

Theorem 5 (Dudley’s Chaining for Abstract Banach Space). Given two Banach Spaces (E, ∥ · ∥E)
and (F, ∥ · ∥F ), an upper bound on the Rademacher norm can be showed by a Dudley’s chaining
argument as follows:

Eϵi sup
x1,··· ,xn∈E

∥x1∥E≤1,∥x2∥E≤1,
··· ,∥xn∥E≤1

1

n

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≤ C inf
α

{
α+

6√
n

∫ 2

α

√
EF
E (δ) dδ

}
,

holds for all 0 < α < 1, where: ϵi are independent Rademacher variables, taking values in {−1,+1}
with equal probability.

According to Theorem 5, if the entropy number EF
E (δ) ≤ δ−p for some p > 2, we can have

Eϵi

1

n

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≲ n− 1
p +

1√
n

∫ 1

n
− 1

p

√
δ−pdδ (Take α = n− 1

p )

≲ n− 1
p (The integral is of O(n− 1

p ))

(1)

for all ∥xi∥E ≤ 1.
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From the Bounded Rademacher norm to the Type of the Banach Space We now present a novel
lemma which shows that the previous estimation of the Rademacher norm Eϵi

1
n ∥
∑n

i=1 ϵixi∥F can
imply the type of the Banach space.

Lemma 2 (Techinque Contribution: From bounded Rademacher norm to type of the Banach
space). Given two Banach spaces (E, ∥ · ∥E) and (F, ∥ · ∥F ) on X where we have the
embedding E ↪→ F , if for 1 ≤ p′ ≤ 2, the following inequality

Eϵi

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≲ n
1
p′

holds when ∥xi∥E ≤ 1, i = 1, · · · , n,∀n ∈ N, then Ê = (E, ∥ · ∥F ) is of the type s′, for
each 1 ≤ s′ < p′.

Ls′(µ)

Ws′(E, ∥ · ∥E) (E, ∥ · ∥F )

(E, ∥ · ∥F ) F

Φ

idE→F

idE→Ê i
i−1

Figure 1: In our paper , we first use the type of a RKBS to build an isomorphic mapping to a subspace
of Lp(µ) for some probability measure µ. Then we construct the Lp-type RKBS via an extension
maps from Lp(µ) to F .

Embedding to Ls-type RKBS From the previous lemma, the space Ê = (E, ∥ · ∥F ) is type s′ for
all 1 ≤ s′ ≤ p′. By Theorem 3, Ê is isometric to a closed subspace Ws′ of Ls′(µ) for 1 ≤ s′ ≤ p′.
Now fixing an 1 ≤ s′ ≤ p′, we can construct the Ls-type RKBS Bs using the mapping relation in
Figure 1. We firstly use Hahn-Banach continuous extension theorem to extend idÊ→F ◦ i−1 to a
continuous linear functional Φ from Ls′(µ) → F such that Φ|Ws′ = i−1 ◦ idÊ→F |Ws′ . We define
the feature map via ϕ : Ω → Ls(µ) by

ϕ(x) := Φ∗δFx
where δFx ∈ F ′ denotes the evaluation functional at x acting on F and Φ∗ : F ′ → Ls′(µ) is the
adjoint of operator that is uniquely determined by

[f,Φh]F = [Φ∗f, h]Ls(µ), for all f ∈ F ′, h ∈ Ls(µ).

Then we have for any e ∈ Ê

[ϕ(x), i(e)]Ls(µ)=[Φ∗δFx , i(e)]Ls(µ) = [δFx ,Φi(e)]F
(1)
= [δFx , idÊ→F (e)]F = idÊ→F (e)(x),

where (1) is based on the fact that Φi(e) = (idÊ→F ◦ i−1)(i(e)) = idÊ→F (e). Now we define the
RKBS,

Bs :=
{
fv(x) := [ϕ(x), v]Ls′ : v ∈ Ws′ , x ∈ Ω

}
then we can show that E ↪→ Bs ↪→ F . The detailed proof is left to the Appendix C.

4 Applications

Spaces of (Generalized) Mixed Smoothness The Besov space is a considerably general function
space including the Hölder space and Sobolev space, and especially can capture spatial inhomogeneity
of smoothness.
Definition 8 (Besov Space [48], Definition 2.2.1). Let 0 ≤ s < ∞, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞,
with q = 1 in case s = 0. For f ∈ Lp(Rd, λ) define

∥f∥s,p,q :=

( ∞∑
k=0

2ksq∥F−1(ϕkFf)∥p

)1/q
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where ϕ0 is a complex-valued C∞-function on Rd with ϕ0(x) = 1 if ∥x∥ ≤ 1 and ϕ0(x) = 0 if
∥x∥ ≥ 3/2. Define ϕ1(x) = ϕ0(x/2) − ϕ0(x) and ϕk(x) = ϕ1(2

−k+1x) for k ∈ N. (ϕk form a
dyadic resolution of unity) and F denote the Fourier transform acting on this space (with scaling
constant (2π)−d/2). We further define

Bs
pq

(
Rd, ⟨x⟩β

)
:=

{
f :
∥∥∥f · ⟨x⟩β

∥∥∥
s,p,q

< ∞
}

where ⟨x⟩β = 1
(1+x2)β

is the polynomial weighting function parameterized by β ∈ R+.

Remark. Let S′(Rd) denote the space of complex tempered distributions on Rd. Since any f ∈
Lp(Rd) gives rise to an element of S′(Rd), the quantity F−1(ϕkFf) is well-defined (for any k) as an
element of S′(Rd). Moreover F−1(ϕkFg) is an entire analytic function on Rd for any g ∈ S′(Rd)
and any k by the Paley-Wiener-Schwartz theorem.

Theorem 6 (Metric Entropy of Besov Space [49]). Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, β ∈ R+, and
s− d

p > 0. Suppose E is a (non-empty) bounded subset of Bs
pq(Rd, {x}β). For β > s− d

p we have

logN(δ, E, ∥ · ∥∞) ≤ δ−d/s.

Corollary 1. Let d
2 ≤ p′ ≤ p ≤ ∞, 1 ≤ q ≤ ∞, d

p′ < s and β > s − d
p . Then

Bs
pq

(
Rd, ⟨x⟩β

)
can be embedded into an L p′

p′−1

−-type RKBS.

Remark. Our Corollary 1 covers the results in [33, Section 4.2, 4.3 and 4.5] for embedding to
Reproducing Kernel Hilbert Space by taking p′ = 2.

Barron Space Barron space is used to characterize the function space represented by two-layer
neural networks and comment belief is Barron space is larger than any Reproducing Kernel Hilbert
Space. For example, [25] has showed that Barron space is not isometric to a Reproducing Kernel
Hilbert Space because Barron space violates the parallelogram law. However Barron space still can
be embeded into a Reproducing Kernel Hilbert Space using our theory. [33, Section 4.4] showed
similar property for a special kind of dictionary. via the metric entropy estimation of convex hull.
To show this, we utilize the metric entropy of convex hull in Banach space [45, 44], which is the
technique used widely in estimating the metric entropy of Barron space / Integral Reproducing Kernel
Banach Spaces [50, 51, 52].
Theorem 7 (Convex Hull Metric Entropy [45, 44]). Let A ⊂ X be a precompact subset of the unit
ball of a Banach space X of type p, p > 1, with the property that there are constants ρ, α > 0 such
that

N (δ, A, ∥ · ∥X) ≤ ρδ−α

Then there exists a positive constant cp,α,ρ such that for the dyadic entropy numbers of the convex
hull we have the asymptotically optimal estimate

logN (δ, co(A), ∥ · ∥X) ≤ cp,α,ρδ
−(1−(1/p))−α for n = 1, 2, . . .

Since every Banach space is type-1 (from the triangular inequality), we can have the following coro
llary.

Corollary 2. If the dictionary space D satisfies N (δ,D, ∥ · ∥∞) ≤ ρδ−p+ϵ for some constant
p > 2, ϵ > 0, ρ > 0, then Barron space Σ1

M (D) can be embeded into L p
p−1

-type RKBS.

Remark. [33] showed that if the dictionary has a positive decomposition then the Barron space can
be embeded to a Reproducing Kernel Hilbert space. Our condition provides a new class of conditions
which utilize the smoothness of the dictionary [51, 50].

[53] provide the metric entropy estimate of q−hull in type-p Banach space, which help us to embed
to Reproducing Kernel Banach space.
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Lemma 3 (Metric Etnropy of q−hull in Type−p Banach Space[53]). Let K ⊂ X be a precompact
subset of the unit ball of a Banach space X of type p (p > 1), if N(δ,K, ∥ · ∥X ) = O(δ−α+ϵ) with
α > 0, ϵ > 0 and β ∈ R, then we have

logN(ϵ,Hq(K), ∥ · ∥X ) = O
(
ϵ−

αpq
pq+α(p−q)

)
.

where Hq(K) := {
∑n

i=1 cixi | xi ∈ K, 1 ≤ i ≤ n, n ∈ N,
∑n

i=1 |ci|q ≤ 1}.

Based on the result in [53], we have the following corollary

Corollary 3. If the dictionary space D satisfies N (δ,D, ∥ · ∥∞) ≤ ρδ−p+ϵ for some constant
p > 2, ϵ > 0, ρ > 0, then the Barron space Σq

M (D) can be embeded into L pq
2pq−q−p

-type
RKBS.

5 Learnablity and Metric Entropy

In this section, we show the connection between the Growth Speed of the Metric Entropy and the
learnability. That is, if a hypothesis space is learnable with a polynomial amount of data with respect
to the excess risk, then its metric entropy must be bounded. To show this we consider X be a set
and D a distribution over X . We follow the functional model of learning [54, 30] which considers
learning concept class over X which is a nonempty set C ⊆ 2X of concepts. We consider the
following learning tasks to learn a concept class using observations. For x = (x1, . . . , xl) ∈ X l

and c ∈ C, the labeled l-sample of c is given by samc(x) = {(x1, Ic(x1)), . . . , (xl, Ic(xl))}, where
Ic(xj) equals 1 if xj ∈ c and 0 otherwise. The sample space of C, denoted SC , is the set of all
labeled l-samples of c over all c ∈ C and all x ∈ X ′ for all l ≥ 1.

Let C be a concept class over X and H an algebra of Borel sets over X . Then FCH is the set of
all functions f : SC → H . In the sequel we omit C and H when understood from the context.
Consider the teacher T (who wants to teach the learner L a target concept c) repeatedly picks
at random, according to some distribution D, an element x from a set X and sends L the pair
(x, Ic(x)). L, after receiving sufficiently many examples, applies a function f ∈ FCH to return the
set f((x1, Ic(x1)), . . . , (xl, Ic(xl))).

Let Y1, Y2 ⊆ X we say that Y1 and Y2 are ε-close with respect to the distribution D if
Pr(∆(Y1, Y2)) < ε (∆ denotes the symmetric difference). Otherwise, Y1 and Y2 are ε-far with
respect to the distribution D. Notice that Pr(∆(Y1, Y2)) is a pseudo-metric [30] on the measurable
sets of X .
Lemma 4. Given a set X , a distribution D over X , a concept class C ⊂ 2X and δ, ϵ > 0. If there
exists a set C2ϵ ⊂ C of exp(ϵ−p) pairwise 2ϵ−far concepts, then for every f ∈ F , the minimal

sample size lfC(ϵ, δ) required by f to learn any concept in the concept space C to the accuracy ε and
the confidence δ needs to satisfy lfC(ϵ, δ) ≥ log((1− δ))ϵ−p.

The lemma demonstrates a relationship between the metric entropy and the polynomial learnability:
if the metric entropy is greater than ϵ−p for an ϵ-cover, then at least Ω(ϵ−p) samples are required.

6 Conclusion and Discussion

In this work, we have established a novel connection between the metric entropy growth of a function
space and its embeddability into a reproducing kernel Banach space (RKBS). The classical results
relating the embedding of function spaces into RKBS and their metric entropy growth have been
extended to the more general RKBS setting. Our main result demonstrates that if the metric entropy
of a Banach hypothesis space can be bounded by a polynomial function of the radius, then the
space can be embedded into a Lp-type RKBS for some 1 ≤ p ≤ 2. This finding has significant
implications for the study of learnable function classes in machine learning. Notably, our result
indicates that if a function space is learnable with a polynomially large dataset with respect to the
learning error, then it can be embedded into a Lp-type RKBS. This insight establishes RKBS as a
powerful theoretical framework for studying learnable datasets and machine learning models. The

9



ability to represent learnable function spaces within the RKBS framework opens up new avenues for
analyzing their theoretical properties, such as approximation guarantees, generalization capabilities
and computational complexity.
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A Lemmas for Type of the Banach Space

A.1 n−th Type Number of the Banach Space

Lemma 5 (Kahane-Khintchine Inequality). If (E, ∥ · ∥E) is any normed space and x1, · · · , xn ∈ E,
then

E∥
n∑

i=1

ϵixi∥E ≤

(
E∥

n∑
i=1

ϵixi∥pE

)1/p

≤ KPE∥
n∑

i=1

ϵixi∥E

Using the previous lemma, we are ready to prove the Lemma 2

Proof. We first prove for all ∥xi∥E ≤ 1, i = 1, · · · , N, ∀N ∈ N, the inequality holds. By the
embedding E ↪→ F , we have ∥xi∥F ≤ c∥xi∥E ≤ c for some constant c > 0, WLOG we can assume
c = 1. In the following proof, we will fix an m ∈ N. For j, k = 0, 1, 2, . . . define the two sets

Uj =

{
i : ∥xi∥F ∈

(
1

2j+1
,
1

2j

]}
and Vk =

{
j : |Uj | ∈ (mk−1,mk]

}
.

Fix a k and a j ∈ Vk. We will perform a calculation as above, but now taking advantage of
the assumption that s < q, which buys us a bit of room that will come in handy later. Let τ =
s−1 − q−1 > 0. By the fact that |Uj | ≤ mk, ∥2kxi∥F ≤ 1 and using Lemma 5E

∥∥∥∥∥∥
∑
i∈Uj

ϵixi

∥∥∥∥∥∥
s

F


1
s

≲ E

∥∥∥∥∥∥
∑
i∈Uj

ϵixi

∥∥∥∥∥∥
F

=
1

2k
E

∥∥∥∥∥∥
∑
i∈Uj

ϵi
(
2kxi

)∥∥∥∥∥∥
F

≤ 1

2j
mk/q =

1

2j
mk/sm−τk.

(2)

For each j define fj : {−1, 1}n → R by fj(ϵ) =
∥∥∥∑i∈Uj

ϵixi

∥∥∥
F
. Then we have

(
E

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
s

F

) 1
s

=

E

∥∥∥∥∥∥
∞∑
j=0

∑
i∈Uj

ϵixi

∥∥∥∥∥∥
s

F


1
s

≤

Eϵ

∞∑
j=0

fj(ϵ)
s

 1
s

≤
∞∑
j=0

(Eϵfj(ϵ)
s)

1
s =

∞∑
k=0

∑
j∈Vk

Eϵ

∥∥∥∥∥∥
∑
i∈Uj

ϵixi

∥∥∥∥∥∥
s

F


1
s

≤
∞∑
k=0

∑
j∈Vk

m−τkm
k/s

2j
≤

( ∞∑
k=0

m−τk

)
max

k

mk/s
∑
j∈Vk

1

2j


≤ m

1
s max

k

|Uj |
1
s

∑
j∈Vk

1

2j

 (for |Uj | ≥ mk−1)

≤ 2m
1
s max

k
max
j∈Vk

{
|Uj |

1
s
1

2j
: j ∈ Vk

} for
∑
j∈Vk

1

2j
≤

∑
j≥min(Vk)

1

2j
≤ 2

2min(Vk)


≤ 2m

1
s max

j

{
|Uj |

1
s
1

2j
: j = 0, 1, 2, . . .

}

≤ 4m
1
s max

j


∑

i∈Uj

∥xi∥sF

 1
s

: j = 0, 1, 2, . . .


(

for
1

2j+1
≤ ∥xi∥ holds ∀i ∈ Uj

)

≤ 4m
1
s

(
n∑

i=1

∥xi∥sF

) 1
s

.
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Gathering up the implicit factors in the above inequalities and noting that they all only depend on r
and τ gives the result. Now we prove for all xi ∈ E, i = 1, · · · , n,∀n ∈ E and any s < q, we have

(
E

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
s

F

) 1
s

≲

(
n∑

i=1

∥xi∥sF

) 1
s

. (3)

Let x̃i =
xi

maxn
i=1{∥xi∥E} , then ∥x̃i∥E ≤ 1 holds for all i = 1, · · · , n. From the previous proof we

have (
E

∥∥∥∥∥
n∑

i=1

ϵix̃i

∥∥∥∥∥
s

F

) 1
s

≲

(
n∑

i=1

∥x̃i∥sF

) 1
s

,

which will leads to the complete proof of (2).

B Dudley’s Chaining for Abstract Banach Space

We now prove the Theorem 5, which extends Dudley’s Chaining for abstract Banach space.

Proof. We first extend Massart’s lemma to Banach space.

Lemma 6 (Generalized Massart’s Lemma in Banach Space). Let B be banach space and A ⊂ B be
a finite set with r = maxa∈A ∥a∥B, then

E

[
sup
a∈A

∥∥∥∥∥
m∑
i=1

σiai

∥∥∥∥∥
B

]
≤ r
√

2 log |A|

where |A| denotes the cardinality of A, σi’s are Rademacher random variables (which are independent
and identically distributed random variables taking values {−1, 1} with equal probability) and ai
are components of vector a.

Proof. Here’s a proof of the Massart’s Lemma. It basically follows from Hoeffding’s Lemma.

exp

(
λE

[
sup
a∈A

∥∥∥∥∥
m∑
i=1

σiai

∥∥∥∥∥
B

])
≤ E exp

([
sup
a∈A

∥∥∥∥∥
m∑
i=1

λσiai

∥∥∥∥∥
B

])
(Jensen’s for λ > 0)

≤ E

[∑
a∈A

exp

(∥∥∥∥∥
m∑
i=1

λσiai

∥∥∥∥∥
B

)]

≤
∑
a∈A

E

[
exp

(∥∥∥∥∥
m∑
i=1

λσiai

∥∥∥∥∥
B

)]
(as σi’s are i.i.d.)

≤
∑
a∈A

m∏
i=1

E [exp (∥λσiai∥B)] (by Traingular Inequality)

≤
∑
a∈A

exp

(
mλ2r2

2

)
(Using Hoeffding’s Lemma)

= |A| exp
(
mλ2r2

2

)
Applying the logarithm operator to the inequality and multiplying by 1

λ

1

λ
log

(
exp

(
λE

[
sup
a∈A

∥∥∥∥∥
m∑
i=1

σiai

∥∥∥∥∥
B

]))
≤ 1

λ
log

(
|A| exp

(
mλ2r2

2

))
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E

[
sup
a∈A

∥∥∥∥∥
m∑
i=1

σiai

∥∥∥∥∥
B

]
≤ log |A|

λ
+

mλr2

2

Set value of λ =
√

2 log |A|
mr2 above to obtain

E

[
sup
a∈A

∥∥∥∥∥
m∑
i=1

σiai

∥∥∥∥∥
B

]
≤ r
√

2 log |A|

To prove the Dudley’s Chaining Theorem 5 for abstract Banach spaces, we start by the most crude
ϵ-cover for our function class. To simplify the notation we denote:

Nδ := N(δ, {x ∈ E : ∥x∥E ≤ 1}, ∥ · ∥F )

For any 0 < α < 1, we can set ϵ0 = 2mα, where m is choosed properly such that ϵ0 ≥
supi=1,··· ,n ∥xi∥E and note that we have the covering net Nϵ0 = {g0} for g0 = 0 which implies
Nϵ0 = 1.

Next , define the sequence of epsilon covers Nϵj by setting ϵj = 2−jϵ0 = 2m−jα for j = 0, ...,m.
By definition, ∀x ∈ E, ∥x∥E ≤ 1, we can find gj(x) ∈ Nϵj that such that ∥x − gj(x)∥F ≤ ϵ.
Therefore we can write the telescopic sum

x = x− gm +

m∑
j=1

gj(x)− gj−1(x).

By triangle inequality, for any x we have ∥gj(x)−gj−1(x)∥F ≤ ∥gj(x)−x∥F +∥x−gj−1(x)∥F ≤
ϵj + ϵj−1 = 3ϵj . Thus,

Eϵi sup
x1,··· ,xn∈E

∥x1∥E≤1,∥x2∥E≤1,
··· ,∥xn∥E≤1

1

n

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≤ E
1

n

 sup
x1,··· ,xn∈E

∥x1∥E≤1,∥x2∥E≤1,
··· ,∥xn∥E≤1

∥∥∥∥∥
n∑

i=1

ϵi(x− gm(x))

∥∥∥∥∥
F

+

m∑
j=1

∥∥∥∥∥
n∑

i=1

ϵi(gj(xi)− gj−1(xi))

∥∥∥∥∥
F



≤ 1

n
· nϵm + E

1

n

 sup
x1,··· ,xn∈E

∥x1∥E≤1,∥x2∥E≤1,
··· ,∥xn∥E≤1

m∑
j=1

∥∥∥∥∥
n∑

i=1

ϵi(gj(xi)− gj−1(xi))

∥∥∥∥∥
F



≤ ϵm + E
1

n


m∑
j=1

sup
x1,··· ,xn∈E

∥x1∥E≤1,∥x2∥E≤1,
··· ,∥xn∥E≤1

∥∥∥∥∥
n∑

i=1

ϵi(gj(xi)− gj−1(xi))

∥∥∥∥∥
F


(by sup

∑
≤
∑

sup)

≤ α+ E
1

n


m∑
j=1

sup
y1,··· ,yn∈E

∥y1∥E≤3ϵj ,∥y2∥E≤3ϵj ,
··· ,∥yn∥E≤3ϵj

∥∥∥∥∥
n∑

i=1

ϵiyi

∥∥∥∥∥
F


≤ α+

m∑
j=1

3ϵj
n

√
2nlog

∣∣Nϵj

∣∣2 (by Massart’s lemma)

≤ α+
6√
n

m∑
j=1

(ϵj − ϵj+1)
√
log
∣∣Nϵj

∣∣ ≤ α+
6√
n

∫ ϵ0

ϵm

√
log |Nt|dt.
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≤ α+
6√
n

∫ D

α

√
log |Nt|dt.

where we take D = 2 supi=1,··· ,n ∥xi∥E and therefore D > ϵ0.

C Proof of the Main Theorem

In this section, we present the proof of our main theorem

Given a bounded domain Ω ∈ Rd, a RKBS E of functions on Ω, and F = ℓ∞(Ω) on Ω ,
which means the embedding id : E → F is a compact embedding. If the growth of metric
entropy can be bounded via

EF
E (δ) := logN(δ, {x ∈ E : ∥x∥E ≤ 1}, ∥ · ∥F ) ≤ δ−p, p ≥ 2.

Then for any s > p, there exist a Ls−type RKBS Bs, such that

E ↪→ Bs ↪→ F .

Proof. First of all, according to Theorem 5, if the entropy number logN(δ, E, ∥ · ∥F ) ≤ δ−p for
some p > 2, we can have

Eϵi

1

n

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≲ n− 1
p +

1√
n

∫ 1

n
− 1

p

√
δ−pdδ (Take α = n− 1

p )

≲ n− 1
p (The integral is of O(n− 1

p ))

⇒ Eϵi

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
F

≲ n
1
p′

(4)

for all ∥xi∥E ≤ 1.

Therefore by our technique Lemma 2, we can conclude that the space Ê = (E, ∥ · ∥F ) is of type s′

for any 1 < s′ < p′. Recall that E is an RKBS, so it is a closed subspace of F = ℓ∞(X). Therefore
E is a closed subspace of L1(X) because ℓ∞(X) embeds continuously to L1, so is Ê. Consequently,
Ê is a closed subspace of L1(ν), where ν is the uniform distribution on X . By Theorem 3, Ê is
isometric to a subspace of Ls′(µ) for some measure µ for any 1 < s′ < p′.

By the induction above the following embedding holds

E = (E, ∥ · ∥E)
idE→Ê
↪→ Ê = (E, ∥ · ∥F )

idÊ→F
↪→ F = (F, ∥ · ∥F )

Therefore,

We have the following embedding

E = (E, ∥ · ∥E)
idE→Ê
↪→ Ê = (E, ∥ · ∥F )

idÊ→F
↪→ F = (F, ∥ · ∥F )

and Ê is isometric to Ws′ , a closed subspace of Ls′(µ) by the isometric mapping i.

Firstly, by Hahn–Banach continuous extension theorem, we can extend idÊ→F ◦ i−1 : Ws′ → F to
a continuous linear functional Φ from Ls′(µ) → F such that Φ|Ws′ = idÊ→F ◦ i−1|Ws′ . We define
the feature map via ϕ : Ω → Ls(µ) by

ϕ(x) := Φ∗δFx

where δFx ∈ F ′ denotes the evaluation functional at x acting on F and Φ∗ : F ′ → Ls′(µ) is the
adjoint of operator that is uniquely determined by

[f,Φh]F = [Φ∗f, h]Ls(µ), for all f ∈ F ′, h ∈ Ls(µ).
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Then we have for any e ∈ Ê

[ϕ(x), i(e)]Ls(µ)=[Φ∗δFx , i(e)]Ls(µ) = [δFx ,Φi(e)]F
(1)
= [δFx , idÊ→F (e)]F = idÊ→F (e)(x),

where (1) is based on the fact that Φi(e) = (idÊ→F ◦ i−1)(i(e)) = idÊ→F (e). Now we define the
RKBS,

Bs :=
{
fv(x) := [ϕ(x), v]Ls′ : v ∈ Ws′ , x ∈ Ω

}
with norm

∥fv∥Bs := inf{∥v∥W : v ∈ Ws′ with fv = [ϕ(·), v]Ls′}.

Next we show the embedding E ↪→ Bs ↪→ F . Noticing that Bs is an RKBS, so Bs ↪→ F , we only
need to show the first embedding. Since E ↪→ Ê and Ê is isometric to Ws′ , we will prove this by
showing that Bs is the image of the mapping idÊ→F ◦ i−1 on Ws′ . Noticing that for all v ∈ Ws′ ,
fv = [ϕ(·), v]Ls′} = idÊ→F ◦ i−1(v) ∈ Bs. Conversely, for any f ∈ Bs, one can find a v ∈ Ws′

such that f = [ϕ(·), v]Ls′} by definition. Therefore Bs is the image of the mapping idÊ→F ◦ i−1 on
Ws′ .

Now, since E =
(
idÊ→F ◦ i−1

)
◦ i ◦ idE→ÊE, therefore E is a subset of the image of the mapping

idÊ→F ◦ i−1 on Ws′ , then we can conclude that E ↪→ Bs.

D Relationship Between Metric Entropy and Learnability

Lemma 7. Given a set X , a distribution D over X , a concept class C ⊂ 2X and δ, ϵ > 0. If there
exists a set C2ϵ ⊂ C of exp(ϵ−p) pairwise 2ϵ−far concepts, then for every f ∈ F , the minimal

sample size lfC(ϵ, δ) required by f to learn any concept in the concept space C to accuracy ε and
confidence δ needs to satisfy lfC(ϵ, δ) ≥ log((1− δ))ϵ−p.

Proof. Let f learn C with respect to D with accuracy ε and confidence δ using sample size l. For
x = (x1, . . . , xl) and L = (L1, . . . , Ll) ∈ {0, 1}l, define I(x, L) as (x1, L1), . . . , (xl, Ll). For
c ∈ C and ε > 0 let

gf (c, x, L, ε) =

{
1 if ∆(PrD(f(I(x, L)), c)) ≤ ε,

0 otherwise.

Then we calculate
∫
gf (c, x, Ic(x), ε) dPD which is the expectation over x of the random variable

gf with respect to the l-fold distribution of D. Consider the sum

S =
∑
c∈C2l

∫
x

gf (c, x, Ic(x), ε) dPD.

Since f learns C to accuracy ε and confidence δ using sample size l, thus we have∫
gf (c, x, Ic(x), ε)dPD > 1− δ

for each c ∈ C, and we obtain S > (1− δ) exp(ϵ−p). Rearranging the sum, we can also have

S =
∑
c∈C2l

∫
gf (c, x, Ic(x), ε)dPD ≤

∑
c∈C2l

∫ ∑
L∈{0,1}l

gf (c, x, Ic(x), ε)dPD

=

∫
x

∑
L∈{0,1}l

∑
c∈C2l

gf (c, x, Ic(x), ε)dPD.

(5)

Since the c ∈ C2l are 2ε-far, for every x and L there exists at most one c ∈ C2l such that
gf (c, x, L, ε) = 1. Thus S ≤

∫
x

(∑
L∈{0,1}l 1

)
dPD =

∫
x
2l dPD = 2l. Combining with

S > (1− δ) exp(ϵ−p) yields l > log((1− δ))ϵ−p.
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E Auxiliary Lemmas and Theorems for Banach Space

Theorem 8 (Hahn–Banach continuous extension theorem). Every continuous linear functional f
defined on a vector subspace M of a (real or complex) locally convex topological vector space X has
a continuous linear extension f̄ to all of X . If in addition X is a normed space, then this extension
can be chosen so that its dual norm is equal to that of f .

Definition 9 (p-Summing Operators). Suppose that 1 ≤ p < ∞ and that u : X → Y is a linear
operator between Banach spaces X and Y . We say that u is p-summing if there is a constant c ≥ 0
such that independent of the value of the positive integer m and the choice of x1, . . . , xm in X we
have (

m∑
i=1

∥uxi∥p
)1/p

≤ c · sup


(

m∑
i=1

|⟨x∗, xi⟩|p
)1/p

: x∗ ∈ BX∗

 . (6)

The smallest constant c for which the inequality (6) always holds is denoted by πp(u). We shall write
Πp(X,Y ) for the set of all p-summing operators from X into Y .

Theorem 9 (Pietsch Domination). Let X,Y be Banach spaces, p ≥ 1, and let K ⊆ BX∗ be norming
and weak*-closed. If T : X → Y is p-summing then there exists a regular Borel Probability measure
µ on K such that for all x ∈ X ,

∥Tx∥ ≤ sp(T )

(∫
K

|x∗(x)|pdµ(x∗)

)1/p

.

Proof of Pietsch Domination. By the Theorem of Banach-Alaoglu (the closed unit ball of the dual
space of a normed vector space is compact in the weak* topology), we know that K (the norming
subset of BX∗ that is weak* closed) is compact in the weak* topology. For all x1, . . . , xn ∈ X ,
define gx1,...,xn

: K → R by

gx1,...,xn
(x∗) =

(
n∑

i=1

∥Txi∥p − πp(T )
p

n∑
i=1

|x∗(xi)|p
)1/p

.

Let C(K) = {f : K → R | f is continuous} be the space of continuous functions on K with the
sup norm ∥ · ∥sup. Then,

gx1,...,xn
∈ C(K).

Define Q ⊆ C(K) by
Q = {gx1,...,xn

| n ∈ N, x1, . . . , xn ∈ X}.

We check that Q is a convex set since for λ ∈ [0, 1] and x1, . . . , xn, y1, . . . , ym ∈ X , we have that

λgx1,...,xn + (1− λ)gy1,...,ym = g(λ1/px1,...,λ1/pxn,(1−λ)1/py1,...,(1−λ)1/pym).

Now let P = {f ∈ C(K) : f(x∗) > 0 for all x∗ ∈ K}. P is easily convex, and it is also open since
K is compact (if f ∈ P achieves its minimum on K, say it is ε, then {g | ∥g − f∥ < ε} is an open
set contained in P ).

Note that P ∩Q = ∅, otherwise there exists x1, . . . , xn ∈ X such that
n∑

i=1

∥Txi∥p > πp(T )
p

n∑
i=1

|x∗(xi)|p for all x∗ ∈ K ,

which contradicts T being p-summing with constant πp(T ).

By the hyperplane separation theorem (geometric Hahn-Banach) and the Riesz Representation
theorem for C(K), there exists a regular Borel measure µ on K and c ∈ R such that for all q ∈ Q
and f ∈ P , ∫

K

gdµ ≤ c <

∫
K

fdµ.
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since 0 ∈ Q, c must be nonnegative, and thus we have that for all f ≥ 0 (i.e. in P ),
∫
K
fdµ ≥ 0 so

that µ is a positive measure. For all ε > 0, if we take ε1K ∈ P we have that

c ≤
∫
K

ε1Kdµ

and since ε is arbitrary this implies c = 0. By normalizing, without loss of generality µ is a probability
measure. For x ∈ X , apply

∫
K
gdµ ≤ 0 to g = gx, then∫

K

(∥Tx∥p − πp(T )
p|x∗(x)|p) dµ(x∗) ≤ 0

and this implies the existence of some x∗ for which

∥Tx∥ ≤ πp(T )

(∫
K

|x∗(x)|pdµ(x∗)

) 1
p

which proves the result.

Interpretation of Pietsch Domination Theorem on Embedding: [55] For a fixed x ∈ X , the right
side of the inequality above is the Lp(µ) norm of the function fx defined by fx(x

∗) = x∗(x) for
x∗ ∈ K, i.e., fx ∈ C(K) ↪→ Lp(K,µ). Define J : X → C(K) by J(x) = fx, i.e., J(x)(x∗) =
x∗(x). Then

∥J(x)∥∞ = sup
x∗∈K

|x∗(x)| = sup
x∗∈BX∗

|x∗(x)| = ∥x∥

using the fact that K is norming. This shows that J is an isometry, and is invertible as a map from X
to JX . Denote the I by the identification of C(K) as elements of Lp(K,µ). Note

∥J(x)∥Lp(K,µ) =

(∫
K

|x∗(x)|pdµ(x∗)

) 1
p

≤ ∥J(x)∥∞

so that ∥I∥C(K)→Lp(K,µ) ≤ 1, and let Xp = IJX be the range of I on JX . In particular, I is
invertible as a map from JX → Xp by definition. Then we have the following diagram:

C(K)
I
↪→ Lp(K,µ)

↑ ↑
JX

I|JX

↪→ Xp

↑ ↑
X

T→ Y

and we can define S so that the diagram above commutes, i.e., S(IJx) = Tx (here I, J are invertible).
We note that as an operator S : Xp → Y , the norm is

∥S(IJx)∥Y = ∥Tx∥Y ≤ sp(T )

(∫
K

|x∗(x)|pdµ(x∗)

) 1
p

= sp(T )∥Jx∥Lp(K,µ)

and thus ∥S∥Xp→Y ≤ sp(T ).

Consider type−p (1 < p ≤ 2) Banach Space X which is a closed subspace of L1(µ) for
some measure µ, then for any 1 < r < p there exists isomorphic embedding u : X → Lr(ν)
(isomorphic to a subspace of Lr(ν)) for some probability ν. For a probability measure space
(Ω,M, ν), the space Lp(ν) for 1 ≤ p < ∞ is defined as Lp(ν).

Proof. As shown in [47], since 1 < r ≤ 2, we know that Lr(ν), along with all its subspaces, has
type-r.

For the converse, consider X∗ as a quotient of L∞(µ) = L1(µ)
∗ and let q : L∞(µ) → X∗ be the

corresponding quotient map. Assume that X has type 1 < p ≤ 2. Then that X∗ has cotype p∗. We
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show that q must be r∗-summing no matter how we choose 1 < r < p. This is because, for any
f1, · · · , fn ∈ L∞(µ), we have(

n∑
i=1

∥q(fi)∥p
∗

X∗

) 1
p∗

≲

Eϵ

∥∥∥∥∥
n∑

i=1

εiq(fi)

∥∥∥∥∥
p∗

X∗

 1
p∗

.

We further define v : ℓnp → L∞(µ) via v(ei) = fi for i = 1, · · · , n, so that we know

∥v∥∥x∗∥≤1 = sup


(

m∑
i=1

|⟨x∗, xi⟩|p
∗

)1/p∗ .

for

sup
x∗∈K

∑
i≤m

|⟨x∗, xi⟩|p
∗

1/p∗

= sup
x∗∈K

sup
∥a∥ℓmp

≤1

∣∣∣∣∣∣
∑
i≤m

ai⟨x∗, xi⟩

∣∣∣∣∣∣ = sup
∥a∥ℓmp

≤1

sup
x∗∈K

∣∣∣∣∣∣
〈
x∗,
∑
i≤m

aixi

〉∣∣∣∣∣∣ = sup
∥a∥ℓmp

≤1

∥∥∥∥∥∥
∑
i≤m

aixi

∥∥∥∥∥∥ .
Thus we have(

n∑
i=1

∥q(fi)∥p
∗

X∗

) 1
p∗

≲

Eϵ

∥∥∥∥∥
n∑

i=1

εiq(fi)

∥∥∥∥∥
p∗

X∗

1/p∗

≲ ∥q∥∥v∥

Eϵ

∥∥∥∥∥
n∑

i=1

εiei

∥∥∥∥∥
2

ℓ∞

 1
2

(by definition of ∥v∥ and Kahane-Khintchine Inequality)

≲ ∥q∥ sup
∥x∗∥≤1


(

n∑
i=1

|⟨x∗, xi⟩|p
∗

)1/p∗ .

(7)

Since q is r∗-summing and q’s domain is an L∞-space, we may produce a probability measure
ν together with operators u : Lr∗(ν) → X∗ and v : L∞(µ) → Lr∗(ν) such that q = uv. As q
is surjective, u is, and so u is open, thanks to the Open Mapping Theorem. Consequently, X∗ is
reflexive and u∗ : X → Lr(ν) is an isomorphic embedding.
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